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Abstract: Today, nanomedicine seeks to develop new polymer composites to overcome current
problems in diagnosing and treating common diseases, especially cancer. To achieve this goal,
research on polymer composites has expanded so that, in recent years, interdisciplinary collaborations
between scientists have been expanding day by day. The synthesis and applications of bioactive
GQD-based polymer composites have been investigated in medicine and biomedicine. Bioactive
GQD-based polymer composites have a special role as drug delivery carriers. Bioactive GQDs are
one of the newcomers to the list of carbon-based nanomaterials. In addition, the antibacterial and
anti-diabetic potentials of bioactive GQDs are already known. Due to their highly specific surface
properties, π-π aggregation, and hydrophobic interactions, bioactive GQD-based polymer composites
have a high drug loading capacity, and, in case of proper correction, can be used as an excellent option
for the release of anticancer drugs, gene carriers, biosensors, bioimaging, antibacterial applications,
cell culture, and tissue engineering. In this paper, we summarize recent advances in using bioactive
GQD-based polymer composites in drug delivery, gene delivery, thermal therapy, thermodynamic
therapy, bioimaging, tissue engineering, bioactive GQD synthesis, and GQD green resuscitation, in
addition to examining GQD-based polymer composites.

Keywords: polymer composites; graphene quantum dots; bioactive; biomedical; synthesis

1. Introduction

Bioactive materials play an increasingly important role in the biomaterials industry and
have wide applications in nanomedicine, drug delivery systems, and biosensors. Among the
medical applications of bioactive substances are the continuous development and current
status of bioactive substances in medicine [1]. The term graphene was first introduced in
1986 and was created by combining the word graphite with a suffix (n) referring to polycyclic
aromatic hydrocarbons. In various fields of science and technology, graphene has changed its
status from an unknown substance to a bright star. This is due to the exceptional properties of
graphene, including high current density, ballistic transport, chemical inertness, high thermal
conductivity, optical permeability, and excellent hydrophobicity at the nanometer scale [2,3].
The first use of functionalized graphene oxide polyethylene glycol as a nan carrier of
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anticancer drug release was reported in Liu et al. [4]. Sanchez et al. investigated the biological
properties of graphene nanomaterials and their toxicity, containing their proper interaction
with biomolecules, cells, and tissues based on the number of layers and the dimensions
of chemical functionalization [5]. Quantum dots are mineral semiconductor nanocrystals
with a diameter of 1 to 10 nanometers that emit light after excitation and typically consist
of 100 to 10,000 atoms. Their small size makes them unique compared to macrocrystalline
materials [6]. In many branches of science, GDs with unique properties have been used.
The use of these GDs in pharmaceutical and medical technology is also evolving [7,8].
The remarkable features of quantum dots that have made them a probe for targeted drug
delivery and therapeutic fields are their rich surface area and optical properties.

The cells or tissues in question are targeted by QDs, combined with ligands. Recently,
the use of QDs for in vivo applications has become more prominent with advances in
the production of biocompatible QDs [9]. QDs can also lead to good solubility in vari-
ous solvents, such as aqueous buffers, when in the form of a semiconductor core with a
coating (as a shell) and a cap [10]. Luminescent nanocrystals, known as QDs, are used
for carriers or probes in medical applications due to their rich surface chemistry, such as
in drug delivery [11–14], imaging, and treatments [15]. Graphene quantum dots (GQDs)
are graphene-based nanomaterials [16]. In other words, GQDs that are the product of the
chemical oxidation process of carbonaceous materials can be considered extremely small
derivatives of graphene oxide which contain a significant number of oxygenated functional
groups, such as hydroxyl and carboxyl [17,18]. The attention of many researchers has been
drawn to GQDs due to their excellent properties, such as low toxicity, good water solubility,
electrical conductivity, biocompatibility, stable photoluminescence, and surface to volume
ratio, and also to the application of GQDs in bioimmography, sensors, tissue engineering,
photocatalysis, and energy conversion [19]. Photoluminescence is one of the main properties
of GQDs that sometimes explain the diversity of their biomedical applications. However,
the photoluminescence mechanisms of GQDs are not well known because their structure is
complex and their surface functionalities are still unknown. Therefore, achieving optimal
optical properties that affect biomedical applications is challenging.

So far, no mechanism has comprehensively explained the photoluminescence phe-
nomenon of GQDs, limiting the regulation of their optical properties. However, several
mechanisms have been proposed, including the quantum confinement effect, the emission
of surface states, molecular fluorophores, the molecular diffusion of polycyclic aromatic
hydrocarbons, self-trapped exciton emissions, the surface dipole emission center, the aggre-
gate emission center, the multiple dissolution center, the relaxation of slowed solvent center,
and a solvatochromic shift. Each mechanism only partially explains the photoluminescence
phenomenon of GQDs. It has been suggested that bioactive compounds can specifically
improve photoluminescence. The polymerization of GQD structures can also increase the
biological effects of GQDs.

GQDs are typically reported to be between 3 and 20 nanometers in size, with the
largest reported size being 60 nanometers. Structurally, a GQD is crystalline and has one
or more layers of graphene [20,21]. GQDs can interact with biomolecules, so they can be
used for drug and gene delivery by making appropriate surface changes [22]. For example,
Huang et al. designed GQD nanocarriers that were able to simultaneously use specific drug
delivery, imaging, and chemotherapy for cancer [23]. Apul et al. reported the synthesis of
GQDs using citric acid and dicyandiamide as the starting material at 180 ◦C for 180 min.
The synthesized GQDs showed a quantum efficiency of 36.5% and high optical stability [24].
In other studies, GQD synthesis was reported as a bottom-up method based on the degree
of carbonization of citric acid [25].

The term composite (multiplayer or composite material) refers to a material that consists
of two phases, a matrix, and a reinforcement, and the second phase is used at a maximum of
0%. A matrix composition with fibers (or reinforcing material) below 0% is referred to as a
composite. Polymers in which fillers (in the size range from 1 to 100 nm) are homogeneously
reinforced are called polymer nanocomposites (PNCs). In these nanomaterials, fillers are
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specified in at least one dimension less than 100 nm (<100 nm). Based on the number of
dimensions that are outside the nanometer range, nanofillers can be classified into three
categories: (1) Spherical (zero-dimensional), (2) layered (one-dimensional), and (3) fibrous
and tubular (two-dimensional) [26–31].

There is a better interaction between the polymer matrix and the filler in polymer
nanocomposites than conventional composites. The uniform distribution of nanoparticles
in the polymer matrix increases the contact surface made up of the matrix and nanoparticles
and improves its mechanical, thermal, and obstruction properties. The smaller the size
of the nanoparticles, the more difficult it is to distribute them in the polymer matrix
because the nanoparticles are very unstable and have a high tendency to aggregate or
clump. The clumping of the nanoparticles is a weakness of the polymer matrix. Mineral
nanoparticles with petite particle sizes make minimal changes, as in the case of polymeric
materials. If properly designed and formulated, they can improve the polymer’s thermal
and mechanical barriers and its flammability properties [32]. Surface charge density, doping
status, the degree of surface oxidation, or inks with polymers are among the properties
of GQDs that can cause different interactive behaviors with biomolecules and which are
dramatically different in additional others [33]. The elastomer matrix is combined with filler
properties such as nanoparticles or graphene by flexible and durable polymer composites.
The potential application of graphene sheets [34–36] as fillers is possible due to their
outstanding optical, electrical, and mechanical properties in the context of synthesizing
new nanocomposites based on polymers [37–40].

One of the most important aspects of polymer composites when it comes to obtaining
lightweight materials with superior performance is the excellent mechanical and electri-
cal properties that graphene imparts to polymer matrices. The outstanding properties
that GQD-polymer composites possess with the introduction of only small amounts of
nanofillers into the polymer matrix are still being considered [41–43]. Thus, research groups
have made significant efforts to prepare GQD-polymer composites and study their prop-
erties [44–50]. Information on GQD-polymer composites, including the small size of GQD
particles, their atomic rough surfaces, and the dispersibility in polymers have been obtained
through simultaneous studies of their mechanical properties and thermal conductivity [51].
Graphene-bound biomacromolecules can improve the bioactivity and biocompatibility of
advanced GQD-based biocomposites and nanoplatforms [52,53]. QD-based polymer com-
posites on graphene base surfaces can provide significant biocompatibility and bioactivity,
with many potential biomedical and medical applications [54–57]. Recently, graphene and
bioactive GQD based polymer composites have been widely used in medicine for drug
delivery, cancer treatment, tissue engineering, phototherapy, and stem cell and biosensor
separation [58,59].

This study aimed to present advances in bioactive graphene quantum dot-based
polymer composites, focusing on advances in bioactive GQD-based synthesis methods and
highlighting future work areas in this field. These methods are based on techniques that rely
on top-down or bottom-up processes: bioactive GQD synthesis, GQD green reduction, and
GQD-based polymer composites. Finally, the applications of bioactive GQD-based polymer
composites, including drug delivery, gene delivery, heat treatment, thermodynamic therapy,
bioimaging, and tissue engineering, are discussed. The contents of this review are shown
in Figure 1.
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2. Bioactivation

Bioactive compound is a term commonly used to refer to secondary metabolites pro-
duced by organisms which are often not necessary for the growth and survival of organisms
and, unlike the primary metabolites and vital macromolecules, are not the basis of the
primary processes of the organism and do not play an important role. In general, secondary
metabolites in bacteria result from specific conditions, such as limited food sources, and
are produced during the idiophase period of the organism’s life. Most of these compounds
support the organism in specific environmental conditions (such as competition in the
ecosystem). Zahner has proposed the most convincing theory for producing secondary
metabolites, which he refers to as secondary metabolite evolutionary compounds. If a
metabolite does not affect any stage in the differentiation of an organism (morphogenesis,
movement, regulation) and is produced for specific purposes in organisms, it is called a
secondary metabolite. Many of these compounds have an antifeedant function in certain
organisms, sex absorbers, antibiotic agents [60,61].

The first report on the production of biologically active substances from marine bacteria
was made by Zobell and Rosenfeld in the context of antibiotic production. Since then,
several reports have been received in this regard. When it comes to biological compounds,
16,000 have been isolated from marine microorganisms, including antibacterial, antiviral,
and antitumor compounds [62,63].

2.1. Polymers Containing Bioactivation

The stabilization of bioactive compounds to produce the functional properties of
polymers has developed extensively over the past decade. This method is used in pack-
ing industries of foodstuffs and pharmaceuticals. Various bioactive compounds can be
used in the stabilization process, such as proteins, peptides, antimicrobial compounds, but
most are enzymes which stabilize the surface of polymers. The first step is to stabilize,
design, or select a suitable polymer. The mechanical properties considered include elasticity,
strength, transparency, and degradability. Stabilization operations can be performed on
the surface or inside the polymer. Therefore, the polymer surface must be ready to accept
biomolecules. Creating the ability to obtain and bind bioactive compounds in polymers
is referred to a special operation called producing functional properties [64,65]. The sta-
bilization of biomolecules and bioactive compounds in polymers is performed using the
following methods: (1) Physical absorption, (2) entrapment, (3) covalent immobilisation,
and (4) affinity immobilisation [66].

2.2. Methods of Bioactivation
2.2.1. Bioactive Carbon Sources

For biomedical applications such as MSC-based therapy, the development of bioactive
materials is desirable when it comes to integrating efficient differentiation and traceable
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properties in a biocompatible manner. A new type of one-step hydrothermal method makes
bioactive carbon dots (CD) [67]. Recently, a bottom-up synthetic strategy has been used
to design and fabricate multifunctional CDs with the complex introduction of bioactive
precursors, including small molecules, nucleic acids, and proteins [68,69]. Compared to
traditional citric acid-based CDs, these bioactive CDs can expand their applications against
cancer and pathogens and have different pharmacological activities [70–72]. In both in vitro
and in vivo studies, bioactive CDs have shown improved anti-cancer performance when
compared with small free molecules [73]. Therefore, dual-function precursors have not yet
been developed to obtain bioactive CDs.

2.2.2. Biomass-Waste Derived GQD

When it comes to the scalable production of GQDs, biomass has been used as a source
of green, natural, cheap, sustainable, and renewable carbon. Since biomass is abundant
and inexpensive, and there is no published paper on the total cost of GQD materials, it
is therefore expected that the price of biomass-derived precursors (waste) is much lower
than other precursors (graphite, carbon fiber, CNTs, citric acid, glucose). GQD production
with a product yield comparable to expensive graphene-based precursors is possible using
different types of biomass, such as plant leaves, grass, rice husk, coffee grounds, and
charcoal [74–78]. The quantum efficiency of GQDs derived from biomass is superior to
graphene derivatives. According to reports, green production is possible through plant
leaves, and GQD production is also done without inactivators, reducing agents, oxidants,
or organic solvents [75].

2.2.3. Biologically Active Agents

Bioactive compounds and diagnostic probes, known as biologically active agents, ef-
fectively load drug delivery systems based on enzyme-responsive polymers via covalent
or physical encapsulation. The isolation of enzyme-responsive polymers for subsequent
therapeutic or diagnostic activities is performed by target enzymes to expose or activate
biologically active agents. To achieve drug release/activation and physicochemical alter-
nation, enzyme-responsive drug delivery systems can be designed to take advantage of
high enzymatic properties [79]. The separation of bioactive agents after enzyme-induced
cleavage is one of the direct release/activation methods, which leads to the explosive release
of therapeutic cargoes or the activation of extinguished/protected functional agents [80–82].

2.3. Roles of Bioactivation

Metabolic activation or bioactivation is a relatively inactive organic compound pro-
duced by reactive electrophilic intermediates, including free radicals. Bioactivation plays
a significant role in hepatotoxicity, dermal ADRs, blood dyscrasias, and drug-induced
toxicities [83,84]. The formation of stable/inactive or reactive metabolites is accomplished
by the drug’s metabolism, enabling them to interact with cellular structures and functions,
which indicates the role of bioactivation in drug-induced hepatotoxicity. Hepatotoxicity
is induced by the reaction of electrophilic metabolites with nucleophilic sites in macro-
molecules either through the metabolic bioactivation of drugs in the formation of covalent
compounds or through oxidative damage caused by ROS production [85].

2.4. Design of Bioactivation

Electrophiles have attracted the most attention concerning bioactivation in drug design
because they are easier to trap and their chemistry is rationalized [86]. Thus, ambiguity in
understanding subsequent covalent bonding can be linked with toxicities [87]. In contrast,
the initiation of downstream cellular events associated with oxidative stress is better un-
derstood through the formation of free radicals. Most of the structural features associated
with bioactivation during drug design are related to active aromatic systems (usually aniline
derivatives). Assessing the risks involved in developing compounds with structural alerts
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and the placing bioactivation data during drug discovery are critical issues in the context of
bioactivation and drug design [88].

2.5. Method of Bioactive GQD Synthesis

The synthesis method plays a significant role in the properties and application of
bioactive GQDs. Therefore, the production of bioactive GQDs must be adjusted during and
after their production [68]. Chemical, physical, and electrochemical techniques, including
various methods, have been used to generate bioactive GQDs [89]. Bioactive GQDs are
synthesized top-down and bottom-up (Figure 2). The different methods for synthesizing
bioactive GQDs used in biomedicine are listed in Table 1. In the top-down synthesis method,
carbon mass decomposition in nanoparticles takes place via chemical and physical pro-
cesses such as acid oxide, electrochemistry, and hydrothermal processes [90–92]. Using a
variety of organic compounds under carbonization conditions, GQDs are prepared in a
bottom-up method [93]. Among the advantages of bottom-up synthesis are the regulation
of physical properties, the use of various organic compounds as raw materials, and the
structural properties of GQDs. Processes including stepwise solution chemistry, microwaves,
hydrothermal processes, ultrasonic chemistry, acid oxidation, and electrochemistry make up
the various physical and chemical methods used to prepare GQDs [94–96]. The restriction
of access to the mass production of bioactive GQDs using this method is due to the high
cost spent on raw materials in the method. Recently, due to the simplicity, cost-effectiveness,
and one-step synthesis route method of the hydrothermal method, this method has been
considered [25]. The hydrothermal method [97–99], microwave method [100–102], electro-
chemical oxidation method [103–105], the ultrasonic method [103,106], and biosynthesis
methods [107,108] are among the methods used for bioactive GQDs synthesis based on
top-down and bottom-up processes.
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Table 1. Different methods for synthesizing bioactive GQDs are used in biomedical applications.

Synthesis Methods Application Size Ref.

Bottom-Up Method

GQD-RhB-silka Diagnosis 3–20 nm [109]
mango leaf extract—mGQDs NIR-responsive fluorescence bioimaging 2–8 nm [110]

PEGylated GQD Fluorescence imaging of tumors 2.75 nm [111]
GQD-PEI Gene transfection 3–4 nm [112]

GQDs Drug delivery and bioimaging ∼12 nm [113]
MSN-SS-CD-DOX Targeted and controlled drugs 2.7 nm [114]

Top-Down Method

GQD Diagnosis 5 nm [115]
durian extract—GQDs Bioimaging 2–6 nm [116]

NP-GQD Cysteine detection 10–30 nm [117]
GQD-PEG-AG Radiotherapy 3–4 nm [118]
lignin—GQDs Bioimaging 2–6 nm [119]

2.5.1. Hydrothermal Method

A fast and straightforward way to prepare bioactive GQDs is the hydrothermal method.
The hydrothermal method is a one-step method in which the organic precursor is heated in
a Teflon tube to reach high temperatures and pressures. As a result of high temperatures
under high pressure, the bonds between carbon materials are broken to form bioactive
GQDs. The electrical-optical properties of the particles can be adjusted by using different
precursors and through temperature optimization. Therefore, the hydrothermal method
is low-cost and non-toxic (Figure 3. Hydrothermal methods also produce particles with
a diameter of 10 nm, more prominent than other dot production methods, such as the
electrochemical method [120–125]. Lianget al. easily obtained highly fluorescent quantum
dots from gelatin by using hydrothermal method [126]. Liu and colleagues developed a
simple, green, and inexpensive way to prepare fluorescent quantum dots using hydrother-
mal processing and a type of radish. They investigated the application of prepared carbon
quantum dots in cell imaging and the detection of iron ions [127]. Hong Miao et al. pre-
sented a green method for synthesizing carbon quantum dots with a high quantum yield
of about 14% from tomato paste and investigated the use of synthesized quantum dots in
determining the type of antigen [128].
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2.5.2. Microwave Method

The synthesis of nanoparticles via microwave-facilitated methods has many advantages
compared to other methods. Compared to the hydrothermal method, this method has the
advantage of its higher speed and lower synthesis temperature. Some of the benefits of
microwave facilitated reactions are: (1) Deficient level of impurities in the products, (2) a
very high product efficiency, (3) the easy control of temperature and pressure, (4) the easy
control of product properties (such as size), (5) the environmental friendliness of the method,
(6) the very high security of the method, (7) its reproducibility, and (8) selective heating
(i.e., the reduction of energy costs) [129–131]. Ayele et al. have proposed a green method for
the mass production of CdSe quantum dots by using microwaves [132]. An easy, light, and
fast method for the synthesis of nitrogen-doped GQDs using microwave prepared cedar
tree root without surface modification has been proposed by Shawing Sheng et al. [133].
The resulting quantum dots were used to identify Hg2 + ions selectively. Synthesized
GQDs can also be used as multicolor fluorescents in bioimaging. The purification of dialysis
membranes for 7 h and the preparation of GQDs via microwave irradiation for 10 min
using raw materials such as aspartic acid (Asp), NH4HCO3, and solvent (DI water) were
investigated by Zhang et al. The results showed that the prepared GQDs had a strong blue
fluorescence and a QY of 14% (Figure 4) [134].
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2.5.3. Electrochemical Oxidation Methods

Electrochemical methods make it possible to adjust nanostructures by controlling
the current–voltage ratio. For example, applying a regulated voltage to a bulk of carbon
precursors leads to the electrochemical corrosion reactions of carbon reactants and the
production of carbon nanostructures. This method does not require high temperatures; it
can be done quickly on a large scale with aqueous or non-aqueous solvents. This method
is one of the fastest ways of producing graphene sheets (Figure 5) [103–105,135,136]. For
example, Paulo et al. prepared GQDs using electrochemical and corrosion methods [137].
Wong et al. proposed a bottom-up approach for synthesizing nitrogen-doped GQDs using
the electrochemical process. This method is green and simple and is suitable for large-scale
synthesis with an interest rate of more than 95%. The quantum gain of the particles is 0.71.
Also, the toxicity of quantum dots synthesized by this method is low [138].
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2.5.4. Ultrasonic Method

In recent years, many methods for making photoactive materials for use in solar
cells and photocatalysts have been proposed. However, the benefits of preparing these
materials in unusual ways are exciting from the point of view of green chemistry. The idea
of producing highly efficient photocatalysts through the use of ultrasound is fascinating
and essential in terms of science and technology and has excellent potential for producing
photocatalysts in the near future. Ultrasonic synthesis is a promising method that allows
for control over size, morphology, nanostructure, and catalytic properties. Compared to
conventional energy sources, the supersonic method provides abnormal reaction conditions
in the liquid phase due to the phenomenon of cavitation (very high temperatures and
pressures for brief periods in liquids) [139–141]. Zhu et al. synthesized high-quantum
GQDs from only graphene oxide and potassium permanganate in a one-step method
using ultrasonic irradiation and used them as a test for the detection of alkaline phosphate
(ALP) [142]. Oza et al. prepared GQD quickly and greenly using the precursor chemical
acoustic method and a lemon [143]. The resulting quantum dots were purified using the
sucrose gradient density centrifugation method, which separated the water-soluble, single-
spray, photoluminescent, highly stable optical, and chemical quantum dots. Furthermore,
quantum dots synthesized in this way are not toxic and can be used as optical imaging
tools. The formation of tens of thousands of small bubbles in the liquid and the loss of
carbon–carbon bonds are generated by mechanical force and eventually results in GQD
cutting, an issue which is affected by ultrasound waves (Figure 6).
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2.5.5. Biosynthesis Method

The biosynthesis method is performed in mild conditions, and the bioactive GQDs
synthesized using this method have inherent biocompatibility and bio-stability without
the need for encapsulation operations. Therefore, these methods provide a green way
to prepare biocompatible, bioactive GQDs. As with chemical processes, biosynthesized
quantum dot emissions can be controlled by their size, the instantaneous excitation of
bioactive GQDs of different sizes by a single light source, and by a broad spectrum window
that can be adjusted by the constructive component [107,108,144,145].

2.6. Green Reduction of GQD

Advances in nanoscience and nanotechnology have led to versatile applications and
the discovery of different new nanomaterials, the properties of which depend on their
shape and size. QD is known as one of the nanomaterials that has been introduced due to
its variation in bandwidth size. Since there are numerous challenges involved in disposing
and recycling of QDs, it can be said that they are very dangerous to process, specifically
ordinary QDs such as PbS and CdSe [146]. Bioactive GQDs, an example of organic quantum
dots, are not as limited as conventional QDs. Bioactive GQDs, known as nanomaterials,
have advantages such as adjustable diffusion, excellent biocompatibility, resistance to light
bleaching, the abundance of raw materials in nature, and low toxicity and costs [147].
Among their potential applications are their use as light-emitting diode materials [148],
detection probes [149], and optical bioimaging probes. An effective way to regulate the
electrical and optical properties of GQDs is to dope GQDs with heteroatoms (such as B, N, S,
and F) [100]. In GQDs, the presence of N can be effective for the homogeneous distribution
of metal nanoparticles. Nevertheless, N-GQDs, in addition to being generated in situ for
catalytic proposals, can support metal nanoparticles such as Pd (0). N-GQDs were expected
to be an adequate support for Pd (0) in the catalytic reduction of nitro compounds due to
the efficient activity of graphene as a support in the green reduction reaction [150].

3. GQD Based Polymer Composite

In graphene-based polymer composites, the superior properties of graphene compared
to polymers are reflected. Compared to neat polymer, graphene-based polymer composites
show gas barrier, electrical, superior mechanical, flame retardant, and thermal proper-
ties [41,42,151–154]. Graphene nanofibers are used as a two-dimensional model to arrange
polymers, increasing the polymers’ solubility [155]. Although carbon nanotubes (CNTs) ex-
hibit mechanical properties comparable to graphene, graphene is a better nanofiller in certain
respects, such as in terms of thermal and electrical conductivity [156–161]. Interfacial bond-
ing between graphene layers and the polymer matrix and the distribution of graphene layers
in the polymer matrix affect nanocomposites’ physicochemical properties. Pure graphene
does not have good compatibility with organic polymers and does not form homogeneous
composites. Since the use of graphene oxide (GO) sheets as nanofillers has attracted much at-
tention in the context of polymer nanocomposites, it can be said that in contrast to graphene,
GO is preferable to organic polymers [162–165]. Graphene oxide is an insulating material, so
it cannot synthesize conductive nanocomposites without further resuscitation. In polymer,
graphene, and solvent, factors such as polarity, molecular weight, hydrophobicity, and
reactive groups play an essential role in when it comes to preparation methods [166]. For ad-
vanced hybrid nanomaterials and applications, polymer dots have been designed and used,
specifically necessary and unique quantum dots. Therefore, polymer dots can be obtained by
using conjugated and non-conjugated polymers [167,168]. Both QD polymer encapsulation,
without changing the native surface ligand layer [169], and ligand exchange, used to replace
the main hydrophobic ligands on the GQD surface with polymer molecules [170], are meth-
ods of making GQD-polymer nanocomposites. Biological imaging, fluorescence imaging,
and bioassay from GQD-based nanocomposites are used [171–173]. The foundation of poten-
tially new and innovative GQD composites [174–177] has been established through previous
research on graphene-reinforced composites [178–180] and GQD synthesis [20,181–183].
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One of the newest forms of graphene is GQDs. Electronic devices [166,184], energy stor-
age [185,186], fuel cells [187], and biomedical applications [188,189] are among the wide
range of applications of GQDs-polymer nanocomposites.

4. Polymerization

Polymerization is a chemical reaction in which small and simple molecules, or monomers,
bond together to form a large molecule with a molecular mass several times that of the
original molecule [190–192]. Bulk, emulsion, suspension, and surface polymerization are
polymerization methods used to prepare microparticles. One or more monomers are heated
in a bulk polymerization technique to induce polymerization in the presence of a catalyst.
During the polymerization process, the drug may form. Also, monomers can be prepared or
fragmented to convert the obtained polymer into a microsphere [193]. The polymerization
process occurs at lower temperatures, and the polymerization of suspension is similar to
bulk polymerization [194].

4.1. Methods for Polymerization
4.1.1. Suspension Polymerization

To obtain a hybrid of stable QDs of polymer particles, considering the confinement
of QDs during a polymerization reaction, one of the investigated methods is the poly-
merization of suspension [195–197]. Hexadecylamine CdSe QDs were synthesized by
O’Brien et al. The surface polymerizable QDs were then obtained via ligand exchange.
As a result, the QDs were encapsulated in the synthesized polymer particles [198]. The
inclusion of QDs in the polymer particles during the polymerization process of suspension
results in reasonable control with respect to the position of the quantum dots or their final
fluorescence properties.

4.1.2. Emulsion Polymerization

The enclosure of QDs in colloidal polymer particles is achieved through emulsion
polymerization [199–201]. The coverage of CdSe quantum dots with tridactyl phosphine
oxide and their dispersion in toluene were investigated by Yang and Zhan. The results
show good control over the confinement of quantum dots in polymer particles to prevent
the accumulation of nanocrystals and fluorescence microscope images [202]. It is not easy
to completely enclose QDs in polymer particles using emulsion polymerization unless
polymerization starts from the surface of QDs after their surface has been modified to
combine polymerizable groups [197].

4.1.3. Mini-Emulsion Polymerization

Mini-emulsion polymerization is one of the simplest and most common methods
for encapsulating QDs in hydrophobic sub-micron polymer particles. A polymerization
monomer produces an aqueous dispersion of nanoparticles where the surface of the coated
QDs is compatible [203–207]. The creation of polymer nanoparticles containing QDs is
achieved through the polymerization of a dispersion nanodroplet. The monomer system,
the type of initiator, the surfactant concentration, and the surface modification of the mineral
nanoparticles are among the factors on which the successful encapsulation of the mineral
nanoparticles in the polymer particles by mini-emulsion polymerization depends [208].

4.2. Physical Blending

The physical blending approach makes it easy to prepare GQD/polymer nanocom-
posite materials. Some physical blending methods include mixing tiny amounts of GQD
with a polymer matrix, blending the solution, and processing the melt. Hydrogen bonding,
electrostatic interactions, or π-π interactions between polymers and GQDs are among the
non-covalent interactions that lead to nanocomposite formation. When water molecules
stick together, an “electrostatic” bond is formed between an oxygen atom from one molecule
(which has a negatively charged particle) and a hydrogen atom from another molecule
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(which has a positively charged particle), and this is a hydrogen bond. The distribution of
attractive driving force interactions when using this method to prepare GQD/polymer com-
posites led to the creation of suitable quality nanocomposites with good GQDs [209–214].

Infusion of GQD into Polymer

Injecting a bandgap through modifications that introduce quantum confinement and
edge effects makes graphene nanoparticles such as GQDs and graphene nanoribbons [215].
A subset of graphene-based nanomaterials consisting of several graphene layers stacked
on top of each other are called GQDs [216]. Glucose [216], carbon fibers [217], carbon
nanotubes (CNTs) [218], graphite [219], and coal are among the various materials used in
the synthesis of GQDs. Gobi et al. investigated the injection of graphene quantum dots
to create stronger, harder, and brighter polymer composites. When comparing polymer
resins with and without GQD, uniform loading with weight percentages of up to 10%, an
18% change in the maximum tensile strain, and a 2.6-fold increase in toughness, etc., are
the results of GQD injection into an epoxy polymer matrix, reflecting the excellent optical
properties of the composite formulation [182].

4.3. Chemical Grafting

Esterification [220], etherification epoxidation [221], methacrylation/acrylation [222],
and acylation are among the abundant functional groups on the GQD surface that allow for
chemical modifications to form covalent bonds with polymers due to the covalent bonds
between polymer chains and GQDs. The chemical grafting of GQDs to the polymer matrix
is superior to the physical blending approach in terms of promoting mechanical strength
and maintaining properties over time [223–227].

4.4. In-Situ Growth

Since the secondary intermolecular interaction between GQDs and the polymer matrix
is relatively weak and unstable, it can be said that the physical blending method is a
practical approach that is used to fabricate GQD/polymer nanocomposites. In many
cases, chemical grafting methods use organic reagents, and solvents are toxic due to
their shortcomings in terms of complex reaction processes and multiple preparation steps.
The physical blending method can also anchor GQDs firmly to the polymer matrix due
to the formation of covalent bonds. The ensuring of a better bond strength is possible
via the in-situ growth of GQDs in the polymer matrix because it is an easy and green
process. Also, the bond between GQD and polymer includes both chemical and physical
interactions. An in-situ growth strategy can be obtained by applying one-pot thermal
treatment containing hydrothermal, pyrolysis, or low temperature heating on a mixture
containing GQD precursors and polymer solution [228–232].

5. Biomedical Applications
5.1. Drug Delivery

Bioactive GQD based polymer composites can bind to various biological materials
through π-π and electrostatic interactions, so the loading of most drugs can be done quickly.
On the other hand, bioactive GQD based polymer composites have good membrane per-
meability and biocompatibility, which can improve the drug efficiency of the loaded drug
and increase effectiveness in the face of drug-resistant cells [233,234]. Table 2 shows the
application of bioactive GQDs in the field of drug delivery. Extensive research has been
done on using bioactive GQD based polymer composites for in vivo drug delivery. Absorp-
tion by the reticuloendothelial system and renal clearance is reduced due to the average
size of bioactive GQDs. The efficiency of bioactive GQDs can also be attributed to their
high delivery, which increases blood circulation time [235]. Sam et al. reported the high
anticancer activity of GQDs containing curcumin in both in vivo and laboratory conditions.
They combined three types of curcumin-graphene composites, including GOs, DGOs, and
GQDs, to form the hydrophobic cancer drug curcumin. Interactions between curcumin and
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the oxygen-containing functional groups DGOs, GOs, and GQDs, played a crucial role in the
loading capacity of curcumin. Since the number of oxygen-containing functional groups on
the surface of the graphene derivatives was pH-dependent, the effective drug loading and
release behavior was pH-dependent. According to the results, the prepared GQD-curcumin
composites contained the highest amounts of curcumin (40,800 mg/g). They had the best
anti-cancer activity compared to other composites containing the same dose of curcumin.
There is no fluorescence in the case of curcumin and its GQD composite. It was only after the
release of curcumin from the composites of GQDs that the GQDs provided the remaining
fluorescence signal. As a result, GQDs simultaneously act as probes for tumor imaging
along with drug release [236]. Silica-coated bipolar quantum dots were investigated by
Akbarzadeh et al. They reported that the synthesis of intelligent nano-aptamer was targeted
by QDs coated with porous meso silica with a bimodal imaging capacity. Their results
showed that the targeted hybrid system that was prepared based on their in-vivo test has
MR capability and fluorescent imaging [237]. Iannazzoa et al. examined the use of graphene
QDs in cancer treatment and drug delivery. Based on the results, the prepared GQDs have
a remarkable ability to deliver the drug to cancer cells and are biocompatible. Similarly, it
is possible to combine targeted ligand drugs in nanomaterials via a multifaceted combina-
tion. As a result, conventional chemotherapy, toxicity and side efficacy were minimized
(Figure 7) [238].

Table 2. The application of bioactive GQDs in the field of drug delivery.

Composite Application Ref.

1 GQD/DOX In vitro: A549 cells [239]
2 SiRNA/GQD/DOX Therapy of A549 cancer cells [240]
3 GQD/DOX In vitro: HeLa, A549, and HEK293A cells [241]
4 CMC/GQDDOX Therapy of K562Leukemia cells [242]
5 GQD/DOX In vivo: BALB/c mice [234]
6 GQD/CDDP Breast cancer cells [243]

5.2. Gene Delivery

Gene therapy is one of the new and promising ways to treat various diseases caused
by genetic disorders such as cystic tissue corruption, Parkinson’s disease, and cancer [244].
Figure 8 shows the treatment of cancer cells with gene therapy based on bioactive GQDs.
Gene therapy for treating a wide range of disease conditions such as rare hereditary and
single-gene disorders has also attracted much attention. For this purpose, nucleic acids
must be delivered to human target cells and expressed. Gene therapy offers a new treatment
method by offering DNA or RNA instead of chemotherapy drugs to inhibit cell pathways
and induce tumor cell death. This treatment method can also remove a malfunctioning
gene, replace the mutated gene, or offer new gene products to fight the disease [245–247].
Successful gene therapy requires a gene carrier that can protect DNA from nucleoside
degradation and, in addition, facilitate high-yield DNA cell uptake [248]. The primary
challenge facing the development of gene therapy is the lack of safe and highly efficient
carriers [249]. Among the effective non-toxic carriers in gene therapy are none-viral gene
delivery systems. Such systems ensure that nucleic acid payloads to cytosols and cell nuclei
bypass biological barriers. Viral vectors are one of the factors influencing gene delivery
due to their natural ability to invade and deliver genetic material. It is also possible to keep
them safe for clinical use by blocking the immunogenicity of viral vectors [250].

Bioactive GQD-based polymer composites demonstrate the characteristics of an effec-
tive gene carrier. Therefore, many efforts have been made to develop bioactive GQD-based
polymer composites as non-viral vectors in gene therapy. The development of bioactive
GQD-based gene nanocarriers is possible by forming a set of bioactive GQD-based polymer
composites, plasmid DNA (pDNA), and chimeric peptides. Observing the cellular uptake
of GQD-peptide-pDNA complexes is possible concerning PL bioactive GQD-based polymer
composites through a confocal microscope [251]. Based on previous studies, the use of
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bioactive GQD-based polymer composites as transmission vectors can lead to more efficient
in-vitro and in-vivo gene therapy applications. The application of bioactive GQD-based
polymer composite on other non-viral vectors seems to be less common than using bioactive
GQD-based polymer composites as drug delivery agents. Due to the sp2 hybridized struc-
ture and π-stacking in bioactive GQDs-based polymer composite systems, the possibility of
drug loading in bioactive GQD-based polymer composite systems is higher than in other
nanoparticle-based drug delivery systems [252–256].
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5.3. Photothermal Therapy (PTT)

The therapeutic window refers to the aromatic structure that provides graphene with
strong light absorption in the NIR region (700–900 nm) [257,258]. The main treatments
of cancer are radiology and chemotherapy, which have significant side effects. Recently,
PTT has been considered due to its high efficiency in destroying malignant tumors as well
as the minor amount of damage it inflicts on adjacent healthy tissues (Figure 9) [259]. In
the photothermal therapy method, electromagnetic wave radiation (with wavelengths in
the infrared region) and absorbent nanoparticles at these wavelengths, which have a high
efficiency of light to heat, are used. Thus, by converting light energy into heat and increasing
the temperature to between 42–46 ◦C, cell membranes and proteins are destroyed, leading
to the death of cancer cells [260,261]. Many nanoparticles are identified as external agents
after entering the body due to their hydrophobicity and cause poisoning by accumulating
in one part of the body. Therefore, the surface of nanoparticles is coated with ligands to
increase biocompatibility and reduce toxicity [262]. Nanoparticles used in cancer treatment
via PTT include gold nanoparticles, carbon nanotubes, and graphene. The efficiency of light
production to heat in graphene and its biocompatibility are both higher when compared to
gold nanoparticles and carbon nanotubes.
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On the other hand, due to the increased ability of graphene, the use of these nanopar-
ticles has received much attention when it comes to cancer drugs and the simultaneous
treatments of PTT and drug delivery. By placing graphene on the curved surface of the
nanoparticle, the interaction of light with graphene increases, increasing the efficiency of
PTT [263]. The features of this therapeutic method are non-invasive radiation, penetration
into the skin, and its harmlessness. In recent years, graphene-based PTT nano-hybrids
have been discovered to inhibit tumors in vivo. After intravenous injection, GO complexes
begin to accumulate in the solid tumor severely and passively, due to the effect of EPR.
The effective death of cancer cells occurs when GO complexes produce enormous heat
after irradiation. Recently, PTT in vivo using GO and GO-complexes was reported to
remove 100% of tumors [264]. The successful treatment of cancer cells was demonstrated
by using nitrogen and boron dual doped bioactive GQD-based PTT in the near-infrared II
region [265]. The effectiveness of such treatment is achieved by merging a drug in bioactive
GQD-based polymer composites with PTT. The bioactive GQDs-gated hollow mesoporous
carbon nanoplatform loaded with doxorubicin achieves this effect simultaneously with
the controlled release of near-infrared drug delivery [266]. This combination of PTT and
PDT is exciting. Thus, a multifunctional bioactive GQD is formed to treat cancer when it
produces 808 nm ROS laser radiation and heats up simultaneously [267].

5.4. Photodynamic Therapy (PDT)

PDT activates a light-sensing compound by using visible light to generate samples of
cytotoxic oxygen and free radicals that selectively destroy rapidly growing cells [268]. PDT
is widely used to treat acne, psoriasis, and cancer using a light source and a light-sensitizing
agent. Light sensitizing factors such as semiconductor quantum dots have received much
attention in the context of PDT. The killing of target cells occurs via a PDT mechanism
involving ROS production and oxidative stress. ROS production in cancer cells and tumors
is mediated by a light-sensitizing agent such as a bioactive GQD-based polymer composite
(Figure 10). The factors that make bioactive GQD-based polymer composites a good light
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sensitizing agent include stability in various pHs and light, their biological corrosion
resistance, and their biocompatibility. To achieve PDT and the simultaneous imaging of
cancer cells, bioactive GQD-based polymer composites can be used. The prevention of
photobleaching and the production of a high quantum efficiency from a single oxygen
molecule are among the benefits of bioactive GQD-based polymer composites. In PDT,
bioactive GQD-based polymer composites are more practical than any other factor. The
induction of cancer cell apoptosis and autophagy is performed by bioactive GQD-based
polymer composites through oxidative stress.
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Studies have shown that cancer treatment using bioactive GQD-based polymer com-
posites is more effective than photodynamic therapy using HeLa cells [269–272]. Chemother-
apy and photodynamic therapy guarantee a synergistic effect in the treatment of cancer.
With GQDs, the targeted PDT of mitochondria is also performed [273]. Reports on the PDT
of two photons were performed using a Bengal rose light sensitizer with nitrogen-doped
GQDs [274]. A synergistic effect on tumor cell apoptosis was demonstrated simultaneously
with drug delivery and light irradiation by silver nanoparticles of PEGylated GQDs loaded
with doxorubicin (DOX) [275].

5.5. Bioimaging Application

Bioimaging is a method used in both clinical and research settings. Using different
parts of the electromagnetic spectrum means that the bio-distribution of therapies sepa-
rately and accurately and the observation of biological processes such as targeted delivery
provides cellular uptake [22,234,276]. The application of QDs in cell imaging is multicol-
ored and sensitive due to a significant increase in their synthesis, surface composition, and
chemistry [277]. The extensive application of bioactive GQD-based polymer composite in
biological imaging are stimulated by broad absorption with narrow emission spectra, strong
quantum confinement, and relatively high quantum efficiencies with high molar extinction
coefficients [278–280]. Bioactive GQD-based polymer composites are promising candidates
for imaging deeper tissue samples because they have the property of emitting near-infrared
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reflection [281]. Since the detection of metastasis and the recurrence of cancer, and the early
detection of tumors by sensitive imaging, are possible, it can be said that the role of imaging
in the diagnosis of cancer is of particular importance. Figure 11 illustrates the diagnosis of
cancer using bioimaging based on bioactive GQDs. As required with other nanoparticle
platforms, the intrinsic PLs of GQDs allow them to be used as optical probes in fluorescence
imaging without the further combination of fluorescent dyes. Recently, the capabilities of
bioactive GQD-based polymer composites in MR imaging and NIR fluorescence imaging
have led to the development of bioactive GQD-based polymer composite in bioimaging.
Among the unique features of bioactive GQD-based polymer composite, we can mention
their ideal imaging probes, with applications in different bioimaging methods, and their
excellent biocompatibility [256]. In Sheng et al., the doping of quantum dots with nitrogen
(N-GQDs) was performed using a hydrothermal process. In this study, raw materials such
as citric acid, PVP K90, and glutamate were used, and the quantum efficiency was 64.2%.
The results showed that a new fluorescence probe of nitrogen-doped GQDs could be used
to detect chromium (VI) and mark MCF-7 cells [282].
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5.6. Tissue Engineering

Tissue engineering is a method in which cells are taken from a patient, and after
culturing and increasing their number, they are accepted in a scaffold. Appropriate chemical,
biological, mechanical, and electrical stimuli are applied, and new tissue is formed in a
short time [283]. The main components of tissue engineering are the cell, the scaffold, and
the growth factor [284]. More recently, bioactive GQDs have been tested for stem cell-
based tissue engineering and reconstructive medical applications. Many efforts have been
made to differentiate stem cells into different cells by performing other techniques [285].
Encouraging specific stem cell differentiation under certain conditions is possible using
bioactive GQD-based polymer composites. The important role of bioactive GQDs in bone
differentiation was investigated by Qiu et al. [286]. The critical role of bioactive GQDs in
damaged bone formation in tissue engineering is shown in Figure 12. Specifically, bioactive
GQDs were found to stimulate the primary activation of ontogenesis. In medicine, bioactive
GQD-based polymer composites are considered valuable in terms of regeneration because
these particles have excellent mechanical properties, differentiation powers, and low toxicity.
In addition, they can increase the abundance of calcium [16]. In tissue engineering, the
improvement of the mechanical properties of scaffolds in which orthopedic implants can be
placed is performed by bioactive GQDs, which act as reinforcing agents [287]. In addition to
bone, bioactive GQDs are used for nerve and cartilage tissues [16].
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6. Cytotoxicity and Biocompatibility

The size and shape of GQDs, the doping of non-metallic ions, and the modification
of graphene surfaces and edges by photoluminescence (PL), one of the most prominent
properties of graphene, are all easily adjustable [288,289]. A Large surface area, easy surface
modification, high photostability, low cytotoxicity, and excellent biocompatibility, besides
adjustable PL, are all features of GQDs [290,291]. Compared to conventional semiconductor
QDs and other carbon-based luminescent nanomaterials, photoluminescent GQDs are more
durable. GQDs are used in biomedical applications due to their adjustable PL, excellent
biocompatibility, low cytotoxicity, high biocompatibility, and ease of functionalization,
and, as imaging and labeling luminescent agents, are attractive in the context of tracking
molecular targets in living cells or organs [292].

7. Conclusions and Perspective

In the last few decades, bioactive GQDs have attracted much attention due to their
properties and applications in various environmental and health fields. There are problems
that need to be addressed in the context of their practical biological applications, such the
preparation of bioactive GQDs, their size, reproducibility, and low quantum efficiency. The
size of bioactive GQDs is responsible for their fluorescence properties. The low toxicity of
bioactive GQDs also makes them suitable for use in many in vivo applications. Therefore,
it is possible to expand their potential applications in various fields by overcoming the
problem of their low quantum efficiency by preparing bioactive GQD nanocomposites with
surface factorization and band gap engineering. In this study, bioactive GQDs were intro-
duced, and their synthesis methods were explained. The various biomedical applications
of bioactive GQDs, such as bioimaging (in vivo and in vitro), drug delivery, gene delivery,
photothermal therapy, photodynamic therapy, and tissue engineering, were discussed. The
effortless combination of many drugs and ligands is provided through the large surface and
functional groups of bioactive GQDs. Taking advantage of this, bioactive GQDs can be used
as a nanocarrier for targeted drug delivery. Also, the photoluminescence of bioactive GQDs
is used to develop bioimaging techniques to identify various biomolecules that offer a wide
range of new strategies for disease diagnosis. They can be used to image cancer cells and
to track drug delivery to cells and tissues. Bioactive GQDs present low levels of toxicity in
the human body while having adjustable optical properties and fluorescence propagation
in the NIR region of the light spectrum. Researchers aim to develop bioactive GQDs for
biomedical applications and face a key challenge in the form of achieving high-quality
products. The small-scale production of bioactive GQDs with large size distributions is
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possible through existing synthesis methods. Therefore, it is necessary to find new methods
to achieve high performance and easy purification methods that do not require the removal
of raw materials. Recent research advances in polymer composites based on bioactive
GQDs focusing on their synthesis and biomedical applications, including bioimaging
(in vivo and in vitro), drug delivery, gene delivery, light therapy, photodynamic therapy,
and tissue engineering, were summarized in this review. Finally, we conclude that there
is a promising future for further developing GQD-based polymer composites for many
unresolved therapeutic barriers.
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