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AbstrAct
One of the major challenges in brain research is to relate the structural features 

of the auditory stimulus to structural features of Electroencephalogram (EEG) signal. 
Memory content is an important feature of EEG signal and accordingly the brain. On 
the other hand, the memory content can also be considered in case of stimulus. Beside 
all works done on analysis of the effect of stimuli on human EEG and brain memory, no 
work discussed about the stimulus memory and also the relationship that may exist 
between the memory content of stimulus and the memory content of EEG signal. For 
this purpose we consider the Hurst exponent as the measure of memory. This study 
reveals the plasticity of human EEG signals in relation to the auditory stimuli. For the 
first time we demonstrated that the memory content of an EEG signal shifts towards 
the memory content of the auditory stimulus used. The results of this analysis showed 
that an auditory stimulus with higher memory content causes a larger increment in 
the memory content of an EEG signal. For the verification of this result, we benefit 
from approximate entropy as indicator of time series randomness. The capability, 
observed in this research, can be further investigated in relation to human memory.

IntroductIon

During years analysis of the influence of different 
types of external stimuli on human brain has been one 
of the main topics in brain research. For this purpose, 
scientists mapped the brain reaction using different 
scanning methods [1] and then analyzed this reaction. 
Electroencephalogram (EEG) is one of the famous 
methods which maps the brain activity versus time. A lot 
of research have been reported which employed different 
mathematical and computational methods for analysis of 
EEG signal due to external stimuli [2-6].

The concept of fractal processes has been considered 
as a useful approach for studying the scaling properties 
of different time series. The long range correlation is a 

characteristic of fractal time series, which means the 
fluctuations, are related to earlier fluctuations. This 
correlation defines the presence of memory.

One of the exponents that is widely used in fractal 
theory is the Hurst exponent. The Hurst exponent that is 
widely used for analysis of fractal time series indicates the 
memory of the process. The value of the Hurst exponent 
can be between 0 and 1, where H = 0.5 stands for a truly 
random process (e.g., Brownian motion).

There has been variety of works in biology and 
medicine which employed the Hurst exponent for their 
investigation. Using Hurst exponent in investigation 
about DNA [7], human gait [8], heart rate [9], heart sound 
[10] and eye movement [11] are noteworthy to mention. 
In case of fractal EEG signals, beside some works that 
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analyzed the Hurst exponent for EEG signals without 
any external stimulation [12-14], very limited works 
investigated the variation of the Hurst exponent for EEG 
signal due to external stimulation. For instance, in [15] 
we showed that the value of EEG signal’s Hurst exponent 
increases due to visual stimulation. In that paper we also 
developed a mathematical model of an EEG signal in 
the form of power law. Focusing on employing auditory 
stimulus, we can report the work done by Dey et al [16]. 
They employed Detrended Fluctuation Analysis (DFA) 
technique to analyze variations of the Hurst exponent for 
subjects who listen to music. In another work, Natarajan et 
al. [17] analyzed the EEG signal’s Hurst exponent due to 
music and reflexological stimulation. Their results showed 
that the value of the Hurst exponent increases from H = 
0.5 due to stimulation, which means that the randomness 
decreases due to music/reflexology. In fact, in all these 
works it has been stated that the value of the Hurst 
exponent for the EEG signal increases due to stimulation.

Beside all works done on analysis of the effect 
of external stimuli on human EEG and memory, no 
work discussed about the stimulus memory and also 
relationships that may exist between the memory content 
of a stimulus and the memory content of an EEG signal. 
In this research, we hypothesize that the memory content 
of auditory stimuli should affect the memory content 
of the corresponding EEG signal. For this purpose, we 
analyze the relationship between the variation of the Hurst 
exponent of auditory signal (stimulus) and the variation 
of the Hurst exponent of EEG signal. For the verification 
purpose, we employ approximate entropy in order to 
analyze the randomness of both auditory stimulus and 
EEG signal.

results

We checked the governed data from the subjects. It 
is noteworthy to mention here that we considered all the 
collected data for analysis.

Mauchly’s test indicated that the assumption of 
sphericity had not been violated in case of the outcomes 
(the Hurst exponent and approximate entropy of EEG 
signals). Figure 1 shows the variations of mean of EEG 
signal’s Hurst exponent in case of different auditory 
stimuli in the range of H < 0.5.

Considering Fcrit (4,195) = 2.41 at α = 0.05, based on 
Table 1 the result of statistical analysis [F(4,195) = 172.5, 
p = 0.001] indicates that there was a significant effect of 

auditory stimuli on the Hurst exponent of EEG signals, 
with an effect size ω2 = 0.74. In general, the application of 
the auditory stimulus increased the Hurst exponent of the 
corresponding EEG signal.

A significant linear trend between auditory stimulus 
conditions was observed (p = 0.001), indicating that the 
fourth stimulus caused a larger increment in the Hurst 
exponent of an EEG signal than the third stimulus, 
followed by the second stimulus and the first stimulus. 
As in all cases, the value of the Hurst exponent is larger 
than 0.5, it can be said that the fourth stimulus caused a 
larger memory increment in the EEG signal than the third 
stimulus, followed by the second stimulus and the first 
stimulus, reflecting the trend in the memory content of the 
auditory stimuli i.e. the fourth stimulus (H = 0.12) has a 
larger memory content than the third stimulus (H = 0.19), 
which itself has a larger memory content than the second 
stimulus (H = 0.27), which itself has a larger memory 
content than the first stimulus (H = 0.37). The effect size 
calculations between different conditions show that the 
fourth stimulus led to the greatest change in the Hurst 
exponent of an EEG signal observed across all fourth 
stimuli comparisons (Table 2).

Figure 2 shows the variations of mean of EEG 
signal’s approximate entropy in case of different auditory 
stimuli in the range of H < 0.5.

Considering Fcrit (4,195) = 2.41 at α = 0.05, based 
on Table 3 the result of statistical analysis [F(4,195) = 78, 
p = 0.001] indicates that there was a significant effect of 
auditory stimuli on approximate entropy of EEG signals, 
with an effect size ω2 = 0.65. In general, the application of 
the auditory stimulus decreased the approximate entropy 
of the corresponding EEG signal.

A significant linear trend between auditory stimulus 
conditions was observed (p = 0.003), indicating that 
the fourth stimulus caused a larger decrement in the 
approximate entropy of an EEG signal than the third 
stimulus, followed by the second stimulus and the first 
stimulus, reflecting the trend in the approximate entropy 
of the auditory stimuli i.e. the fourth stimulus has a lower 
approximate entropy than the third stimulus, which itself 
has a lower approximate entropy than the second stimulus, 
which itself has a lower approximate entropy than the first 
stimulus. The effect size calculations between different 
conditions show that the fourth stimulus led to the greatest 
change in the approximate entropy of an EEG signal 
observed across all fourth stimuli comparisons (Table 2). 

In fact, these results agree with the result of analysis 
of the Hurst exponent because as was mentioned before, 

Table 1: The result of ANOVA test in case of EEG signal’s Hurst exponent (95% confidence interval) for the first set 
of stimuli (H < 0.5)

ss df Ms F p
between 1.379 4 0.345 172.5 0.001
Within 0.460 195 0.002
total 1.839 199
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Figure 1: EEG signal’s Hurst exponent in case of different auditory stimuli in the range of H < 0.5. Error bars are standard 
deviations.

Figure 2: EEG signal’s approximate entropy in case of different auditory stimuli in the range of H < 0.5. Error bars are 
standard deviations.

Figure 3: EEG signal’s Hurst exponent in case of different auditory stimuli in the range of 0.5 < H. Error bars are standard 
deviations.
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approximate entropy is the indicator of randomness of time 
series, where its smaller value stands for less randomness. 
So, as we move from the first stimulus to the forth stimulus 
and the value of the Hurst exponent gets far from H = 
0.5, randomness decreases and accordingly approximate 
entropy will have smaller value. This behavior also can be 
seen in case of EEG signal randomness and accordingly 
approximate entropy.

Figure 3 shows the variations of mean of EEG 
signal’s Hurst exponent in case of different auditory 
stimuli in the range of 0.5 < H.

Considering Fcrit (4,195) = 2.41 at α = 0.05, based on 
Table 4 the result of statistical analysis [F(4,195) = 249.5, 
p = 0.001] indicates that there was a significant effect of 
auditory stimuli on the Hurst exponent of EEG signals, 
with an effect size ω2 = 0.83. In general, the application of 
the auditory stimulus increased the Hurst exponent of the 
corresponding EEG signal.

A significant linear trend between auditory stimulus 
conditions was observed (p = 0.001), indicating that the 
eighth stimulus caused a larger increment in the Hurst 
exponent of an EEG signal than the seventh stimulus, 
followed by the sixth stimulus and the fifth stimulus. 
As in all cases, the value of the Hurst exponent is larger 
than 0.5, it can be said that the eighths stimulus caused 
a larger memory increment in the EEG signal than the 
seventh stimulus, followed by the sixth stimulus and the 

fifth stimulus, reflecting the trend in the memory content 
of the auditory stimuli i.e. the eighth stimulus (H = 0.93) 
has a larger memory content than the seventh stimulus (H 
= 0.86), which itself has a larger memory content than 
the sixth stimulus (H = 0.78), which itself has a larger 
memory content than the fifth stimulus (H = 0.69). The 
effect size calculations between different conditions show 
that the eighth stimulus led to the greatest change in the 
Hurst exponent of an EEG signal observed across all 
fourth stimuli comparisons (Table 5).

Figure 4 shows the variations of mean of EEG 
signal’s approximate entropy in case of different auditory 
stimuli in the range of 0.5 < H.

Considering Fcrit (4,195) = 2.41 at α = 0.05, based on 
Table 6 the result of statistical analysis [F(4,195) = 174.5, 
p = 0.001] indicates that there was a significant effect of 
auditory stimuli on approximate entropy of EEG signals, 
with an effect size ω2 = 0.80. In general, the application of 
the auditory stimulus decreased the approximate entropy 
of the corresponding EEG signal.

A significant linear trend between auditory stimulus 
conditions was observed (p = 0.001), indicating that 
the eighth stimulus caused a larger decrement in the 
approximate entropy of an EEG signal than the seventh 
stimulus, followed by the sixth stimulus and the fifth 
stimulus, reflecting the trend in the approximate entropy 
of the auditory stimuli i.e. the eighth stimulus has a lower 

Table 2: Effect sizes in analysis of EEG signal’s Hurst exponent and approximate entropy for the first set of stimuli 
(H < 0.5)

Condition Hurst exponent
effect size (r)

Approximate entropy
effect size (r)

No stimulus vs. First stimulus 0.72 0.55
No stimulus vs. Second stimulus 0.87 0.81
No stimulus vs. Third stimulus 0.93 0.85
No stimulus vs. Fourth stimulus 0.94 0.89

First stimulus vs. Second stimulus 0.41 0.43
First stimulus vs. Third stimulus 0.66 0.61
First stimulus vs. Fourth stimulus 0.76 0.74

Second stimulus vs. Third stimulus 0.40 0.39
Second stimulus vs. Fourth stimulus 0.62 0.64
Third stimulus vs. Fourth stimulus 0.40 0.35

Table 3: The result of ANOVA test in case of EEG signal’s approximate entropy (95% confidence interval) for the first 
set of stimuli (H < 0.5)

ss df Ms F p
between 0.624 4 0.156 78 0.001
Within 0.320 195 0.002
total 0.944 199

Table 4: The result of ANOVA test in case of EEG signal’s Hurst exponent (95% confidence interval) for the second 
set of stimuli (0.5 < H)

ss df Ms F p
between 1.995 4 0.499 249.5 0.001
Within 0.382 195 0.002
total 2.377 199
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approximate entropy than the seventh stimulus, which 
itself has a lower approximate entropy than the sixth 
stimulus, which itself has a lower approximate entropy 
than the fifth stimulus. The effect size calculations 
between different conditions show that the eighth stimulus 
led to the greatest change in the approximate entropy of an 
EEG signal observed across all eighth stimuli comparisons 
(Table 5). 

In fact, these results agree with the result of analysis 
of the Hurst exponent because as was mentioned before, 
approximate entropy is the indicator of randomness 
of time series, where its smaller value stands for less 
randomness. So, as we move from the fifth stimulus to 
the eighth stimulus and the value of the Hurst exponent 

gets far from H = 0.5, randomness decreases and 
accordingly approximate entropy will have smaller value. 
This behavior also can be seen in case of EEG signal 
randomness and accordingly approximate entropy.

In general, it can be concluded that an auditory 
stimulus with higher memory content (lower approximate 
entropy) has a stronger effect on the increment of EEG 
signal’s memory. In fact, this investigation, for the first 
time, shows that there is a coupling between the memory 
content of an auditory stimulus and the memory content of 
the corresponding EEG signal.

Table 5: Effect sizes in analysis of EEG signal’s Hurst exponent and approximate entropy for the second set of stimuli 
(0.5 < H)

Condition Hurst exponent
effect size (r)

Approximate entropy
effect size (r)

No stimulus vs. Fifth stimulus 0.85 0.74
No stimulus vs. Sixth stimulus 0.91 0.88

No stimulus vs. Seventh stimulus 0.94 0.94
No stimulus vs. Eighth stimulus 0.96 0.95
Fifth stimulus vs. Sixth stimulus 0.51 0.48

Fifth stimulus vs. Seventh stimulus 0.70 0.77
Fifth stimulus vs. Eighth stimulus 0.83 0.83

Sixth stimulus vs. Seventh stimulus 0.31 0.57
Sixth stimulus vs. Eighth stimulus 0.66 0.74

Seventh stimulus vs. Eighth stimulus 0.52 0.49
Table 6: The result of ANOVA test in case of EEG signal’s approximate entropy (95% confidence interval) for the 
second set of stimuli (0.5 < H)

ss df Ms F p
between 1.395 4 0.349 174.5 0.001
Within 0.320 195 0.002
total 1.715 199

Figure 4: EEG signal’s approximate entropy in case of different auditory stimuli in the range of 0.5 < H. Error bars are 
standard deviations.
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dIscussIon

In this paper, for the first time, we analyzed the 
influence of the memory content of auditory stimuli 
on the memory content of an EEG signal. Our results 
demonstrated plasticity of the EEG signal in relation 
to the auditory stimuli, as the trend across the memory 
content of auditory stimuli is reflected in the trend across 
the memory content of EEG signals. We found out that 
an auditory stimulus with higher memory content causes 
a larger increment in the memory content of the EEG 
signal compared to another auditory stimulus that has less 
memory content. This result was verified by analyzing 
the approximate entropy of both auditory stimulus and 
EEG signal, where the auditory stimulus with lower value 
of approximate entropy (less randomness) brings the 
approximate entropy of EEG signal lower, thus making 
it less random.

Further investigation on the result of this research 
may explain the observation of scientists about the effect 
of music on human memory. For instance, Söderlund et 
al. [18] have demonstrated that adding an auditory white 
noise (WN) to the environment enhanced the memory 
performance of children with ADHD-type problems. See 
also [19]. Please note that here we don’t want to directly 

link auditory signal’s memory and human memory, as this 
point needs to be discovered more.

There has been a variety of research that investigated 
the influence of auditory stimuli on the brain of patients 
with some neurological disorders [20-22]. In this way, our 
method can be further investigated in case of patients with 
different brain diseases to improve their brain reaction. For 
instance, we can use our method in case of patients with 
Alzheimer in order to investigate how much the auditory 
stimulus memory content can affect corresponding EEG 
signals and accordingly the patient’s memory. 

Also, this investigation can be done in case of other 
brain status (for instance, during sleep), in order to analyze 
the effect of auditory stimulation on EEG signal’s memory. 
This analysis may provide the answer to some questions 
such as “why sound stimulation can improve sleep?” [23].

On the other hand, our analyses would guide on-
going efforts to develop realistic models of the brain 
response to external stimuli. For instance, the result of 
analysis in this paper can be coupled with our model 
presented for the brain response to external stimuli in [15] 
to mathematically write the relations investigated in this 
research.

In general, increased understanding of the 
relationship between an auditory stimulus and the brain 

Table 7: The Hurst exponent and approximate entropy for the first set of stimuli (H < 0.5)
no. Hurst exponent Approximate entropy
1 0.37 0.90
2 0.27 0.83
3 0.19 0.76
4 0.12 0.66

Table 8: The Hurst exponent and approximate entropy for the second set of stimuli (0.5 < H)
no. Hurst exponent Approximate entropy
5 0.69 0.88
6 0.78 0.79
7 0.86 0.69
8 0.93 0.60

Figure 5: A schematic of the experiment
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response shall speed up different research on the analysis 
of the brain reaction.

MAterIAls And MetHods

In this research we aim to study the effect of the 
memory content of an auditory stimulus on the memory 
content of an EEG signal. For this purpose we employ the 
Hurst exponent as the measure of memory.

The Hurst exponent that is discussed in case of 
analysis of time series can have any value between 0 and 
1. H = 0.5 stands for Brownian motion. In this condition 
the process has no persistence at all, i.e., the probability 
of the process to continue in the same direction as in 
the previous step equals the probability of the process 
changing its direction. Hence, there is no memory of the 
past at all. For H < 0.5, the probability of the process to 
continue in the same direction as in the previous step is 
less than the probability of changing direction. Hence, 
the process is anti-persistent. On the other hand, for 
H > 0.5, the process continues in the same direction as 
in the previous step with the probability larger than the 
probability of changing direction. Hence, the process is 
persistent. 

Now, considering the concept of memory, H = 0.5 
stands for no memory in the process; H = 0 or 1 stands for 
absolute memory. So, as the value of H is closer to 0.5, it 
can be said that the process in question has less memory. 
In other words, the larger the absolute value of (H - 0.5) 
the stronger the memory of the process is. For instance, 
H = 0.2 stands for higher memory than H = 0.3. Also, H 
= 0.8 stands for higher memory than H = 0.6. Thus, in 
analysis of the Hurst exponent with respect to memory, 
beside considering the value of the Hurst exponent, we 
also should pay attention to the range that the Hurst 
exponent falls within, 0 < H < 0.5 or 0.5 < H < 1.

We also analyze the randomness of both auditory 
stimulus and EEG signal using approximate entropy. 
Approximate entropy is the indicator of randomness 
of time series, where its smaller value stands for less 
randomness. Thus, as the value of H is closer to H = 0.5, 
we should have the larger value for approximate entropy.

For our experiments we chose two sets of auditory 
stimuli with different values of the Hurst exponent (and 
accordingly approximate entropy) as auditory stimuli. The 
first set contains four pink noises with the Hurst exponent 
in the range of H < 0.5. The second set of stimuli contains 
four music with embedded black noises that have the 
Hurst exponent in the range of 0.5 < H.

We play each stimulus for subjects and then we 
analyze the influence of these stimuli on the EEG signal 
by computing and investigating the Hurst exponent 
between them. The result of the variation in the Hurst 
exponent for the EEG signal will be discussed in relation 
with the variation in the Hurst exponent for the auditory 
stimuli. The result will also be discussed from the aspect 

of memory and randomness.

data collection

The data collection was done on 40 voluntary 
healthy subjects (20 M and 20 F) within the age range 
between 20 and 22 years old. A physician interviewed 
each subject prior to the experiment, to ensure no 
hearing problem, neurological deficit, pain condition, 
or medication affects the EEG data collection. Also, it 
should be noted that subjects didn’t drink alcohol or other 
beverages (containing caffeine) that can affect the EEG 
data for more than 48 hours before data collection. It 
is noteworthy that all procedures were approved by the 
Internal Review Board of the university, and the written 
informed consent was obtained from subjects, after we 
explained the study to them.

In order to insulate the subjects we have done the 
experiments in an electrically shielded, acoustically 
isolated, and dimly illuminated. We instructed the subjects 
to focus on the auditory stimulus without doing any 
movement, while they sit comfortably. Also, they were 
asked to not think to anything.

As was mentioned before, we used two sets 
of auditory stimuli. The first set contains four pink 
noises with different values of the Hurst exponent (and 
accordingly approximate entropy) as auditory stimuli in 
the range of H < 0.5. In order to generate a pink noise, 
first, we create a white noise we used rand () function of 
MATLAB. The pink noise was obtained from the white 
noise by low-pass filtering. All noises were set below 
75 db to avoid un-comfortable hearing condition for the 
subjects.

As can be seen in Table 7, the Hurst exponent for 
the first stimulus (H = 0.37) is larger than for the second 
stimulus (H = 0.27), which itself is larger than for the third 
stimulus (H = 0.19), which itself is larger than for the 
fourth stimulus (H = 0.12). As was mentioned before, the 
value of the Hurst exponent that is closer to 0.5 indicates a 
lower memory content. Thus, the first stimulus has a lower 
memory content than the second stimulus, which itself has 
a lower memory content than the third stimulus, which 
itself has a lower memory content than the fourth stimulus. 
In case of approximate entropy, as we move from the 
first to the forth stimulus, the randomness decreases and 
accordingly approximate entropy decreases.

In case of the second set of stimuli, we had four 
music with 0.5 < H. In generation of the music, we 
embedded four different black noises into a well-known 
melody by manipulating the inter-beat interval. It is 
noteworthy to mention that all the music was generated 
using Musical Instrument Digital Interface files so that the 
onset of each note can be designed precisely and the inter-
beat interval dynamics can be controlled.

As can be seen in Table 8, the Hurst exponent for the 
eighths stimulus (H = 0.93) is larger than for the seventh 
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stimulus (H = 0.86), which itself is larger than for the 
sixth stimulus (H = 0.78), which itself is larger than for 
the fifth stimulus (H = 0.69). As was mentioned before, the 
value of the Hurst exponent that is closer to 0.5 indicates 
a lower memory content. Thus, the fifth stimulus has a 
lower memory content than the sixth stimulus, which itself 
has a lower memory content than the seventh stimulus, 
which itself has a lower memory content than the eighth 
stimulus. In case of approximate entropy, as we move from 
the fifth to the eighth stimulus, the randomness decreases 
and accordingly approximate entropy decreases.

The generated noise/music was played using 
digital voice recorder and music player (Olympus WS-
321M) and then transferred to subjects using earphones 
(Philips SHE1360/97). During data collection, we asked 
the subjects about their condition, and no one was 
uncomfortable with the stimuli. 

The EEG data (with sampling frequency of 256 Hz) 
were collected using Mindset 24 device. The electrode 
impedance was kept lower than 5KΩ. In the first round, 
the data collection was done without any stimulus. After 
that in order to test the effect of an auditory stimulus, 
we played the first stimulus for the subject for 1 min 
and collected the EEG signal. After finishing the data 
collection for the first stimulus we waited for 5 min and 
then we presented the second stimulus to the subject with 
the same procedure and continued to test all stimuli. A 
bipolar electrooculogram (EOG, vertical and horizontal) 
was recorded to reject off-line artifacts. A schematic of the 
experiment is shown in Figure 5.

To examine the reproducibility of the results from 
experiments, the data collections were repeated in the 
second day for each subject. In total, two trials were 
collected in case of each stimulus from each subject. A 
physician monitored all steps of the experiments.

Data analysis

Since the recorded EEG data were noisy, first these 
data were filtered using Wavelet toolbox in MATLAB 
and then were processed for computing of the Hurst 
exponent and approximate entropy. In this research the 
analysis was done on the data governed from the left-side 
temporal (T3) and right-side temporal (T4) electrodes 
(near to the location of the primary auditory cortex area), 
as they showed the strongest response to auditory stimuli 
compared to other electrodes.

After filtering the data, we computed the Hurst 
exponent and entropy of EEG signals based on Rescaled 
Range Analysis [24], and approximate entropy [25] 
techniques using our written MATLAB codes.

Statistical analysis

Mean values for the dependent variable (the Hurst 
exponent and approximate entropy of EEG signals) were 
compared across no stimulus, and stimulation conditions 
with a one-way fixed effect ANOVA. Mauchly’s test (α 
= 0.05) was conducted in order to test for sphericity. In 
fact, Mauchly’s sphericity test is a statistical test used 
to validate a repeated measures analysis of variance 
(ANOVA). Trend analysis was performed across 
conditions when ordered according to the properties of the 
auditory stimuli. For a repeated measures design, we used 
Omega squared (ω2) as an unbiased measure of the effect 
size suitable for small samples. For pairwise comparisons 
effect size, r, was used. It is noteworthy in order to have 
robust results, all assumptions in case of each statistical 
test were fulfilled.
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