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Abstract

Background

Triggering receptor expressed on myeloid cells (TREM) -1 and TREM-2 are key regulators

of the inflammatory response that are involved in the clearance of invading pathogens.

Melioidosis, caused by the "Tier 1" biothreat agent Burkholderia pseudomallei, is a common

form of community-acquired sepsis in Southeast-Asia. TREM-1 has been suggested as a

biomarker for sepsis and melioidosis. We aimed to characterize the expression and function

of TREM-1 and TREM-2 in melioidosis.

Methodology/Principal Findings

Wild-type, TREM-1/3 (Trem-1/3-/-) and TREM-2 (Trem-2-/-) deficient mice were intranasally

infected with live B. pseudomallei and killed after 24, and/or 72 h for the harvesting of lungs,

liver, spleen, and blood. Additionally, survival studies were performed. Cellular functions

were further analyzed by stimulation and/or infection of isolated cells. TREM-1 and TREM-2

expression was increased both in the lung and liver of B. pseudomallei-infected mice. Strik-

ingly, Trem-2-/-, but not Trem-1/3-/-, mice displayed a markedly improved host defense as

reflected by a strong survival advantage together with decreased bacterial loads, less

inflammation and reduced organ injury. Cellular responsiveness of TREM-2, but not TREM-

1, deficient blood and bone-marrow derived macrophages (BMDM) was diminished upon

exposure to B. pseudomallei. Phagocytosis and intracellular killing of B. pseudomallei by
BMDM and alveolar macrophages were TREM-1 and TREM-2-independent.

Conclusions/Significance

We found that TREM-2, and to a lesser extent TREM-1, plays a remarkable detrimental role

in the host defense against a clinically relevant Gram-negative pathogen in mice: TREM-2
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deficiency restricts the inflammatory response, thereby decreasing organ damage and

mortality.

Author Summary

Triggering receptor expressed on myeloid cells (TREM)-1 and -2 are receptors on immune
cells that act as mediators of the innate immune response. It is thought that TREM-1
amplifies the immune response, while TREM-2 acts as a negative regulator. Previously, we
found that TREM-1 is upregulated in melioidosis patients. In contrast, nothing is known
on TREM-2 expression and its role in melioidosis. In this study we examined the expres-
sion and functional role of both TREM-1 and -2 in a murine melioidosis model. We found
that TREM-1 and-2 expression was upregulated during melioidosis. Using our experimen-
tal melioidosis model, we observed that Trem-2-/- mice were protected against B.pseudo-
mallei-induced lethality. Trem-2-/- mice demonstrated reduced bacterial loads,
inflammation and organ damage compared to wild-type mice in experimental melioidosis.
Despite reduced bacterial dissemination of B.pseudomallei to distant organs in Trem-1/3-/

mice-, no differences in survival were found between Trem-1/3-/- and wild-type mice dur-
ing melioidosis. Lastly, we investigated cellular functions of TREM-1 and TREM-2 and
found that TREM-2 deficiency led to decreased cellular responsiveness to B. pseudomallei
infection. In conclusion, we found that TREM-2 plays an important role during experi-
mental murine melioidosis. TREM-2-deficiency reduces inflammation and organ damage,
thereby improving survival.

Introduction
In sepsis, defined as a deregulated host response to a life-threatening infection, a careful bal-
ance between inflammatory and anti-inflammatory responses is vital [1–3]. Pathogen- or dan-
ger-associated molecular patterns are recognized by intracellular sensory complexes and cell
surface receptors expressed on innate immune cells that can initiate the inflammatory and
anti-microbial response. Well-known examples of these pattern recognition receptors (PRRs)
are the Toll-like receptor (TLR), nucleotide-oligomerization domain-like receptor (NLR) and
C-type lectin receptor (CLR) families [4]. A more recently discovered group of innate immune
receptors are the membrane-bound triggering receptors expressed on myeloid cells (TREMs),
which act as key modulators, rather than as initiators, of the inflammatory response [5–7].

TREM-1 and TREM-2 are the most studied members of the TREM-family, however their
exact role in the pathogenesis of sepsis remains ill-defined. Upon recognition of partially still
unspecified ligands, both receptors phosphorylate the adaptor molecule DNAX adaptor pro-
tein 12 (DAP12) after which the cellular response is initiated [8, 9]. Only recently, binding of
TREM-1 to a complex of peptidoglycan recognition protein 1 (PGLYRP1) and bacterially
derived peptidoglycan has been demonstrated [10]. TREM-1 is expressed on neutrophils and
monocyte subsets [11] and amplifies pro-inflammatory TLR-mediated responses in vitro [12].
There are conflicting reports on the role of TREM-1 in in vivo infection models. TREM-1 defi-
ciency impaired bacterial clearance in a model of Klebsiella pneumonia-induced liver abscess
formation [13], pneumococcal [14] and Pseudomonas (P.) aeruginosa pneumonia [15]. How-
ever, blocking TREM-1 with an analogue synthetic peptide derived from the extracellular moi-
ety of TREM-1 (LP17) actually improved survival during gram-negative sepsis [16] and
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endotoxaemia [17]. Interestingly, in a murine pneumonia model of Legionella pneumonia no
impact of TREM-1 deficiency was found on bacterial clearance or neutrophil influx towards
the primary site of infection [18].

TREM-2 is primarily expressed on macrophages, dendritic cells, microglia and osteoclasts
[19–22] and has been suggested to bind to bacterial lipopolysaccharide (LPS) and lipotechoic
acid [23]. In contrast to TREM-1, TREM-2 acts as a negative regulator of inflammatory
responses in macrophages and dendritic cells [19, 21]. In addition, TREM-2 is involved in
phagocytosis [24, 25] and killing of bacteria by macrophages [26]. Blocking TREM-2 in vivo by
a recombinant protein in a polymicrobial sepsis model revealed that TREM-2 is required for
bacterial clearance and improves survival [27]. In contrast, TREM-2 plays a detrimental role
during pneumococcal pneumonia [25].

Melioidosis, considered to be an illustrative model for Gram-negative sepsis, is caused by the
Tier 1 biological treat agent Burkholderia pseudomallei [28, 29]. Melioidosis is characterized by
pneumonia and abscess formation and an important cause of community-acquired sepsis in
Southeast Asia and Northern Australia [28]. The high mortality rate, that can approach 40%, and
the emerging antibiotic resistance of B.pseudomallei [30] emphasize the need to better under-
stand the pathogenesis of melioidosis, which could ultimately lead to novel treatment strategies.
We previously found increased soluble (s) TREM-1 plasma levels and TREM-1 surface expres-
sion on monocytes of patients with melioidosis [31], suggesting an important role for TREM-1 in
the host defense against B. pseudomallei. Treatment with a peptide mimicking a conserved-
domain of sTREM-1 partially protected mice from B. pseudomallei induced lethality [31].

In this study we now examine the role of TREM-1 and TREM-2 during experimental
melioidosis, utilizing recently generated Trem-1/3-deficient (Trem-1/3-/-) [15] and Trem-2-
deficient (Trem-2-/-) mice [19] to determine their contribution to the host response against B.
pseudomallei. We hypothesized that TREM-1 deficiency would decrease inflammation and
improve survival during murine melioidosis while TREM-2 deficiency would instead lead
towards increased inflammation and a worsened survival. Unexpectedly however, we found
that TREM-2, but not TREM-1, plays an important detrimental role during melioidosis.
TREM-2 deficiency improves survival of B. pseudomallei infected mice, by limiting inflamma-
tion and organ damage. These data identify TREM-2 as a potential treatment target for sepsis
caused by B. pseudomallei.

Materials and Methods
Detailed methods are provided in the online supplement (S1 Appendix).

Ethics statement
The Animal Care and Use of Committee of the University of Amsterdam approved all experi-
ments (DIX102273), which adhered to European legislation (Directive 2010/63/EU).

Mice
Pathogen-free 8- to 10-week-old male wild-type (WT) C57BL/6 mice were purchased from
Charles River (Leiden, The Netherlands). Trem-1/3-/- [6, 14] and Trem-2-/- [19] mice were
backcrossed >97% to a C57BL/6 genetic background.

Experimental infection and assays
B. pseudomallei, derived from our aliquoted frozen stock, was grown to log-phase and further
diluted in sterile PBS (1x). Experimental melioidosis was induced by intranasal inoculation
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with 5 × 102 colony forming units (CFU) of B. pseudomallei strain 1026b (a clinical isolate) as
described [32–34]. For survival experiments mice were observed 4–6 times daily, up to 14 days
post-infection. Sample harvesting, processing, and determination of bacterial growth were per-
formed as described in detail in the S1 Appendix[33, 34]. All work concerning live B. pseudo-
mallei was performed in a (A)BSL III facility.

Chemo- and cytokine levels were determined in plasma, lung and liver. Distant organ dam-
age was more closely assessed by plasma transaminases, lactate dehydrogenase (LDH) and
blood urea nitrogen (BUN) levels.

TREM-1 and TREM-2 expression
Total RNA was isolated using the Isolate II RNAmini kit (Bioline, Taunton, MA, USA), treated
with DNase (Bioline) and reverse transcribed using an oligo(dT) primer and Moloney murine
leukemia virus RT (Promega, Madison, WI, USA). Primers and RT-PCR conditions can be
found in the supplemental data. Data were analyzed using the comparative Ctmethod.

(Immuno)histology
Paraffin-embedded 4-μm lung, liver and spleen sections were stained with haematoxylin and
eosin and analyzed for inflammation and tissue damage, as described previously [14, 34].
Granulocyte (Ly6G) staining was done exactly as described previously [35].

Whole blood and macrophage stimulation
Whole blood, alveolar macrophages (AM) and bone-marrow derived macrophages (BMDM)
were harvested from naïve WT and Trem1/3-/- and Trem-2-/- mice as described [34, 36, 37] and
stimulated overnight with either medium, ultrapure LPS (Invivogen, San Diego, CA, USA) or
B. pseudomallei (107 CFU/ml or MOI of 50), after which supernatant was harvested and stored
at -20°C until assayed for TNFα.

Phagocytosis and bacterial killing
Phagocytosis was determined as described previously [38]. In brief, AM and BMDM (5x 104
cells/well) were incubated with or without heat-inactivated FITC-labelled B. pseudomallei
(MOI 50) for 60 and/or 120 minutes at 37°C and 5% CO2 air and internalization was measured
directly after collection by flow cytometry.

Bacterial killing was evaluated as described [36, 39]. In short, BMDM were incubated with
to log-phase grown B. pseudomallei (MOI 30) for 20 minutes at 37°C in 5% CO2 air, after
which they were washed and incubated with kanamycin 250 μg/ml for 30 minutes at 37°C in
5% CO2 air (this point was taken as time zero) [36]. At designated time points the BMDM
were washed and lysed and appropriate dilutions of these lysates were plated onto blood-agar
plates and incubated at 37°C for 24–48 h before CFU were counted.

Statistical analysis
Values are expressed as mean ± standard error of the mean (SEM). Differences between groups
were analyzed by Mann-Whitney U test. For survival analysis, Kaplan-Meier analysis followed
by log-rank test was performed. These analyses were performed using GraphPad Prism version
5.01. Values of P< 0.05 were considered statistically significant.
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Results

Increased TREM-1 and TREM-2 expression in the lung and liver during
experimental melioidosis
Septic melioidosis patients present with pneumonia and bacterial dissemination to distant
body sites [28, 40]. Since it is not feasible to study TREM-1 and TREM-2 mRNA expression at
tissue level in these patients, we used our well-established murine model of pneumonia-derived
melioidosis in which mice are intranasally infected with a lethal dose of B. pseudomallei [33,
34]. Mice were killed at 0, 24, and 72h after infection (i.e., directly before the first predicted
death), and TREM-1/-2 mRNA expression was determined in lungs and livers. At baseline,
TREM-1 and TREM-2 expression was low, corresponding with our previous data on sTREM-1
levels in melioidosis patients [31], TREM-1 was strongly up-regulated in lung and liver tissue
(P<0.05 lung at 24h, P<0.01 liver at 72h; Fig 1A and 1B). TREM-2 mRNA expression was
increased in experimental melioidosis as well (P<0.05 in both lung and liver; Fig 1C and 1D).
The increase in both TREM-1 and TREM-2 expression was much more pronounced at the pri-
mary site of infection, the pulmonary compartment, when compared to the hepatic
compartment.

Trem-2-/- mice, but not Trem-1/3-/- mice, are protected from B.
pseudomallei-induced mortality
Having established that both TREM-1 and TREM-2 are highly up-regulated during melioidosis,
we further investigated the involvement of these receptors in the outcome of melioidosis. There-
fore, we infectedWT, Trem-1/3-/- and Trem-2-/-mice intranasally with a lethal dose of B. pseudo-
mallei and observed them for 14 days (Fig 2A and 2B). There was no significant difference in
survival between Trem-1/3-/- andWTmice following a lethal B. pseudomallei challenge: 95% of
Trem-1/3-/- andWTmice died within 6 days after inoculation (Fig 2A). Strikingly however,
Trem-2-/-mice were significantly protected: 70% of Trem-2-/- survived until the end of the 14-day
observation period while all WTmice died within 6 days (P< 0.001; Fig 2B).

Enhanced bacterial clearance in Trem-2-/- mice
To substantiate the finding that Trem-2-/- mice are protected during melioidosis, we deter-
mined bacterial loads in lung and BALF as well as in blood, liver and spleen 72h post-infection.
Relative to WT mice, Trem2-/- mice displayed strongly reduced bacterial loads both at the

Fig 1. Increased TREM-1 and TREM-2 expression in experimental melioidosis. TREM-1 and TREM-2 mRNA expression was determined in wild
type (WT) mice prior to infection or at 24 or 72h post-infection with 5 x 102 CFU B.pseudomallei intranasally. TREM-1 mRNA expression in lung
(A) and liver (B) was determined. Likewise, TREM-2 mRNA expression was measured in lung (C) and liver (D) tissue. Data are presented as fold
induction compared to the mRNA expression in uninfected mice (all RNA data are normalized to GAPDH). Data are mean ± SEM, n = 4–5 mice/group.
* P< 0.05, ** P < 0.01, compared to gene-expression at t = 0h (Mann-Whitney U test).

doi:10.1371/journal.pntd.0004747.g001
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primary site of infection (P<0.01 for lung and BALF; Fig 2C and 2D) as well as in distant
organs and the systemic compartment (P<0.01 for blood and spleen; Fig 2E–2G). 72h post-
infection 100% of WT but only 20% of Trem2-/- mice had become bacteraemic. These findings
indicate that TREM-2 plays a key deleterious role during experimental melioidosis by antago-
nizing bacterial clearance leading to increased dissemination of infection.

Trem-2-/- mice demonstrate reduced lung inflammation
Since TREM-2 has been described as a negative regulator of inflammation [19, 20], we next
assessed the inflammatory response in the pulmonary compartment. Therefore we studied the
extent of inflammation in lung homogenates and BALF. We observed markedly decreased lev-
els of pro-inflammatory cytokines TNF-α, IL-6, IL-1β and the chemokine KC in both lung
homogenates and BALF of TREM-2 deficient mice compared to controls (P<0.01–0.05;
Table 1). To further obtain insight into the involvement of TREM-2 in the inflammatory
response following B. pseudomallei infection, we semi-quantitatively scored lung histology
slides generated from Trem-2-/- and WTmice. However, all mice displayed severe pulmonary
inflammation and no differences were observed between the mouse strains (Fig 3A–3C). Neu-
trophil recruitment to the lung is an essential part of the inflammatory host response to melioi-
dosis. Therefore, we determined the granulocyte influx into the pulmonary compartment by
Ly6G-immunostaining in WT and Trem-2-/- mice 72h post-infection with B. pseudomallei
(Fig 3D–3F). This immunostaining recognizes Gr-1, that is granulocyte-specific,

Fig 2. Survival of Trem-2-/- mice, but not of Trem-1/3-/- mice, is enhanced in experimental melioidosis. Survival was observed for every 4-6h, up to a
maximum of 14 days after intranasal inoculation with 5 x 102 CFU B. pseudomallei in wild-type (WT; closed circles) and Trem-1/3-/- mice (open circles; A).
Similarly, survival of WT (closed circles) and Trem-2-/- mice (open circles) was determined (B) (n = 20 per group). The P value indicates significance of the
difference in survival between Trem-2-/- andWTmice (Kaplan-Meier analysis, followed by a log-rank test). ns = not significant. In addition, WT (closed
circles) and Trem-2-/- mice (open circles) were infected with 5 x 102 colony forming units (CFU) of B. pseudomallei intranasally (n = 5–6 mice per group)
and sacrificed 72 h post-infection, in order to determine bacterial loads in lung homogenates (C), broncho-alveolar lavage fluid (BALF) (D), whole blood (E),
liver (F) and spleen (G). Data are expressed as mean ± SEM, n = 5-6/group. ** P< 0.01. BC+ denotes positive blood cultures (Mann-Whitney U test).

doi:10.1371/journal.pntd.0004747.g002
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Corresponding to the diminished bacterial loads and decreased levels of cyto- and chemokines
in lung tissue, a reduced influx of granulocytes in lungs of Trem-2-/- mice was found (P<0.05,
Fig 3D).

Trem-2 deficiency leads to decreased distant organ injury during
experimental melioidosis
To evaluate the role of TREM-2 in the systemic inflammatory response, we determined plasma
cytokine levels 72h post-infection with B. pseudomallei. Consistent with the lower pulmonary
cytokine levels and bacterial loads, we found that the plasma levels of TNF-α, IL-6, IL-1β,
MCP-1, IL-10, IFN-γ and KC were all significantly reduced in Trem-2-/- mice compared to
WTs (P<0.01–0.05, Table 1). Furthermore, we obtained spleen pathology scores and per-
formed routine clinical chemistry tests to evaluate hepatic, renal and systemic injury. In line
with the observed decreased splenic bacterial loads, Trem-2-/- mice showed less inflammation
compared to WT mice 72h after inoculation with B. pseudomallei (P<0.05; Fig 4A). Plasma
AST levels of Trem-2-/- mice were decreased when compared to controls 72h post-infection,
reflecting decreased hepatocellular injury in these animals (P<0.05; Fig 4B). Consistently, we

Table 1. Cytokine response in lung homogenates, BALF and plasma of WT and Trem-2-/- mice during
experimental melioidosis.

T = 72h

WT Trem-2-/-

pg/ml Lung homogenate

TNF-α 1680 ± 222 512 ± 156 **

IL-6 7025 ±1408 450 ± 66*

KC 59588 ± 9304 10580 ± 2233**

IL-1β 31292 ± 4975 1860 ± 516**

BALF

TNF-α 7054 ± 1578 1689 ± 171*

IL-6 18478 ± 4471 406 ± 204 **

KC 30702 ± 6626 1055 ± 454**

IL-1β 10469 ± 2424 217 ± 81**

Plasma

TNF-α 2324 ± 909 91 ± 19**

IL-6 2641 ± 526 31 ± 5**

IL-10 11 ± 3 5 ± 0**

MCP-1 1675 ± 453 11 ± 1**

IFN-γ 158 ± 62 17 ± 3**

IL-1β 1123 ± 303 125 ± 25*

Cytokine levels in lung homogenate, broncho-alveolar fluid (BALF) and plasma were measured after

intranasal infection with 5 x 102 CFU wild-type B. pseudomallei. Wild-type (WT) and Trem-2-/- mice were

sacrificed 72 h after infection. Data are represented as means ± SEM (n = 5-6/group). TNF-α = Tumor

necrosis factor-α; IL = Interleukin; MCP-1 = Monocyte Chemoattractant Protein-1; KC = Keratinocyte

Chemoattractant; IFN-γ = Interferon-γ

* P< 0.05

** P< 0.01.

doi:10.1371/journal.pntd.0004747.t001
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observed a trend towards lower ALT, BUN and LDH levels in Trem-2-/- mice compared to con-
trols suggesting less organ damage respectively (Fig 4C–4E).

Lack of TREM-2 leads to a reduced inflammatory response ex vivo, but
does not impact on phagocytosis of B. pseudomallei by macrophages
Having established that TREM-2 plays an important deleterious role during experimental
melioidosis and is involved in the inflammatory response, we next assessed what cells are
responsible for these effects. It is known that blood monocytes, alveolar macrophages (AM)
and BMDM express TREM-2 [25], therefore we harvested these cells and first stimulated them
overnight with the TLR4-ligand LPS and B. pseudomallei. We found a clear trend towards

Fig 3. Reduced neutrophil influx in lungs of Trem-2-/- mice, without affecting lung pathology. Lung pathology was determined in wild-type (WT;
black bars) and Trem-2-/- mice (white bars) infected with 5 x 102 CFU B. pseudomallei at 72h post-infection as described in the Methods section (A).
Representative lung slides of WT (B) and Trem-2-/- mice (C) (original magnification 10x). Neutrophil influx was defined by Ly6G positivity (expressed as %
of total lung surface; D). Representative photographs of Ly6G-immunostaining for granulocytes on lung slides of WT (E) and Trem-2-/- mice (F) (original
magnification 10x). Data are expressed as mean ± SEM, n = 5–6 mice per group per time point. * P < 0.05. (Mann-Whitney U test).

doi:10.1371/journal.pntd.0004747.g003
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lower TNF-α levels when whole blood, AM or BMDM of Trem-2-/- mice were stimulated with
LPS (Fig 5A–5C). This effect was even more pronounced after stimulation with B. pseudomal-
lei: the TNF-α response of whole blood and BMDM derived from TREM-2 deficient mice was
significantly reduced compared to controls (P<0.05; Fig 5A and 5B). Considering TREM-2’s
known phagocytic properties [24, 25] and the observed lower local and systemic bacterial loads
in TREM-2-deficient mice, we determined the phagocytic capacity of AM and BMDM har-
vested fromWT and Trem-2-/- mice. Despite a trend towards enhanced phagocytosis of FITC-
labelled B. pseudomallei by TREM-2 deficient macrophages, no significant differences were
found (Fig 5D and 5E). In line, TREM-2 did not impact on the intracellular killing of B. pseudo-
mallei by BMDM (S1 Fig).

Limited role of TREM-1/3 in the host defense during experimental
melioidosis
In a final set of experiments we studied the role of TREM-1 in the host defense against B. pseu-
domallei using Trem-1/3-/- mice. In contrast to the data derived from Trem-2-/- mice, no differ-
ences in bacterial counts in lung or BALF were observed between B. pseudomallei-challenged
Trem-1/3-/- andWT mice (Fig 6A and 6B). In line, TREM-1 deficiency did not impact on lung
pathology and cytokine levels, except for decreased KC levels, which did not influence

Fig 4. Reduced distant organ damage in Trem-2-/- mice. At 72h post-infection with 5 x 102 CFU B. pseudomallei intranasally splenic injury (A) in WT
(black bars) and Trem-2-/- mice (white bars) was quantified as described in the Methods section. Plasma levels of aspartate transaminase (AST; B),
alanine transaminase (ALT;C), Lactate dehydrogenase (LDH; D) and blood urea nitrogen (BUN; E) in WT and Trem-2-/- mice were determined. Data are
expressed as mean ± SEM. n = 5–6 mice per group per time point. *P < 0.05 (Mann-Whitney U test).

doi:10.1371/journal.pntd.0004747.g004
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pulmonary neutrophilic content as determined by Ly6-stainings (Fig 6E and 6F, Table 2).
However, TREM-1 did influence bacterial dissemination as bacterial loads in blood and liver
were significantly decreased in Trem-1/3-/- mice compared to WTs 72h after infection (P<0.01;
Fig 6C and 6D). We next evaluated TREM-1’s role in systemic inflammation and end organ
damage. At 72h post-infection, the levels of key regulatory cytokines in the systemic compart-
ment (TNF-α, IL-6, IL-10, MCP-1 and IFN-γ) did not differ between Trem-1/3-/- mice and WT
(Table 2). Induced pathology of the spleen (Fig 6G) was similar in Trem-1/3-/- and WTmice.
In correspondence with the lower hepatic bacterial counts at 72h, we found lower levels of the
hepatocellular injury markers AST and ALT levels in Trem-1/3-/- mice compared to WT mice
(Fig 6H and 6I). LDH levels, reflecting general organ injury, were elevated in Trem-1/3-/- mice
at 24 h, while they were reduced compared to their WT counterparts at 72h post-infection
(P<0.05; Fig 6J). No difference in plasma BUN levels was observed between mice strains
(Fig 6K).

Fig 5. TREM-2 deficiency reduces cellular responsiveness ex vivo.Whole blood (A), bone marrow derived macrophages (BMDM; B) and alveolar
macrophages (AM; C) of WT (black bars) and Trem-2-/-mice (white bars) were stimulated with medium, E.coli LPS (100 ng/ml) or heat-inactivated B.
pseudomallei (107 CFU/ml or MOI of 50). Supernatant was collected after 20 h of stimulation and assayed for TNF-α. In addition, WT and Trem-2-/- BMDM
(D) and AM (E) were incubated at 37°C with FITC labeled heat-inactivated B. pseudomallei after which time-dependent phagocytosis was determined.
Data are presented as mean ± SEM and are representative of two or three independent experiments. n = 4 or 8 per group. * P< 0.05 (Mann-WhitneyU
test).

doi:10.1371/journal.pntd.0004747.g005
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Fig 6. Effect of TREM-1 deficiency on bacterial clearance, pulmonary neutrophil influx and organ damage during experimental melioidosis.WT
(closed circles/black bars) and Trem-1/3-/-mice (open circles/ white bars) were intranasally infected with 5 x 102 CFU of B. pseudomallei and sacrificed 24
and 72 h post-infection, followed by determination of bacterial loads in lung homogenate (A), BALF (B), blood (C) and liver (D). Neutrophil influx as
determined by % Ly6G positive surface of lung slides was calculated for WT and Trem-1/3-/- mice (E). Lung (F) and spleen (G) pathology was scored as
described in the Methods section. Aspartate transaminase (AST;H), alanine transaminase (ALT; I), lactate dehydrogenase (LDH; J) and blood urea
nitrogen (BUN; K) were measured as a marker for end organ damage. Data are expressed as mean ± SEM. n = 7–8 mice per group. *P < 0.05; **P< 0.01
(Mann-Whitney U test).

doi:10.1371/journal.pntd.0004747.g006

Table 2. Cytokine responses in lung homogenates, BALF and plasma of WT and Trem-1/3-/-mice during experimental melioidosis.

T = 24h T = 72h

WT Trem-1/3-/- WT Trem-1/3-/-

pg/ml Lung homogenate

TNF-α 1406 ± 220 1227 ± 215 2135 ± 312 2312 ± 386

IL-6 2380 ± 293 2913 ± 353 17694 ± 3121 29910 ± 4668

KC 18817 ± 5116 14277 ± 1981 71606 ± 6071 69866 ± 8092

pg/ml BALF

TNF-α 883 ± 100 808 ±95 2472 ± 359 3624 ± 831

IL-6 1675 ± 285 654 ± 97** 6041 ± 942 9449 ± 1914

KC 992 ± 183 711 ± 113 19039 ± 1614 12251 ± 1678*

pg/ml Plasma

TNF-α 12 ± 1 9 ±1 616 ± 160 307 ± 77

IL-6 143 ± 36 133 ± 19 2868 ± 818 2695 ± 313

IL-10 8 ± 2 20 ± 6 199 ± 77 81 ± 36

MCP-1 263 ± 63 92 ± 25* 2335 ± 94 2975 ± 226

IFN-γ 28 ± 4 26 ± 4 1606 ± 445 1275 ± 242

Cytokine levels in plasma, lung homogenate and broncho-alveolar fluid (BALF) were measured after intranasal infection with 5 x 102 CFU wild-type B.

pseudomallei. Wild-type (WT) and Trem-1/3-/- mice were sacrificed 24 and 72 h after infection. Data are represented as means ± SEM (n = 7 or 8/group

per time point). TNF-α = Tumor necrosis factor-α; IL = Interleukin; MCP-1 = Monocyte Chemoattractant Protein-1; KC = Keratinocyte Chemoattractant;

IFN-γ = Interferon-γ

* P < 0.05

** P < 0.01.

doi:10.1371/journal.pntd.0004747.t002
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TREM-1 deficiency does not impact on ex vivo cytokine responsiveness
and phagocytosis nor intracellular killing of B. pseudomallei
TREM-1 is abundantly expressed on monocytes and macrophages following exposure to B.
pseudomallei [31]. In line with previous findings [11], Trem-1/3-/- BMDM produced less TNF-
α in response to LPS stimulation (P<0.05; Fig 7B). Surprisingly, no differences in cellular
responsiveness were found between AM and whole blood derived fromWT and Trem-1/
3-/-mice (Fig 7A–7C). Lastly, we wished to determine whether TREM-1 contributes to phago-
cytosis and/or killing of B. pseudomallei. No differences in phagocytic and killing capacities
between WT and TREM-1 deficient BMDM were observed (Fig 7D and 7E).

Discussion
TREM-1 and TREM-2 are innate immune receptors that have demonstrated to either amplify
or regulate TLR and NLR signaling after recognition of pathogen-associated molecular

Fig 7. No effect of TREM-1 deficiency on the cellular responsiveness and phagocytosis or intracellular killing ofB. pseudomallei.Whole blood
(A), bone marrow derived macrophages (BMDM; B) and alveolar macrophages (AM; C) of WT and Trem-1/3-/-mice were stimulated with medium, E.coli
LPS(100 ng/ml) or heat-inactivated wild type B. pseudomallei (107 CFU/ml at a MOI of 50). TNF-α levels were measured in the supernatant obtained after
20 h of stimulation. BMDM (D) and AM (E) of WT and Trem-1/3-/- mice were incubated at 37°C with FITC labeled heat-inactivated B. pseudomallei after
which time-dependent phagocytosis was determined. Data are expressed as mean ± SEM and are representative of two or three independent
experiments. n = 4 or 8 (for the whole blood assay) per group. *P< 0.05 (Mann-Whitney U test).

doi:10.1371/journal.pntd.0004747.g007
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patterns. Our study is the first to examine the role of both TREM-1 and TREM-2 during exper-
imental melioidosis. We observed increased TREM-1 and TREM-2 expression during experi-
mental melioidosis, both at the local site of infection and systemically. Subsequently, we found
that TREM-2 impairs the host defense against murine B.pseudomallei-induced sepsis, as dem-
onstrated by an improved survival of infected Trem-2-/- mice as a direct result of diminished
bacterial dissemination, decreased inflammation and less organ damage. Our ex vivo studies
suggest that the protective effect of TREM-2 deficiency in part results from the diminished
capacity of TREM-2-deficient macrophages to elicit a pro-inflammatory response which is an
important contributor to organ injury in the event of sepsis. TREM-1 was also found to play a
detrimental role during B. pseudomallei infection, which is in line with our earlier finding that
blocking TREM-1 could improve survival during melioidosis [31]. However when compared
to TREM-2 the role of TREM-1 in the host response against B. pseudomallei seems to be
limited.

Previous studies have demonstrated that soluble TREM-1 levels are up-regulated in plasma
of patients with sepsis, pneumonia and melioidosis [31, 41, 42]. In addition, it is known that
surface TREM-1 expression is increased on monocytes of melioidosis patients [31]. However,
soluble TREM-1 levels in septic patients do not always correlate to the expression of mem-
brane-bound TREM-1 on different myeloid cell types [31, 43]. Less is known about the kinetics
of TREM-2 expression during infection. A recent study demonstrated that during sepsis
TREM-2 expression on ascites-retrieved cells of patients with abdominal sepsis was increased
[27]. Correspondingly, TREM-2 was up-regulated on AM of mice infected with S. pneumoniae
[25]. In line with these earlier studies, we now show that both TREM-1 and TREM-2 mRNA
expression is elevated in lung and liver tissue of mice infected with B. pseudomallei. Further
research however is warranted to study the cell surface protein expression of TREM-2 on neu-
trophils and macrophages during melioidosis.

The in vivo role of TREM-2 in infectious diseases remains ill defined. In a model studying P.
aeruginosa keratitis TREM-2 deficiency increased corneal bacterial loads [44]. More recently,
Chen et al. demonstrated that TREM-2 is required for efficient bacterial clearance in a murine
polymicrobial sepsis model using a TREM-2 blocking recombinant protein [27]. In the same
study it was shown that administration of TREM-2 overexpressing bone marrow derived mye-
loid cells improved survival during polymicrobial sepsis, but not endotoxaemia [27]. In sharp
contrast, Gawish et al. demonstrated a beneficial effect of TREM-2 deficiency during endotox-
aemia [45]. The same group also observed a survival benefit of Trem-2-/- mice during S. pneu-
moniae pneumonia [25], while no effect on mortality of TREM-2 deficiency was seen during E.
coli sepsis [45]. To evaluate how TREM-2 deficiency led to increased clearance of B. pseudo-
mallei, we assessed the functional roles of macrophages that express TREM-2 [19, 25]. TREM-
2 is known to be involved in direct killing [27, 44] and phagocytosis of bacteria by macrophages
[24, 25]. Interestingly, we did not find impaired bacterial killing or phagocytosis of B. pseudo-
mallei by BMDM or AM of Trem-2-/- mice. Several characteristics of this facultative intracellu-
lar bacterium when compared to other bacteria might in part explain these discrepancies; B.
pseudomallei is capable of invading both phagocytic and non-phagocytic cells [46] and circum-
vents intracellular defense mechanisms efficiently in order to replicate and spread to adjacent
cells [47, 48].

TREM-2 is traditionally regarded as a negative regulator of the in vitro inflammatory
response in response to TLR-ligands [19, 21, 45] In contrast, our study now demonstrates that
TREM-2 deficiency leads to a reduced inflammatory response to B. pseudomallei both ex vivo
and in vivo suggesting that TREM-2’s role during inflammation may not be that upfront. This
is in line with recent studies investigating the role of TREM-2 in models of pneumococcal
pneumonia [25], post-stroke inflammation [49] and DSS-induced colitis [50]. Different
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elements, can explain these inconsistencies: differences in mice strains used (BALB/C versus
C57Bl/6), different experimental murine models (e.g. caecal ligation and puncture (CLP)-
model versus a intranasal inhalation model for sepsis), differences in TREM-2 blockade (e.g. by
using TREM-2 deficient mice or TREM-2 antibodies) and lastly the difference of an in vitro
approach in contrast to our ex vivo cellular challenge model. Interestingly, a recent study
showed augmented inflammation by TREM-2 deficient peritoneal macrophages in response to
LPS [45], while the same group observed the reversed phenotype in alveolar macrophages [25],
underlining possible cell-specific functions of TREM-2. Of importance, neutrophil recruitment
to the lung, an important defense mechanism during melioidosis [32, 51], was reduced in
Trem-2-/- mice during experimental melioidosis as determined by Ly6-staining. This may be a
potential result of the decreased inflammatory response and production of chemokines follow-
ing infection. In this respect, it is noteworthy, that IL-1β–which we and others have shown to
be involved in excessive deleterious neutrophil influx during experimental melioidosis [37, 52]
—was also significantly reduced in Trem-2-/- mice. No differences were observed in the influx
of macrophages (S2 Fig). Excessive inflammation and neutrophil influx and activation can lead
towards multi-organ failure [53], which is almost universally seen in lethal cases of melioidosis.
Distant organ injury was significantly reduced in Trem-2-/- mice, potentially as a result of a
reduced influx of inflammatory cells. Trem-2-/- mice displayed an evidently reduced inflamma-
tory response, which resulted in a strong survival benefit. In addition, it is well known that B.
pseudomallei can replicate intracellularly [28], and neutrophils may act as its permissive host
cell [52]. We could therefore hypothesize that the anti-inflammatory phenotype and the
reduced bacterial loads seen in TREM-2 deficient mice are a result of decreased intracellular
bacterial replication at the infection site, due to reduced neutrophilic influx.

Taken together, during melioidosis, TREM-2 deficiency resulted in a restricted inflamma-
tory response, thereby decreasing organ damage and mortality. Future research should focus
on the potential of anti-TREM-2 treatment of B.pseudomallei-infected mice.

TREM-1 amplifies TLR-responses and therefore might dangerously enhance the inflamma-
tory response to bacterial infection [18]. Controversial results have been found on the role of
TREM-1 during bacterial infection. TREM-1 deficiency has shown to be detrimental during
endotoxaemia [17] and polymicrobial sepsis [12, 54], while in contrast, moderate levels of
TREM-1 can improve survival during polymicrobial sepsis, but not endotoxaemia [55]. Block-
ade of TREM-1 with a peptide called LP17 could partially protect mice from B. pseudomallei
induced lethality [31]. In this study however, we observed, using the same infection model, that
survival of B. pseudomallei-infected TREM-1-deficient mice was similar to WTs. This might be
explained by the fact that these mice were completely TREM-1-deficient and in addition lacked
TREM-3, a DAP12-coupled activating receptor on murine macrophages, which supposedly
acts as an activating receptor [56]. In contrast, in humans TREM-3 is a pseudogene [56]. How-
ever, since DAP12 is known to both potentiate and attenuate TLR-signaling, it is perhaps not
surprising that the net-effect on bacterial clearance of B. pseudomallei is not affected.

TREM-1 has other functions next to TLR-signaling enhancement, such as phagocytosis and
the production of reactive oxygen species [57]. Furthermore, TREM-1 has been recently linked
to trans-epithelial migration of neutrophils after infection with P. aeruginosa [15]. Blocking
TREM-1 completely could therefore interfere with these important antibacterial mechanisms.
We did not find a role for TREM-1 in the killing or phagocytosis of B. pseudomallei, which is in
line with the fact that TREM-1/3 deficiency in neutrophils neither impacts on bacterial killing,
phagocytosis and chemotaxis of P. aeruginosa [15]. This suggests that other phagocytic recep-
tors on leukocytes are more important for the efficient eradication of B. pseudomallei [38, 58,
59].
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Murine models like the one used here, which make use of relatively young mice exposed to
an intranasal bacterial inoculum, do show inter-experiment variation, as reflected by differ-
ences in bacterial dissemination and as a result inflammation at the latter time-points before
mice will succumb to infection. In addition, caution is needed when extrapolating data from
murine experiments to human disease.”

Taking these precautions into mind, we here demonstrate that murine melioidosis is associ-
ated with increased TREM-1 and -2 expression. TREM-2 deficiency is beneficial during experi-
mental Gram-negative sepsis caused by a clinical relevant pathogen, resulting in lower bacterial
loads, reduced organ damage, decreased inflammation and improved survival. When com-
pared to TREM-2, TREM-1 plays a limited detrimental role during experimental melioidosis.
These results provide new information on the expression and function of TREM-2 during
melioidosis and may demonstrate its potential therapeutic usefulness.

Supporting Information
S1 Appendix. Supplemental materials and methods.
(DOC)

S1 Fig. Intracellular killing of B. pseudomallei by BMDM is not impaired by TREM-2 defi-
ciency.WT and Trem-2-/- BMDM were incubated at 37°C with live B. pseudomallei after which
time-dependent intracellular killing was determined. Data are presented as mean ± SEM and
are representative of two independent experiments. n = 6 per group (Mann-Whitney U test).
(TIF)

S2 Fig. Similar macrophage influx in BALF of WT and Trem-2-/- during experimental
melioidosis.Macrophage influx in broncho-alveolar lavage fluid (BALF) was determined 72h
post-infection with 5 x 102 CFU B. pseudomallei in wild-type (WT; black circles) and Trem-2-/-

mice (white circles). Data are presented as mean ± SEM n = 5–6 mice/group (Mann- Whitney
U test).
(TIF)
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