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Background: Clear cell renal cell carcinoma (ccRCC) predominates among kidney cancer cases and is 
influenced by mutations in cancer driver genes (CDGs). However, significant obstacles persist in the early 
diagnosis and treatment of ccRCC. While various genetic models offer new hopes for improving ccRCC 
management, the relationship between CDG-related long non-coding RNAs (CDG-RlncRNAs) and ccRCC 
remains poorly understood. Therefore, this study aims to construct prognostic molecular features based on 
CDG-RlncRNAs to predict the prognosis of ccRCC patients, and aims to provide a new strategy to enhance 
clinical management of ccRCC patients.
Methods: This study employed Cox and Least Absolute Shrinkage and Selection Operator (LASSO) 
regression analyses to comprehensively investigate the association between lncRNAs and CDGs in ccRCC. 
Leveraging The Cancer Genome Atlas (TCGA) dataset, we identified 97 prognostically significant CDG-
RlncRNAs and developed a robust prognostic model based on these CDG-RlncRNAs. The performance 
of the model was rigorously validated using the TCGA dataset for training and the International Cancer 
Genome Consortium (ICGC) dataset for validation. Functional enrichment analysis elucidated the biological 
relevance of CDG-RlncRNA features in the model, particularly in tumor immunity. Experimental validation 
further confirmed the functional role of representative CDG-RlncRNA SNHG3 in ccRCC progression.
Results: Our analysis revealed that 97 CDG-RlncRNAs are significantly associated with ccRCC prognosis, 
enabling patient stratification into different risk groups. Development of a prognostic model incorporating 
key lncRNAs such as HOXA11-AS, AP002807.1, APCDD1L-DT, AC124067.2, and SNHG3 demonstrated 
robust predictive accuracy in both training and validation datasets. Importantly, risk stratification based on 
the model revealed distinct immune-related gene expression patterns. Notably, SNHG3 emerged as a key 
regulator of the ccRCC cell cycle, highlighting its potential as a therapeutic target.
Conclusions: Our study established a concise CDG-RlncRNA signature and underscored the pivotal role 
of SNHG3 in ccRCC progression. It emphasizes the clinical relevance of CDG-RlncRNAs in prognostic 
prediction and targeted therapy, offering potential avenues for personalized intervention in ccRCC.
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Introduction

Clear cell renal cell carcinoma (ccRCC) represents a 
prevalent subtype of malignancy in adults, constituting 
approximately 3% of cases (1,2). A significant proportion 
of patients, around 30%, are diagnosed at an advanced 
or metastatic stage, precluding the opportunity for 
surgical intervention (3-5). Despite the emergence 
of targeted therapy and immunotherapy as principal 
adjuncts for advanced ccRCC, the rates of complete 
and partial remission remain relatively modest (6-8). In 
light of advancements in bioinformatics and sequencing 
technologies, researchers have commenced leveraging 
existing data to construct prognostic markers for tumors, 
with the aim of predicting patient outcomes and disease 
progression. This approach has emerged as a promising 
strategy to enhance the clinical management of oncology 
patients.

Within the domain of ccRCC, investigators have 
undertaken bioinformatics analyses to identify various 
potential prognostic biomarkers. Notably, Zhang et al. have 
delineated chromatin regulation-related gene features that 
exhibit promising predictive efficacy for ccRCC treatment 
and prognosis (9). Similarly, Shao et al. have identified ALDOB 
as a putative prognostic biomarker for ccRCC patients through 
comprehensive data integration analyses (10). Furthermore, 
Chen et al. have proposed SPOCK1 as another potential 

prognostic biomarker for ccRCC based on comprehensive 
bioinformatics analyses (11). Despite these advancements, 
it is imperative to note that these biomarkers alone may 
not suffice for the comprehensive prediction of patient 
prognosis and treatment outcomes, underscoring the 
pressing need for the exploration of novel biomarkers to 
complement existing research.

It is well-known that cancer driver genes (CDGs) confer 
growth advantages to cancer cells, promoting tumorigenesis 
and progression across various malignancies (12-14), 
including hepatocellular carcinoma (HCC) (15,16), 
lung adenocarcinoma (17,18), bladder cancer (19,20), 
prostate cancer (20,21), and numerous other malignancies. 
Previously, a summary containing 568 CDGs was reported 
in the journal “Nature Reviews Cancer”, identified from 
over 28,000 tumors across 66 cancer types (22). Tumor 
development is intricately linked with alterations in the 
tumor microenvironment, with CDGs playing pivotal 
regulatory roles within cancer cells, thereby shaping 
the microenvironment and modulating responses to 
immunotherapy. Within the realm of ccRCC, CDG-
RlncRNA assumes a crucial role as a CDG-driven tumor. 
Thus, elucidating the functional role of CDG-RlncRNA 
in ccRCC offers a promising avenue for the discovery and 
supplementation of prognostic biomarkers.

Given the constrained availability of ccRCC patient 
samples at our research center, we opted to conduct our 
study utilizing publicly accessible databases, such as The 
Cancer Genome Atlas (TCGA) and the International 
Cancer Genome Consortium (ICGC). In this study, we 
systematically analyzed the expression profiles of CDG-
RlncRNA and the immune microenvironment landscape. 
Subsequently, we developed a prognostic risk model, 
termed CDG-RlncRNA model (CDG-RlncM), based 
on five CDG-related long non-coding RNAs (CDG-
RlncRNAs), to predict the survival outcomes of ccRCC 
patients. We validated the predictive performance of CDG-
RlncM using the TCGA database (training set) and the 
ICGC database (validation set), thereby corroborating its 
status as a reliable independent prognostic factor. Notably, 
within the CDG-RlncM, we identified SNHG3 as a 
gene of interest, exhibiting elevated expression in ccRCC 
and closely associated with adverse patient prognosis. 
Moreover, knockdown experiments demonstrated the 
ability of SNHG3 to induce G2/M phase cell cycle arrest. 
In summary, the construction of the CDG-RlncM in this 
study offers potential avenues for personalized treatment 
strategies for ccRCC patients, effectively complementing 
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Key findings
• We present a novel 5-gene signature comprising HOXA11-

AS, AP002807.1, APCDD1L-DT, AC124067.2, and SNHG3, 
accurately predicting the survival and prognosis of clear cell renal 
cell carcinoma (ccRCC) patients.

What is known and what is new?
• Prognostic assessment is crucial in managing ccRCC patients, yet 

reliable markers are lacking.
• Our study introduces a concise cancer driver gene-related long 

non-coding RNA (CDG-RlncRNA) signature, emphasizing 
SNHG3’s pivotal role in ccRCC progression. This signature 
demonstrates robust predictive accuracy, stratifying patients and 
revealing immune-related gene expression patterns. SNHG3 
emerges as a key ccRCC cell cycle regulator, suggesting therapeutic 
potential.
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and applicability in clinical settings.
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existing prognostic markers for the disease. Furthermore, 
this study underscores the significance of CDG-RlncRNA 
in ccRCC by elucidating its expression levels and role in cell 
cycle regulation. We present this article in accordance with 
the TRIPOD reporting checklist (available at https://tcr.
amegroups.com/article/view/10.21037/tcr-24-127/rc).

Methods

Research process and preliminary data processing

Following the flowchart (Figure 1A), the research process 
commenced by retrieving expression data for 568 CDG-
related genes from the TCGA database. Subsequently, 
Pearson correlation analysis (Pearson correlation coefficients 
>0.7 and P<0.001) identified 1,808 CDG-RlncRNAs. 
Additionally, Cox regression analysis revealed 97 CDG-
RlncRNAs significantly associated with the prognosis of 
clear ccRCC (P<0.001). These genes underwent Least 
Absolute Shrinkage and Selection Operator (LASSO) 
regression analysis, resulting in the construction of a 
prognostic model comprising 5 CDG-RlncRNAs. Finally, 
this model underwent evaluation in both the TCGA 
database (as the training set) and the ICGC database 
(as the validation set), demonstrating robust predictive 
performance.

Research data acquisition

On October 10, 2022, the RNA-seq data and clinical 
information of ccRCC patients were meticulously obtained 
from two distinct sources: TCGA database, serving as 
the training dataset (https://portal.gdc.cancer.gov), and 
the ICGC database, utilized as the validation dataset 
(https://dcc.icgc.org). Specimens with incomplete clinical 
information in the databases were excluded. The selection 
of these datasets was guided by a rigorous consideration 
of their appropriateness and relevance for our study. The 
compilation of a comprehensive catalog comprising 568 
CDGs was sourced from Nature Reviews Cancer, a highly 
esteemed academic publication (22). These genes were 
methodically identified through an extensive research endeavor 
encompassing a vast spectrum of over 28,000 tumors spanning 
66 diverse cancer types. Detailed and specific information 
regarding the CDGs can be found in table available at 
https://cdn.amegroups.cn/static/public/TCR-24-127-1.xlsx, 
providing valuable insights into their characterization and 
significance in the context of our research.

Identification of CDG-RlncRNA and clustering of ccRCC 
patients

Using Spearman correlation analysis, we assessed the 
correlation between CDGs and their related lncRNAs. 
CDG-RlncRNAs were identified based on a rigorous 
criterion, specifically requiring an absolute correlation 
coefficient exceeding 0.7 and a P value below 0.001. This 
meticulous approach aimed to pinpoint CDG-RlncRNAs 
that exhibit a robust and significant relationship with 
CDGs. To delve into the prognostic value of CDG-
RlncRNAs, we conducted univariate Cox regression 
analysis concerning patient overall survival (OS). Within 
this analysis, we selected 97 CDG-RlncRNAs and 
calculated hazard ratios (HR values) and Cox P values, 
unveiling the potential impact of these CDG-RlncRNAs 
on patient prognosis. Subsequently, building upon this 
cohort of 97 CDG-RlncRNAs, we employed non-negative 
matrix factorization (NMF) analysis to classify ccRCC 
patients. This classification facilitated the categorization 
of patients into distinct clusters. A comprehensive analysis 
was then undertaken to explore the disparities and unique 
characteristics among these clusters. This multifaceted 
approach provides valuable insights into the potential 
subtypes within the ccRCC patient population, shedding 
light on the underlying heterogeneity of this cancer type.

Assessment of immune infiltration and prediction of 
response to immune checkpoint inhibitors (ICIs) therapy

In this study, we employed the CIBERSORT algorithm 
to estimate the infiltration levels of distinct immune 
cell types. Gene expression data were submitted to the 
CIBERSORT website (http://cibersort.stanford.edu), 
and results with a significance level (P<0.05) were utilized 
to evaluate the immune and stromal components of 
the tumor microenvironment. This analysis enables a 
comprehensive assessment of the distribution and activity 
of various immune cell populations within the tumor 
microenvironment. The Tumor Immune Dysfunction and 
Exclusion (TIDE) score is an evaluative strategy utilized to 
predict the potential therapeutic response of cancer patients 
to ICIs. In this study, TIDE scores were calculated for 
patients categorized into high- and low-risk groups to assess 
their sensitivity to ICI treatments. This assessment aids in 
identifying the therapeutic response potential of patients 
and provides crucial insights for personalized treatment 
decisions.

https://tcr.amegroups.com/article/view/10.21037/tcr-24-127/rc
https://tcr.amegroups.com/article/view/10.21037/tcr-24-127/rc
https://portal.gdc.cancer.gov
https://dcc.icgc.org
https://cdn.amegroups.cn/static/public/TCR-24-127-1.xlsx
http://cibersort.stanford.edu
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Assessment and validation of prognostic model accuracy 
and construction of nomograms

We performed LASSO Cox analysis  on 97 CDG-
RlncRNAs associated with prognosis, obtained from the 
TCGA dataset, to establish the optimal CDG-RlncRNA 
model (CDG-RlncM). The model was constructed using 
the formula: Risk score = (lncRNA1 coefficient × lncRNA1 
expression) + (lncRNA2 coefficient × lncRNA2 expression) 
+ ... + (lncRNAn coefficient × lncRNAn expression). Based 
on the risk scores generated by the model, patients were 
stratified into high- and low-risk groups. Kaplan-Meier 
survival analysis was subsequently employed to determine 
survival disparities between these groups.

Additionally, we evaluated the predictive performance 
of the model using time receiver operating characteristic 
(ROC) and calibration curves. The area under the curve 
(AUC) represents the area under the ROC curve, ranging 
from 0 to 1. A higher AUC indicates better discrimination 
between positive and negative samples. An AUC close to 
1 suggests superior model performance, while an AUC of 
0.5 indicates performance equivalent to random guessing. 
Furthermore, calibration curves closer to the 45-degree 
diagonal line indicate greater consistency between predicted 
and observed risks. External validation was conducted 
using the ICGC database to confirm the reproducibility 
and robustness of the model. Moreover, we created column 
plots based on patient clinical characteristics and risk scores 
to comprehensively understand the associations between 
specific patient features (age, gender, stage, grade) and risk 
scores. This multifaceted analysis aids in gaining deeper 
insights into the clinical utility and patient stratification 
potential of the CDG-RlncRNA model.

Functional enrichment analysis

The “LIMMA” R package was utilized to analyze potential 
pathways and processes associated with differentially 
expressed genes (DEGs) in both high -and low-risk groups. 
Gene Ontology (GO) and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) enrichment analyses of DEGs 
were conducted using the “clusterProfiler” package in R. 
The enrichment analyses encompassed all GO categories, 
specifically biological process (BP), molecular function 
(MF), and cellular component (CC).

Patient and tissue samples

A total of 18 pairs of ccRCC tissue specimens were obtained 

from the People’s Hospital of Chongqing Hechuan, China. 
This research was conducted in accordance with the 
principles outlined in the Helsinki Declaration (as revised in 
2013) and received explicit approval and consent from the 
Ethics Committee at the People’s Hospital of Chongqing 
Hechuan (No. Hcry-Yn-01). Written informed consent 
was obtained from all participating patients, affirming their 
voluntary participation in the study.

Cell culture and treatment

The ccRCC cell lines, including 786-O, RCC-JF, and 
Caki-1, were cultured in RPMI 1640 medium (Corning 
Inc., Corning, NW, USA). Caki-1 cells were cultured 
using McCoy’s 5A medium (Biological Industries, Israel). 
All cells were cultured and transfected according to the 
manufacturer’s instructions. The siRNAs for SNHG3 and 
the corresponding control were purchased from Tsingke 
Biotechnology Co., Ltd., as follows: 
 Negative control: F: UUCUCCGAACGUGUCA 

CGUTT; R: ACGUGACACGUUCGGAGAATT;
 s iSNHG3-1 :  F :  GCAUUUAGCUAGGAAU 

GCATT; R: UGCAUUCCUAGCUAAAUGCTT; 
 siSNHG3-2: F: GGGAUCAUCUAGAAGGUAATT; R: 

UUACCUUCUAGAUGAUCCCTT.

Real-time quantitative polymerase chain reaction (RT-qPCR)

Total RNA was meticulously isolated employing a state-of-
the-art RNA extraction kit (FOREGENE, Chengdu, China), 
following rigorous protocols. Subsequently, cDNA synthesis 
was conducted using a high-quality reverse transcription 
kit (Takara Biotechnology Co., Ltd., Beijing, China). 
Quantitative analysis of SNHG3 expression was carried out 
through RT-qPCR, with GAPDH serving as the internal 
reference gene, ensuring data accuracy and reliability. The 
primer sequences utilized for SNHG3 in this study were:

Forward: 5'-TTCAAGCGATTCTCGTGCC-3'; 
Reverse: 5'-AAGATTGTCAAACCCTCCCTGT-3'.
The GAPDH primers applied in this research were as 

follows: 
Forward: 5'-GGCTGTAGACCAGGATGAAG-3';
Reverse: 5'-TTGGAGGGGATCTCGCTCCT-3'.

Cell cycle detection

Transfected cells, cultured for 48 hours, were harvested 
by trypsinization, fixed in 75% ethanol at 4 ℃ overnight, 
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and subsequently stained with propidium iodide (PI) 
at room temperature for 30 minutes. Subsequent cell 
analysis was performed using flow cytometry, following the 
manufacturer’s instructions.

Statistical analysis

The study presented continuous variables as mean values. 
Statistical analyses were conducted using R software and 
GraphPad Prism 8. Both Student’s t-tests and analysis 
of variance (ANOVA) were employed for statistical 
comparisons, as per the relevance of the experimental 
design. A significance level of *P<0.05 was chosen to denote 
statistical significance.

Results

Identification of CDG-RlncRNAs in ccRCC

Our study was conducted following the outlined procedures 
(Figure 1A). Initially, we performed a differential expression 
analysis of CDG-related genes using TCGA samples, which 
included 539 ccRCC cases and 72 normal kidney samples. 

Our selection criteria included a significance level of P<0.05 
and an absolute log-fold change (|logFC|) greater than 1. 
This rigorous analysis identified 109 CDG-related genes 
displaying significant expression differences, as illustrated 
in Figure 1B. Subsequently, we conducted Spearman 
correlation analysis to identify long non-coding RNAs 
(lncRNAs) significantly associated with CDG-related 
genes, termed CDG-RlncRNA. Applying the same 
criteria (P<0.05 and |logFC| >1) led to the identification 
of 1,808 CDG-RlncRNAs. Further analysis revealed that 
among these 1,808 CDG-RlncRNAs, 1,221 exhibited 
pronounced differential expression between ccRCC and 
normal kidney samples, as depicted in Figure 1C and 
Figure 1D. We then proceeded to perform univariate Cox 
regression analysis to investigate the clinical significance 
of CDG-RlncRNAs. Our findings uncovered 97 CDG-
RlncRNAs significantly associated with adverse patient 
outcomes (Figure 1E).

Identification of ccRCC immune subtypes based on CDG-
RlncRNA expression

Precision medicine has emerged as a crucial focus in 

RNA-seq data and clinical data from TCGA

Receiver-operating characteristic curve, Kaplan-Meier survival, Cox regression analysis 

TCGA divided into training set ICGC divided into validation set 

CDG -related lncRNAs (Pearson correlation coefficients >0.7 and P<0.001)

97 CDG-related lncRNAs with prognostic value identified

5 CDG-related lncRNAs

568 differentially expressed CDG-related genes 14,179 ccRCC-related lncRNAs

Univariate Cox regression analysis

LASSO regression analysis

A
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Figure 1 Identification of CDG-RlncRNA. (A) Flowchart illustrating the entire process and CDGs-related lncRNAs. (B) The heatmap 
displays significant expression differences of CDGs (P<0.05) in both ccRCC tissues and their adjacent non-cancerous tissues within TCGA 
database. (C) The heatmap reveals significant expression differences of CDG-related lncRNAs (P<0.05) in both ccRCC tissues and their 
adjacent non-cancerous tissues within the TCGA database. (D) Volcano plot demonstrates significant expression differences of CDG-
RlncRNAs (P<0.05) in both ccRCC tissues and their adjacent non-cancerous tissues within the TCGA database. (E) The forest plot presents 
CDG-RlncRNAs significantly associated with patient prognosis (P<0.001). TCGA, The Cancer Genome Atlas; CDG, cancer driver gene; 
ccRCC, clear cell renal cell carcinoma; ICGC, International Cancer Genome Consortium; FDR, false discovery rate; FC, fold change; CI, 
confidence interval; CDG-RlncRNA, CDG-related lncRNA.
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contemporary clinical practice, emphasizing molecular 
subtyping of patients as an effective strategy. To explore 
this, we conducted a NMF analysis based on the expression 
profiles of 97 CDG-RlncRNAs closely associated with 
the prognostic outlook of ccRCC patients. Our analysis 
resulted in the stratification of ccRCC samples into three 
distinct clusters, as illustrated in Figure 2A. Subsequent 
survival analysis revealed that patients within cluster  
3 exhibited the most unfavorable OS, as demonstrated in 
Figure 2B. Furthermore, we thoroughly investigated the 
correlations between different clusters and the clinical 
attributes of ccRCC, visually presented in Figure 2C. 
Moreover, we delved into the differential expression of 
immune checkpoint molecules among the distinct clusters. 
Our findings illuminated that, among the six immune 
checkpoints scrutinized (PD1, CTLA-4, ICOS, LAG3, 
TIGIT, and PD-L1), five manifested elevated expression 
levels within cluster 3, as portrayed in Figure 2D-2I. This 
observation implies that despite the diminished OS within 
cluster 3, immunotherapeutic interventions might hold 
promise as a viable strategy for ameliorating the prognosis 
of this specific patient subset.

Construction of CDG-RlncRNA model for predicting 
prognosis

To enhance the prognostic prediction for ccRCC patients, 
we conducted LASSO regression analysis on 97 CDG-
related genes closely associated with patient prognosis. 
We established a 5-gene model (CDG-RlncM) specifically 
related to ccRCC patient OS, as illustrated in Figure 3A-3C. 
Subsequently, a nomogram was developed based on patient 
clinical characteristics and risk scores (Figure 3D), and the 
predictive accuracy of CDG-RlncM was evaluated using 
calibration curves (Figure 3E). Through time-dependent 
receiver operating characteristic (ROC) curve analysis, 
we determined that the CDG-RlncM risk score reached 
0.712 (Figure 3F). Additionally, we established a nomogram 
associated with ccRCC patient progression-free survival 
(PFS) (Figure 3G). Similarly, we observed good predictive 
accuracy for this nomogram through calibration curves 
(Figure 3H).

Validating the CDG-RlncRNA prognostic model

We successfully established the CDG-RlncM using the 
TCGA database as our training set. Subsequently, we 

utilized the coefficients of the five CDG-RlncRNAs within 
the model to calculate the median risk score, thereby 
categorizing patients into high-risk and low-risk groups. 
As the risk score increased, there was a corresponding 
decrease in the number of surviving clear ccRCC patients, 
as depicted in Figure 4A. The ROC curve illustrated 
that CDG-RlncM exhibited highly effective diagnostic 
performance in predicting 5-year survival, with an AUC of 
0.712 (Figure 4B). Survival analysis revealed a noticeable 
reduction in OS among high-risk patients (Figure 4C). 
Furthermore, we conducted a similar validation using the 
ICGC database as our validation set. The ROC AUC for 
5-year survival prediction was found to be 0.682, indicating 
a similarly poorer prognosis for high-risk ccRCC patients 
(Figure 4D-4F). These results collectively suggest that 
the CDG-RlncM we constructed demonstrated excellent 
applicability and predictive performance.

Correlation between CDG-RlncRNA prognostic model and 
clinical characteristics of ccRCC patients

We conducted an in-depth exploration of the correlation 
between CDG-RlncM and clinical characteristics. Initially, 
a heatmap was utilized to illustrate the associations 
between the five CDG-RlncRNAs within the model 
and various clinical attributes (Figure 5A). Subsequently, 
we observed a progressive elevation in risk scores with 
increasing grade (Figure 5B), stage (Figure 5C), or T-stage  
(Figure 5D). Patients with distant metastasis (Figure 5E) or 
lymph node metastasis (Figure 5F) exhibited a noticeable 
increase in their risk scores. However, there were no 
significant differences in risk scores based on patient age 
(Figure 5G) or gender (Figure 5H).

Predictive value of CDG-RlncM signature

We conducted separate univariate and multivariate 
Cox regression risk analyses for CDG-RlncM and the 
nomogram. Both analyses revealed a close association 
between CDG-RlncM and the OS of ccRCC patients 
(Figure 6A-6D). This suggests that the impact of CDG-
RlncM on the survival prognosis of ccRCC patients can 
be considered as an independent risk factor. Furthermore, 
stratified analysis of clinical characteristics in ccRCC 
patients demonstrated that, in nearly all subgroups, the 
high-risk group exhibited significantly shorter OS compared 
to the low-risk group (Figure 6E-6J).
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Figure 2 NMF cluster analysis based on ccRCC prognosis-related CDG-RlncRNAs. (A) Consensus map for NMF clustering. (B) Kaplan-
Meier survival curves for OS in three distinct patient clusters with ccRCC. (C) Heatmap and clinicopathologic features of the three ccRCC 
patient clusters. (D-I) Differential expression analysis of immune checkpoint molecules PD-1, CTLA-4, ICOS, LAG3, TIGIT, and PD-
L1 across three distinct ccRCC clusters. Statistical significance levels are denoted as: ns, no significance; *, P<0.05; **, P<0.01; ***, P<0.001. 
NMF, non-negative matrix factorization; ccRCC, clear cell renal cell carcinoma; CDG-RlncRNA, cancer driver gene-related lncRNA; OS, 
overall survival.

Relationship between the CDG-RlncM signature and 
immunotherapy and immune cell infiltration

To explore the biological characteristics of DEGs in the 
high- and low-risk groups within the training set, we 
conducted GO enrichment and KEGG pathway analyses. 
The GO analysis revealed significant enrichment of DEGs 
in pathways related to immune responses (Figure 7A), while 
the KEGG functional enrichment analysis indicated that 
DEGs were primarily enriched in various cytokine signaling 
pathways (Figure 7B). These findings underscore the close 
association of CDG-RlncM with the immune system. 
Furthermore, we observed a strong correlation between risk 
scores and immune checkpoint molecules such as CTLA4, 
PD1, PDL1, HAVCR2, and PDCD1LG2 (Figure 7C). In 
addition, comparative analysis of immune cell infiltration 
levels between the two risk groups using CIBERSORT 
revealed higher infiltration of follicular helper T cells and 
regulatory T cells in patients with higher risk scores, while 
resting dendritic cells and resting mast cells exhibited 
higher infiltration levels in patients with lower risk scores 
(Figure 7D). Moreover, we unveiled the correlation between 
the five genes in our model and immune cell infiltration 

(Figure 7E). Subsequent single-sample gene set enrichment 
analysis (ssGSEA) demonstrated that co-stimulatory T 
cells were significantly activated in the high-risk group, 
while type II interferon responses were notably suppressed  
(Figure 7F). We also employed the TIDE algorithm to 
evaluate the correlation between risk groups and the 
potential effectiveness of ICIs. The results indicated that the 
high-risk group had higher TIDE scores than the low-risk 
group (Figure 7G). In summary, these results suggest that 
patients in the high-risk group are more likely to experience 
immune evasion. Therefore, caution is warranted when 
considering immunotherapeutic strategies for such patients.

Knockdown of SNHG3 induces G2/M phase arrest in 
ccRCC cells

In the five genes of CDG-RlncM, we identified a 
remarkable gene, namely SNHG3. SNHG3 exhibited 
elevated expression in ccRCC (Figure 8A), and high 
SNHG3 expression was associated with adverse outcomes in 
ccRCC patients (Figure 8B). Furthermore, by collecting ccRCC 
tissues and adjacent normal tissues, we confirmed the elevated 
expression level of SNHG3 in ccRCC (Figure 8C). In renal 
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Figure 3 Construction of the risk model for CDG-RlncRNAs. (A) LASSO coefficient distribution of 97 prognosis-related CDG-RlncRNAs 
in the TCGA cohort. (B) Applying LASSO regression, the top 5 CDG-RlncRNAs with optimal discriminative power were chosen to 
establish a risk scoring model. (C) The correlation between five CDG-RlncRNAs in the risk model and the prognosis of ccRCC patients. 
(D) Nomogram assessing the model for 1-, 3-, and 5-year OS probabilities in ccRCC patients. (E) Line chart depicting calibration curves 
for 1-, 3-, and 5-year OS rates. (F) TimeROC curves illustrating nomograms, risk scores, and clinical characteristics in the TCGA dataset.  
(G) Nomogram assessing the model for 1-, 3-, and 5-year PFS probabilities in ccRCC patients. (H) Line chart depicting calibration curves 
for 1-, 3-, and 5-year PFS rates. Statistical significance levels are denoted as: *, P<0.05; ***, P<0.001. CI, confidence interval; OS, overall 
survival; AUC, area under the curve; PFS, progression-free survival; CDG-RlncRNA, cancer driver gene-related lncRNA; LASSO, Least 
Absolute Shrinkage and Selection Operator; TCGA, The Cancer Genome Atlas; ccRCC, clear cell renal cell carcinoma; TimeROC, time-
dependent receiver operating characteristic.
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Figure 4 Validation of CDG-RlncRNAs risk model. (A) The heatmap illustrates the genes comprising the risk model of CDG-RlncRNAs 
in TCGA database (training set). (B) Evaluation of the diagnostic performance of the CDG-RlncRNAs model in the training set is assessed 
through TimeROC curves. (C) Kaplan-Meier survival curves reveal differences in OS between high-risk and low-risk groups in the training 
set. (D) The heatmap depicts the genes comprising the risk model of CDG-RlncRNAs in the ICGC database (validation set). (E) Evaluation 
of the diagnostic performance of the CDG-RlncRNAs model in the validation set is assessed through TimeROC curves. (F) Kaplan-
Meier survival curves reveal differences in OS between high-risk and low-risk groups in the validation set. AUC, area under the curve; 
CDG-RlncRNA, cancer driver gene-related lncRNA; TCGA, The Cancer Genome Atlas; TimeROC, time-dependent receiver operating 
characteristic; OS, overall survival; ICGC, International Cancer Genome Consortium.
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Figure 5 Assessing the correlation between the CDG-RlncRNAs model and clinical features. (A) Heatmap revealing the correlation 
between clinical features, ccRCC clusters, and risk scores in ccRCC patients. (B-H) Evaluating variations in risk scores across different 
clinical features and distinct ccRCC clusters. Statistical significance levels are denoted as: ns, no significance; *, P<0.05; **, P<0.01. CDG-
RlncRNA, cancer driver gene-related lncRNA; ccRCC, clear cell renal cell carcinoma.

cancer cells, we observed the most significant upregulation 
of SNHG3 in 786-O cells (Figure 8D). Subsequently, we 
conducted online analysis of SNHG3 using GTBAdb, 
and the results demonstrated that SNHG3 was primarily 
involved in the cell cycle, particularly the G2/M checkpoint 
(Figure 8E-8H). Furthermore, we performed a knockdown 
experiment of SNHG3 in 786-O cells (Figure 8I). The 

results revealed that it induced G2/M phase arrest in the 
cells (Figure 8J,8K), confirming the role of SNHG3 in cell 
cycle regulation in ccRCC.

Discussion

ccRCC stands as the most prevalent type of kidney cancer, 
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Figure 6 Stratified analysis of clinical characteristics in ccRCC patients with high- and low-risk based on CDG-RlncRNAs signature. 
Univariate and multivariate Cox forest plots depicting risk scores and clinical characteristics in the training set (A,B) and the validation set 
(C,D). Survival curves reveal stratified OS rates within the high-risk and low-risk subgroups, analyzed separately for gender (E), grade (F), 
T stage (G), N stage (H), M stage (I), and age (J). CI, confidence interval; ccRCC, clear cell renal cell carcinoma; CDG-RlncRNA, cancer 
driver gene-related lncRNA; OS, overall survival.
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Figure 7 Relationship between the CDG-RlncM signature and immunotherapy and immune cell infiltration. (A) Bubble plot illustrating GO 
enrichment differences between high- and low-risk groups based on differentially expressed genes. (B) Bubble plot depicting KEGG pathway 
enrichment differences between high- and low-risk groups based on differentially expressed genes. (C) Correlation analysis between immune 
checkpoint genes and risk scores. (D) Differential immune cell infiltration comparison between high- and low-risk groups. (E) ssGSEA-based 
Assessment of Immune-Related Effects in high- and low-risk groups. (F) Correlation analysis between the five CDG-RlncRNAs in the model 
and immune-related effects. (G) Differences in TIDE scores between high- and low-risk groups. Statistical significance levels are denoted as: ns, 
no significance; *, P<0.05; **, P<0.01; ***, P<0.001. BP, biological process; CC, cellular component; MF, molecular function; NK, natural killer; 
APC, antigen-presenting cell; CCR, C-C chemokine receptor; HLA, human leukocyte antigen; MHC, major histocompatibility complex; IFN, 
interferon; TIDE, Tumor Immune Dysfunction and Exclusion; CDG-RlncRNA, cancer driver gene-related lncRNA; GO, Gene Ontology; 
KEGG, Kyoto Encyclopedia of Genes and Genomes; ssGSEA, single-sample gene set enrichment analysis.
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Figure 8 LncRNA SNHG3 regulates the cell cycle of ccRCC cells. (A) Scatter plot revealing the expression differences of SNHG3 between 
ccRCC tissues and adjacent normal tissues. (B) The high expression of SNHG3 indicates an unfavorable prognosis for ccRCC patients. (C) 
Clinical specimens validate the significant upregulation of SNHG3 expression in ccRCC patients. (D) RT-qPCR reveals the differential 
expression of SNHG3 in normal renal epithelial cells (HK-2) and various ccRCC cell lines. (E-H) Online analysis in the GTBA database 

(http://guotosky.vip:13838/GTBA/) indicates an association between SNHG3 and the cell cycle of renal cancer patients, particularly 
in the G2M phase. (I-K) Downregulation of SNHG3 in 786-O induces G2/M phase cell cycle arrest. Statistical significance levels are 
denoted as: ns, no significance; *, P<0.05; ***, P<0.001. KEGG, Kyoto Encyclopedia of Genes and Genomes; KIRC, kidney renal clear cell 
carcinoma; NC, negative control; G, gap phase; S, synthesis phase; M, mitosis phase; ccRCC, clear cell renal cell carcinoma; RT-qPCR 
reverse transcription quantitative polymerase chain reaction.
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constituting 80% of all cases (22). About 30% of patients 
are already in the advanced stages of ccRCC or present 
with metastases at the time of initial diagnosis, missing the 
opportunity for surgical intervention (23,24). Although 
targeted therapy and immunotherapy have emerged as 
the primary adjunctive treatment modalities for advanced 
ccRCC, the rates of complete remission and partial 
remission remain relatively modest (25,26). With the highly 
developed bioinformatics technology today, it is necessary 
to conduct research aimed at identifying tumor-specific 
biomarkers associated with the occurrence and progression 
of ccRCC, in order to improve the survival rates of ccRCC 
patients and provide new strategies. In previous studies, 
researchers have mainly focused on exploring single-gene 
prognostic biomarkers in ccRCC using this method, such 
as CREB1 (27), ACSL4 (28), NR3C2 (29), which have 
been identified as potential prognostic markers for ccRCC. 
However, research on the role of gene models as prognostic 
markers is scarce. It is necessary to study the role of gene 
signatures as prognostic markers for ccRCC, providing new 
strategies for the management of ccRCC patients in clinical 
practice.

A recent study extensively analyzed 28,076 tumor 
samples from 66 different cancer types and successfully 
identified 568 CDGs (22). These crucial genes play specific 
roles in regulating cell growth, the cell cycle, and DNA 
replication. Mutations in these genes enable malignant 
cells to proliferate rapidly and uncontrollably, evade the 
immune system and other defense mechanisms, spread, 
invade other tissues, and alter the surrounding environment 
to fulfill their own needs (30,31). Long non-coding RNAs 
(lncRNAs) are a class of non-coding RNAs with a length 
exceeding 200 nucleotides (32), and some lncRNAs play 
pivotal roles in the occurrence and progression of cancer, 
possessing characteristics similar to CDGs (33). Therefore, 
the identification of CDG-RlncRNAs and the development 
of signatures based on them for predicting the prognosis 
of ccRCC patients will hopefully provide new strategies to 
improve the survival rate of ccRCC patients.

In our study, we initially conducted univariate Cox 
regression analysis to identify CDG-RlncRNAs closely 
associated with the prognosis of 97 ccRCC patients. 
Subsequently, using their expression profiles, we employed 
NMF analysis to classify ccRCC patients into three clusters. 
Results indicated that, despite cluster 3 having the poorest 
prognosis, these patients exhibited elevated expression 
of immune checkpoint markers compared to the other 
two clusters, suggesting that cluster 3 patients possessed 

higher immunogenicity. Consequently, immunotherapy 
targeting cluster 3 patients may potentially yield more 
favorable outcomes. Subsequently, we constructed a CDG-
RlncM consisting of 5 CDG-RlncRNAs (HOXA11-AS, 
AP002807.1, APCDD1L-DT, AC124067.2, and SNHG3) 
using LASSO regression analysis to predict the prognosis 
and survival of ccRCC patients. Among these, HOXA11-
AS has been reported to be upregulated in various 
tumors, including gliomas (34-36), lung adenocarcinomas 
(37,38), hypopharyngeal squamous cell carcinomas 
(39,40), colorectal cancers (41), gastric cancers (42,43), 
osteosarcomas (44), liver cancers (45,46), and breast cancers 
(47,48), promoting the progression of these malignancies. 
AP002807.1 has been reported to participate in the 
construction of a prognostic model related to autophagy in 
ccRCC (49). Similarly, APCDD1L-DT has been reported to 
be involved in the construction of a prognostic model related 
to cuproptosis in ccRCC (50), indicating their crucial roles in 
the development of ccRCC. Additionally, AC124067.2 has 
been implicated in constructing a prognostic model related 
to autophagy in non-small cell lung cancer, predicting 
survival risk in this malignancy (22). Furthermore, SNHG3 
has been found to be upregulated in a variety of tumors, 
including bladder cancer (51), HCC (52,53), prostate cancer 
(54,55), cervical cancer (56), colorectal carcinoma (57), 
non-small cell lung cancer (58-60), ovarian cancer (61), 
gastric cancer (62), and acute myeloid leukemia (63), with 
its upregulation promoting the malignant progression of 
these cancers. In ccRCC, our study revealed an association 
between SNHG3 and adverse prognosis, and we validated 
the upregulation of SNHG3 in ccRCC patient samples 
and cell lines. An online analysis using GTBAdb database 
highlighted the significant correlation of SNHG3 with 
the cell cycle. Therefore, we conducted experiments to 
knock down SNHG3 in 786-O cells, which confirmed that 
silencing SNHG3 induced G2/M phase arrest in ccRCC. 
In conclusion, our findings suggest that SNHG3 may 
influence the progression of ccRCC by regulating the cell 
cycle.

In summary, we constructed the CDG-RlncM signature 
using data from TCGA database. Subsequently, successful 
validation of this signature was achieved using the ICGC 
database, confirming its effectiveness and reliability in 
predicting survival and prognosis of ccRCC patients. 
Additionally, preliminary validation of the key gene 
SNHG3 within the model confirmed its role in regulating 
the cell cycle of ccRCC. However, it is essential to note that 
our model has only been validated in the TCGA and ICGC 
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databases, and further validation in additional databases or 
ones constructed independently is necessary to establish 
the universality of CDG-RlncM. Furthermore, our current 
validation of SNHG3 is limited to phenotype assessment, 
requiring further research to delve into its primary functions 
and specific mechanisms. These endeavors will contribute 
valuable insights for the clinical treatment strategies of 
ccRCC.

Conclusions

This study explores the prognostic value of CDG-RlncRNA 
in ccRCC. We conducted further clustering of ccRCC 
patients, investigated differences between clusters, and 
constructed a risk model composed of CDG-RlncRNAs. 
The model successfully predicts the OS of ccRCC patients 
and their response to immunotherapy. Additionally, a 
representative gene in the model, SNHG3, was validated in 
ccRCC cells.
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