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Abstract

Single-cell RNA-seq (scRNA-seq) has emerged as a powerful technique for characterizing cellular 

heterogeneity, but it is currently impractical on large sample cohorts and cannot be applied to fixed 
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specimens collected as part of routine clinical care. We previously developed an approach for 

digital cytometry, called CIBERSORT, that enables estimation of cell type abundances from bulk 

tissue transcriptomes. We now introduce CIBERSORTx, a machine learning method that extends 

this framework to infer cell-type-specific gene expression profiles without physical cell isolation. 

By minimizing platform-specific variation, CIBERSORTx also allows the use of scRNA-seq data 

for large-scale tissue dissection. We evaluated the utility of CIBERSORTx in multiple tumor types, 

including melanoma, where single-cell reference profiles were used to dissect bulk clinical 

specimens, revealing cell type-specific phenotypic states linked to distinct driver mutations and 

response to immune checkpoint blockade. We anticipate that digital cytometry will augment 

single-cell profiling efforts, enabling cost-effective, high-throughput tissue characterization 

without the need for antibodies, disaggregation, or viable cells.

Introduction

Tissues are complex ecosystems comprised of diverse cell types that are distinguished by 

their developmental origins and functional states. While strategies for studying tissue 

composition have generated profound insights into basic biology and medicine, 

comprehensive assessment of cellular heterogeneity remains challenging. Traditional 

immunophenotyping approaches, such as flow cytometry and immunohistochemistry (IHC), 

generally rely on small combinations of preselected marker genes, limiting the number of 

cell types that can be simultaneously interrogated. In contrast, single-cell mRNA sequencing 

(scRNA-seq) enables unbiased transcriptional profiling of thousands of individual cells from 

a single-cell suspension. Despite the power of this technology1, analyses of large sample 

cohorts are not yet practical, and most fixed clinical specimens (e.g., formalin-fixed, paraffin 

embedded (FFPE) samples) cannot be dissociated into intact single-cell suspensions. 

Furthermore, the impact of tissue disaggregation on cell type representation is poorly 

understood.

Over the last decade, a number of computational techniques have been described for 

dissecting cellular content directly from genomic profiles of mixture samples2–8. The 

majority of these methods rely on a specialized knowledgebase of cell type-specific 

“barcode” genes, often called a “signature matrix,” which is generally derived from FACS-

purified or in vitro differentiated/stimulated cell subsets2,3. Although useful when cell types 

of interest are well defined, such gene signatures are suboptimal for the discovery of novel 

cellular states and cell type-specific gene expression profiles (GEPs), and for capturing the 

full spectrum of major cell phenotypes in complex tissues. To overcome these limitations, 

previous studies have explored the utility of deconvolution methods for inferring cell type 

GEPs2,3 and the potential of single-cell reference profiles for in silico tissue dissection5,9–14. 

However, the accuracy of these strategies on real bulk tissues remains unclear.

Here we introduce CIBERSORTx, a computational framework to accurately infer cell type 

abundance and cell type-specific gene expression from RNA profiles of intact tissues (Fig. 

1). To accomplish this, we extended CIBERSORT, a method that we previously developed 

for enumerating cell composition from tissue GEPs15, with new functionalities for cross-

platform data normalization and in silico cell purification. The latter allows the 
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transcriptomes of individual cell types to be digitally “purified” from bulk RNA admixtures 

without physical isolation. As a result, changes in cell type-specific gene expression can be 

inferred without cell separation or prior knowledge. By leveraging cell type expression 

signatures from single-cell experiments or sorted cell subsets, CIBERSORTx can provide 

detailed portraits of tissue composition without physical dissociation, antibodies, or living 

material.

Results

Tissue dissection with scRNA-seq

CIBERSORTx was designed to enable large-scale tissue characterization using cell 

signatures derived from diverse sources, including single-cell reference profiles (Fig. 1). To 

achieve this goal, we developed analytical tools for deriving a signature matrix from single-

cell or bulk sorted transcriptional data while minimizing batch effects as a source of 

confounding technical variation (Supplementary Figs. 1,2; Supplementary Note 1). We then 

investigated the utility of commonly used scRNA-seq technologies16 for enumerating cell 

proportions in RNA admixtures derived from bulk tissues.

We started by generating a single-cell RNA-seq library from peripheral blood mononuclear 

cells (PBMCs) obtained from a patient with non-small cell lung cancer (NSCLC) using 10x 

Genomics Chromium v2 (3’ assay). Unsupervised clustering and canonical marker gene 

assessment revealed six major leukocyte subsets (B cells, CD4 T cells, CD8 T cells, NKT 

cells, NK cells, and monocytes; Fig. 2a). To assess deconvolution performance, we built a 

signature matrix to distinguish these cell subsets and tested it on a validation cohort of bulk 

RNA-seq profiles of blood obtained from 12 healthy adults (Supplementary Tables 1 and 2).

Compared to ground truth cell proportions as determined by direct cytometry and 

fluorescence immunophenotyping, uncorrected deconvolution results showed clear 

estimation biases for some cell types in bulk admixtures (Fig. 2b, Supplementary Fig. 1d). 

We hypothesized that these biases could be driven by platform-specific variation between 

the signature matrix and bulk RNA-seq data, as might be introduced, for example, by the 

variable use of unique molecular identifiers during library preparation. Indeed, following 

application of a batch correction scheme that we developed (Supplementary Fig. 1a, 

Supplementary Note 1, Methods), deconvolution results substantially improved and 

compared favorably to ground truth cell proportions (Fig. 2b, Supplementary Fig. 1d). We 

observed similar gains in performance through batch correction when analyzing other 

datasets and signature matrices, including publicly available Chromium v2 PBMC data (3’ 

and 5’ kits; Supplementary Fig. 2a-c) and purified leukocyte subsets profiled using 

microarrays (Supplementary Fig. 2d). Given these systematic improvements, we therefore 

applied batch correction in all subsequent cross-platform analyses, unless stated otherwise 

(Supplementary Table 1).

We next extended our analysis to solid tumor biopsies where single cells were profiled by 

SMART-Seq2. Focusing on head and neck squamous cell carcinomas9 (HNSCC) and 

melanomas10 (n = 18 and 19 patients, respectively), we initially tested deconvolution 

performance on simulated tumors reconstructed from single cells. This allowed us to 
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evaluate the utility of single-cell reference profiles in a manner that controlled for 

dissociation-related artifacts and heterogeneity in phenotypic definitions. In a dataset of 18 

primary tumors and 5 lymph node metastases from patients with HNSCC9, we created a 

signature matrix from a training cohort consisting of 2 primary tumor specimens and 1 

lymph node biopsy (Supplementary Table 2). This matrix distinguished malignant cells, 

CD4 and CD8 T cells, B cells, macrophages, dendritic cells, mast cells, endothelial cells, 

myocytes, and cancer-associated fibroblasts (Fig. 2c). When evaluated using reconstructed 

tumor samples, deconvolution results were highly concordant with ground truth cell 

proportions (Fig. 2d, Supplementary Fig. 3a). Strong performance was also maintained when 

considering deconvolution results across distinct tumor types and cell types, including 

within rare or difficult to isolate cell subpopulations, such as distinct CD8 T cell effector 

subsets infiltrating melanomas (Supplementary Figs. 3b-d, 4, Supplementary Table 2).

To explore the impact of key signature matrix-related parameters on single cell-guided 

deconvolution, we next examined CIBERSORTx performance as a function of the number 

of cells per phenotype, the number of donor samples, and the number of genes considered. 

Across a range of values for these factors, we observed a surprisingly modest effect on cell 

proportion estimates (Supplementary Fig. 5a-c). Moreover, regardless of their primary 

biological source, CIBERSORTx signature matrices exhibited strong generalizability across 

diverse expression profiling platforms, datasets, and tissues after batch correction was 

applied (Fig. 2e).

Leveraging the single cell-derived signature matrix from melanoma biopsies described 

above, we then applied CIBERSORTx to dissect melanoma RNA-seq profiles from The 

Cancer Genome Atlas (TCGA)17. We observed substantial differences in the fractional 

representation of B/T lymphocytes and macrophages when comparing predicted cell type 

proportions in bulk tumors and the original scRNA-seq results (Supplementary Fig. 3e). 

Since these cell subsets were unselected relative to one another in the scRNA-seq dataset10, 

such compositional distortions may have arisen either from technical artifacts owing to 

single-cell isolation and sequencing18,19, or from the deconvolution approach itself. In 

support of the former, IHC estimates of TIL subsets in an independent melanoma cohort20 

were far more similar to TIL fractions estimated by CIBERSORTx than those determined by 

scRNA-seq (Supplementary Fig. 3e). Moreover, we observed the same distortion 

phenomenon in a dataset of human pancreatic islets profiled by scRNA-seq (SMART-Seq2), 

bulk RNA-seq, and IHC21 (Fig. 2f, Supplementary Fig. 3f–i). In a direct comparison of 

paired islet specimens, cell fractions determined by IHC in bulk tissues were significantly 

correlated with bulk islet deconvolution results, but not scRNA-seq (Fig. 2f, Supplementary 

Fig. 3i). These data further validate CIBERSORTx and highlight its value for mitigating 

dissociation-related distortions resulting from the physical isolation of intact single cells (for 

additional discussion, see Supplementary Note 2).

Cell type-specific gene expression without physical cell isolation

Cell-type-specific transcriptome profiles can provide valuable insights into cell identity and 

function. However, such profiles are generally derived from single cells or bulk sorted 

populations, which can be difficult to obtain for large cohorts and fixed clinical samples. 
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Even when purified cell types are available, tissue dissociation and preservation conditions 

can cause non-biological alterations in gene expression that obscure downstream 

analyses18,19. While mathematical separation of bulk tissue RNA profiles into cell type-

specific transcriptomes can potentially overcome these problems22–28, the accuracy of this 

technique on real tissue samples remains unclear. We therefore set out to evaluate whether a 

signature matrix, consisting of highly optimized marker genes, can be used to faithfully 

reconstruct cell type-specific transcriptome profiles from non-disaggregated tissue samples, 

including fresh/frozen and fixed tumors (Fig. 3a).

We began by profiling 302 fresh/frozen primary tumor biopsies from patients with untreated 

follicular lymphoma (FL) and tested a common approach25 in which cell type proportions 

are used to infer a single representative GEP for each cell type from a group of mixture 

samples (Methods). Since B cells, CD8 T cells, and CD4 T cells comprise the vast majority 

of FL tumor cellularity and can be readily purified by FACS29, we focused on these three 

subsets to assess the accuracy of the approach. To enumerate FL immune proportions, we 

applied LM2215, a microarray-derived signature matrix for distinguishing 22 human 

hematopoietic cell subsets in bulk tissues, including tumors30,31. We started by examining B 

cells and CD8 T cells as examples of highly abundant and less abundant cell types in FL 

lymph nodes (>50% versus ~5–10%, respectively15). Although imputed and FACS-purified 

cell type transcriptomes were reasonably well correlated, considerable noise distorted 

expression estimates of many genes (Fig. 3b). We therefore developed an adaptive noise 

filter to eliminate unreliably estimated genes for each cell type (Fig. 3c). After implementing 

this novel strategy within CIBERSORTx, we observed consistently improved correlations 

between in silico purified transcriptomes and those from FACS-purified cells (Fig. 3d, 

Supplementary Fig. 6a).

We next investigated key factors that influence the accuracy of transcriptome purification 

(Fig. 3e, Supplementary Fig. 6). Using the set of 302 FL GEPs, we observed a predictable 

relationship between the number of tumors profiled and the accuracy of transcriptome 

imputation across B cells, CD4 T cells, and CD8 T cells (Fig. 3e, Supplementary Fig. 6b). 

The largest gains were achieved when analyzing at least 4–5 fold more mixture samples than 

cell types (Fig. 3e). Nevertheless, our filtration scheme uniformly improved performance 

over a previous approach25 irrespective of cohort size, the number of cell types, and overall 

cell type abundance (Fig. 3e, Supplementary Fig. 6b-e,g). We also observed favorable 

performance for resolving previously identified markers of cell identity and additional cell 

type transcriptomes (Fig. 3f,g, Supplementary Fig. 6d-h). As expected, the fraction of 

recovered genes after adaptive filtration was proportional to both the number of evaluated 

samples and the proportion of each cell subset (Supplementary Fig. 6h). Moreover, the use 

of different single cell-derived signature matrices did not significantly impact results, 

provided that identical cell types were interrogated (Supplementary Fig. 5c).

Cell type-specific expression purification at high-resolution

Having shown that cell type-specific GEPs can be reliably estimated, we next turned to the 

problem of inferring cell type-specific differential expression from bulk specimens. Despite 

the utility of the above technique, it is limited to learning a single representative expression 

Newman et al. Page 5

Nat Biotechnol. Author manuscript; available in PMC 2019 November 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



profile for each cell type given a group of mixture samples (i.e., group-mode GEPs, Fig. 1). 

While useful for comparing two groups of specimens, such profiles are not sample-specific 

and must be generated for each group of interest in order to study differentially expressed 

genes (DEGs) between them. Although approaches for sample-level deconvolution have 

been previously described, they only consider mixtures with two or three cellular 

components32,33. We therefore developed a framework that generalizes to multiple (>3) 

components by modeling gene expression deconvolution as a unique non-negative matrix 

factorization problem with partial observations (Supplementary Fig. 7, Methods). Briefly, 

our approach attempts to separate a single matrix of mixture GEPs into a set of underlying 

cell type-specific expression matrices using imputed cell proportions (Fig. 4a,b). Once these 

expression profiles are obtained, they can be analyzed post hoc to gain insights into sample-

level variation and patterns of gene expression for individual cell types of interest. To solve 

the matrix factorization problem, we implemented a novel divide and conquer algorithm that 

produces biologically realistic solutions (Supplementary Figs. 7 and 8, Methods).

To test the method’s capability for “high-resolution” cell purification (Fig. 1), we created a 

series of synthetic mixtures, each containing DEGs in one or more cell types. These DEGs 

were simulated to include overlapping block-like patterns, reminiscent of those seen in real 

tissues34–36, and non-linear geometries, all of which would be difficult to ascertain by 

previous computational techniques. Remarkably, the method recovered expected DEG 

patterns in all tested cases, including an obscured target (“bullseye”) (Fig. 4b-d, 

Supplementary Fig. 9). Moreover, unlike group mode (Fig. 1), the resulting high-resolution 

profiles were amenable to standard methods for unsupervised analysis (e.g., Fig. 4c).

Using modeled tumor admixtures, we next evaluated the analytical performance of the 

method across several parameters, including cell type abundance and the magnitude of 

differential expression. First, simulated DEGs were ‘spiked’ into CD8 T cell transcriptomes 

to create two phenotypic classes. These CD8 GEPs were then randomly admixed in silico 
with three other immune subsets in modeled tumors, and a colon cancer cell line was 

included to simulate 50% unknown content (Fig. 4e, left). Following high-resolution 

purification, cell type-specific transcriptomes were grouped into defined DEG classes. 

Across a broad range of cell spike-in levels and expression fold changes, previously defined 

DEGs were recovered in CD8 T cells with high sensitivity and specificity (Fig. 4e, right). 

We observed similar performance in a second experiment, where we simulated melanoma 

tumors using pooled scRNA-seq data10 and assessed the above parameters in relation to 

cohort size (Supplementary Fig. 10).

High-resolution profiling of diverse tumor subpopulations

Diffuse large B cell lymphoma (DLBCL) can be classified into two major molecular 

subtypes based on differences in B cell differentiation states: germinal center-like (GCB) 

and activated B cell-like (ABC) DLBCL34. Using GEPs of 150 DLBCL lymph node 

biopsies with previously annotated cell-of-origin subtypes37, we asked whether high-

resolution profiling of 10 major leukocyte subsets could correctly attribute known cell-of-

origin differences to B cells. Although our approach was blinded to class labels, we 

identified DLBCL subtype-specific expression differences in malignant B cells that were (1) 
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highly consistent with those of normal GC and activated B cells and (2) ~9-fold more 

significant, on average, than in bulk DLBCL tumors (Supplementary Fig. 11a-c). Notably, 

we obtained similar results when repeating this analysis using 10x Chromium-derived 

signature matrices derived from either peripheral blood or FL tumors, demonstrating the 

generalizability of our approach (Supplementary Fig. 11d,e).

We then compared our results with two alternative methods: (1) a common strategy for 

assigning bulk tissue expression patterns to individual cell types based on correlations with 

cell abundance38, and (2) a previously described technique for imputing cell type-specific 

DEGs when phenotypic classes and cell type frequencies are known25. In both cases, 

CIBERSORTx exhibited superior performance, both in relation to cell type specificity and 

the number of detectable DEGs at a given significance threshold (Supplementary Figs. 12, 

13a-b).

FL is the most common indolent Non-Hodgkin lymphoma, and CREBBP mutations in FL 

tumors are associated with reduced antigen presentation in B cells29,39. Since we originally 

discovered this association using FACS-purified FL B cells29, we asked whether high-

resolution purification could recapitulate this result starting from bulk tumor GEPs and 

paired tumor genotypes (Fig. 5a). Indeed, after stratifying tumors by CREBBP mutation 

status (Supplementary Table 3), previously described signatures were detectable in digitally 

sorted B cell GEPs, including loss of MHC II expression in CREBBP-mutant tumors (Fig. 

5b-c). Notably, this result was reproducible across microarray and 10x Chromium-derived 

signature matrices covering leukocyte subsets derived from distinct biological sources (Fig. 

5b-c, Supplementary Fig. 14a,b). Moreover, as observed for DLBCL (Supplementary Fig. 

11), the majority of CREBBP mutation-associated genes did not correlate with B cell 

abundance, hindering their discovery in bulk tissues without deconvolution (Supplementary 

Fig. 14c).

To extend our assessment to solid tumors, we obtained surgically-resected primary NSCLC 

tumor biopsies (n = 26 patients), and for each tumor, generated RNA-seq libraries of four 

major subpopulations purified by FACS: epithelial/cancer, hematopoietic, endothelial, and 

fibroblast subsets (Fig. 5d, Supplementary Table 1). After deriving a signature matrix from a 

subset of four patients, we applied high-resolution profiling to digitally dissect these four 

populations in bulk tumors from the remaining 22 patients, all of which had RNA-seq 

profiles available. In a direct comparison against FACS-purified cell populations on 

matching patient samples, in silico profiles showed strong evidence of expression 

purification (Supplementary Fig. 13c-f). In addition, CIBERSORTx outperformed other 

methods6,33 for purifying GEPs of epithelial cells from bulk tumors while also enabling the 

digital purification of more cell types (Supplementary Fig. 13c-e).

We applied the same signature matrix to resolve epithelial/cancer, hematopoietic, 

endothelial, and fibroblast GEPs from bulk RNA-seq profiles of 518 lung adenocarcinoma 

(LUAD) tumors, 504 lung squamous cell carcinoma (LUSC) tumors, and 110 adjacent 

normal tissues from TCGA40,41 (Fig. 5d). Using t-SNE to visualize the resulting GEPs, we 

identified striking patterns of histology-specific gene expression for most cell types, 

including distinct phenotypic shifts in cancer-associated fibroblasts (CAFs) (Fig 5e). 
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Histological differences were far less pronounced in tumor-associated endothelial cells, and 

adjacent normal tissues clustered together regardless of histology. We compared these results 

with bulk RNA-seq profiles of FACS-purified NSCLC cell subpopulations from 21 patients 

with LUAD or LUSC. We observed similar clustering tendencies at the whole transcriptome 

level and strong concordance in relation to patterns of cell type-specific differential 

expression between histological subtypes (Fig. 5e,f, Supplementary Table 4, Supplementary 

Note 1). Our results were further corroborated by histology-specific DEGs and tumor-

specific DEGs identified from a recently published scRNA-seq atlas of NSCLC tumors and 

adjacent normal tissues42 (Supplementary Fig. 15, Supplementary Table 4).

Applications of CIBERSORTx to melanoma

We implemented the set of CIBERSORTx techniques into a comprehensive toolkit (http://

cibersortx.stanford.edu). We then explored three potential applications of CIBERSORTx for 

characterizing cellular heterogeneity in resected tumor biopsies from patients with 

melanoma. The following techniques were applied in turn: high-resolution expression 

purification (Fig. 6a-b), group-mode expression purification (Fig. 6c), and enumeration of 

cell composition across diverse platforms using single-cell reference profiles (Fig. 6d-f).

Oncogenic BRAF mutations occur in over half of melanomas and can be inhibited by 

approved targeted therapies43,44 whereas NRAS mutations occur in approximately half of 

non-BRAF mutant melanoma tumors but lack such therapies45. Understanding how key 

mutations influence cellular states could potentially lead to novel treatment strategies. Using 

single-cell reference profiles from melanomas to build a signature matrix, we applied high-

resolution expression purification to dissect 8 major cell types from the transcriptomes of 

342 bulk melanoma tumors profiled by TCGA44 (Fig. 6a). Within digitally purified cell 

subsets, we discovered many significant DEGs within malignant cells and CAFs that 

distinguish melanomas according to BRAF or NRAS mutation status (Fig. 6b, 

Supplementary Table 4). We verified these findings using scRNA-seq data from primary 

melanomas where mutation data were available, allowing us to confirm GEPs associated 

with BRAF and NRAS genotypes within individual malignant cells and/or CAFs (Fig. 6b, 

Supplementary Fig. 16).

Tumor-infiltrating CD8 T cells are driven to a state of “exhaustion” by chronic antigen 

stimulation or by overexposure to inflammatory signals46. Given the importance of these 

cells for current and emerging cancer immunotherapies47,48, we next used CIBERSORTx to 

examine expression changes that characterize the exhaustion phenotype. Using LM22, 

which is derived from healthy peripheral blood leukocytes, we enumerated immune 

composition in fresh/frozen melanomas profiled by TCGA44. We then performed group-

mode expression purification to impute a representative CD8 TIL GEP. By rank-ordering the 

estimated CD8 TIL GEP against a baseline reference profile of normal peripheral blood 

CD8 T cells, we confirmed the expression of key exhaustion markers in the inferred CD8 

TIL GEP (Fig. 6c). In addition, CD8 TIL-specific genes were consistent with those observed 

for CD8 TILs isolated from melanomas by single-cell RNA-seq10 and by FACS49 (Fig. 6c). 

Similar results were obtained when repeating the analysis on FFPE tumors50 (Fig. 6c, 

Supplementary Fig. 17).
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The most effective regimens for metastatic melanoma currently employ checkpoint blockade 

targeting PD-1 and/or CTLA4 expression on exhausted T cells47. Although a subset of 

patients achieve durable anti-tumor T cell responses, clinical outcomes remain 

heterogeneous and effective predictive biomarkers are lacking51. CD8 TILs expressing high 

levels of PDCD1 (encoding PD-1) or CTLA4 are key targets of these therapies52,53, 

suggesting that CD8 TILs expressing both markers might correlate with response, as was 

recently shown in melanoma patients receiving PD1 blockade54. To test this hypothesis, we 

used single-cell reference profiles of melanoma tumors to build a signature matrix 

containing PDCD1+/CTLA4+ CD8 T cells along with eight other major tumor cell types 

(Fig. 6d, Supplementary Figs. 3b, 18a,b). We then applied the signature matrix to interrogate 

three publicly available melanoma expression datasets (Fig. 6d). These included bulk 

expression data of FFPE and fresh/frozen melanoma tumors that were profiled by RNA-seq 

or NanoString50,55. In support of our hypothesis, imputed levels of PDCD1+/CTLA4+ CD8 

T cells were significantly associated with response in all three studies (P < 0.05; Fig. 6e). 

Moreover, the detection of these cells stratified overall survival in this meta-analysis, 

separated survival curves in individual datasets, and more robustly associated with survival 

and response than key marker genes and other cell types (Fig. 6f, Supplementary Fig. 18c–

f).

Discussion

In this study, we present CIBERSORTx as a new platform for in silico tissue dissection. Key 

features that distinguish it from previous work include dedicated normalization schemes to 

suppress cross-platform variation and improved approaches for separating RNA admixtures 

into cell-type specific expression profiles. In our analysis of peripheral blood, pancreatic 

islet specimens, and nearly 2,300 malignant tumors, 444 of which were profiled in this work, 

we found that CIBERSORTx delivers accurate portraits of human tissue heterogeneity using 

expression profiles derived from disparate sources.

Efforts to define comprehensive cell atlases are now underway1,56. Given the rapid pace of 

data generation coupled with emerging techniques to combine scRNA-seq datasets57,58, 

methods to broadly apply single-cell reference maps will become increasingly important, 

especially in settings where tissue is limited, fixed, or challenging to disaggregate into intact 

single cells. In our analysis of neoplastic and healthy tissues, we demonstrated that single-

cell reference profiles can enable detailed interrogation of tissue composition and that inter-

subject heterogeneity is not a major factor influencing results. While significant differences 

in performance between reference signatures derived from bulk populations and those 

derived from scRNA-seq data were not observed, the latter has several advantages for 

CIBERSORTx (Supplementary Note 2). These include (1) the ability to customize signature 

matrices for nearly any tissue type without the need for complicated antibody panels or cell 

sorting schemes, and (2) the ability to study poorly understood or unknown transcriptional 

states at scale.

CIBERSORTx also enables robust molecular profiling of cell subset GEPs from complex 

tissues, independent of expression profiling platform or tissue preservation state. By 

incorporating two techniques for expression analysis, we showed that CIBERSORTx 
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outperforms previous methods to facilitate rapid assessment of cell type GEPs when 

phenotypic categories are known, and high-resolution profiling of expression variation when 

additional detail is desired. With these features, we anticipate that CIBERSORTx will 

improve our understanding of heterotypic interactions within complex tissues, including 

tumor microenvironments, with implications for informing diagnostic and therapeutic 

approaches that rely on targeting specific cell types.

CIBERSORTx currently requires multiple bulk tissue samples for expression purification. 

Although further developments are needed to better accommodate smaller sample sizes (e.g., 

<15), we expect expression purification to be feasible in many situations, particularly given 

the abundance of publicly available tissue GEPs and the affordability of bulk RNA 

sequencing. Second, while the fidelity of cell reference profiles remains an important 

consideration for deconvolution applications3,15, single-cell RNA-seq can mitigate this 

issue, as shown in this work. Finally, like its predecessor59,60, we hypothesize that the 

algorithmic principles underlying CIBERSORTx are likely to generalize to other species and 

genomic data types. Future studies will be needed to formally demonstrate these 

possibilities.

In summary, CIBERSORTx represents a broadly applicable framework for decoding cellular 

heterogeneity in complex tissues. This strategy can be used to “digitally gate” cell subsets of 

interest from single-cell transcriptomes, profile the identities and expression patterns of 

these cells in cohorts of bulk tissue GEPs (e.g., fixed specimens from clinical trials), and 

systematically determine their associations with diverse metadata, including genomic 

features and clinical outcomes. CIBERSORTx should therefore have utility for increasing 

the statistical power for biological discovery. Given the versatility of the approach and its 

potential for seamless integration with other techniques, we envision that in silico cytometry 

will enhance the analysis of multicellular systems in humans, mice, and other metazoans.

Online Methods

Additional details are described in Supplementary Note 1.

Human subjects.

All patient samples in this study were collected with informed consent for research use and 

were approved by the Stanford Institutional Review Board in accordance with the 

Declaration of Helsinki. For a patient with metastatic NSCLC treated with an immune 

checkpoint inhibitor (Pembrolizumab, Merck), peripheral blood was obtained on the first 

day of treatment prior to infusion (Fig. 2a; NCT00349830 and NCT02955758). Fresh tumor 

biopsies from patients with early stage NSCLC were obtained during routine primary 

surgical resection (Figs. 3g and 5, Supplementary Fig. 13c-f). Fresh or frozen surgical 

biopsies of follicular lymphoma tumors were obtained from previously untreated FL patients 

enrolled in a phase III clinical trial (NCT0001729063), as well as from patients seen as part 

of the Stanford University Lymphoma Program Project (NCT00398177; Figs. 3b-f, 5a-c, 

Supplementary Figs. 6a-c, 14). Whole blood samples from 12 healthy adult donors were 

obtained from the Stanford Blood Center (Fig. 2b,e and Supplementary Figs. 1d,k,l, 2a,d).
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External datasets.

Full details of each dataset9,10,17,20,21,37,42,50,55,64–69, including data type, sample type, 

source, and normalization approach, are available in Supplementary Table 1. Briefly, next 

generation sequencing datasets were downloaded and analyzed using the authors’ 

normalization settings unless otherwise specified; these consisted of transcripts per million 

(TPM), reads per kilobase of transcript per million (RPKM), or fragments per kilobase of 

transcript per million (FPKM) space. For analyses in log2 space, we added 1 to expression 

values prior to log2 adjustment. Affymetrix microarray datasets were summarized and 

normalized as described in ‘Gene expression profiling – Microarrays’ (Supplementary Note 

1), using RMA in cases where bulk tissues and ground truth cell subsets were profiled on the 

same Affymetrix platform, and otherwise using MAS5 normalization. NanoString nCounter 

data were downloaded from the supplement of Chen et al.20 and analyzed with batch 

correction in non-log linear space, but without any additional preprocessing.

Two publicly available PBMC datasets from healthy donors profiled by Chromium v2 (5’ 

and 3’ kits) were downloaded (Supplementary Table 1) and preprocessed as described in 

‘Gene expression profiling – Single-cell RNA-seq’ (Supplementary Note 1), with the 

following minor modifications. During quality control, we excluded cells with >5000 

expressed genes for 5’ PBMCs, >4000 expressed genes for 3’ PBMCs, and <200 expressed 

genes for both datasets. Seurat “FindClusters” was applied on the first 20 principal 

components, with the resolution parameter set to 0.6. Cell labels were assigned as described 

above. In addition, myeloid cells were defined by high CD68 expression, megakaryocytes by 

high PPBP expression, and dendritic cells by high FCER1A expression.

For the 3’ FL signature matrix in Supplementary Figs. 11d, and 14a-b, publicly available 

10x Chromium v2 scRNA-seq data (3’ kit)70 were downloaded (Supplementary Table 1) and 

preprocessed as described for the 10x PBMC signature matrices above, but with the 

following differences. Seurat “FindClusters” was applied on the first 10 principal 

components, with the resolution parameter set to 0.6. Cell labels were assigned based on the 

following canonical marker genes (MS4A1 = B cells; CD3E, CD8A and CD8B = CD8 T 

cells; CD3E and CD4 = CD4 T cells).

Single-cell signature matrix construction.

Expression data from input datasets (Supplementary Table 1) were summarized as described 

above. Given the variability in cell type representation and the inherent noise in scRNA-seq 

data, several techniques have been developed to address stochastic dropout, impute cell-level 

scaling factors, and model technical and biological noise components in single-cell 

differential expression analysis71–73. Although useful for defining single cell phenotypes, we 

did not observe any significant gains in deconvolution performance when applying such 

techniques after cell labels were assigned (data not shown). Since the discovery of cell 

subpopulations in scRNA-seq data was not the focus of this work, we limited our pre-

processing steps to the following approach, which performed well in our experiments. 

Single-cell expression values were first normalized to TPM and divided by 10 to better 

approximate the number of transcripts per cell10. For each cell phenotype, genes with low 

average expression (<0.75 transcript per cell) in log2 space were then set to 0 as a quality 
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control filter. Although an expression threshold of <0.75 was used in this work, downstream 

results remained comparable when using modestly different thresholds (data not shown). 

Owing to sparser gene coverage relative to SMART-Seq2, this filter was not applied to data 

generated by 10x Chromium. For each cell type represented by at least 3 single cells, we 

selected 50% of all available single-cell GEPs using random sampling without replacement 

(fractional sample sizes were rounded up such that 2 cells were sampled if only 3 were 

available). We then aggregated the profiles by summation in non-log linear space and 

normalized each population-level GEP into TPM. This process was repeated in order to 

generate 5 aggregated transcriptome replicates per cell type. Unless stated otherwise, 

scRNA-seq and bulk RNA-seq signature matrices were generated as described previously15 

using the following parameters: minimum number of genes per cell type = 300, maximum 

number of genes per cell type = 500, q-value <0.01 for differential gene expression, and no 

quantile normalization.

All single cell-derived signature matrices are available in Supplementary Table 2.

Overview of CIBERSORTx analytical framework.

Introduction.—A number of computational methods have been proposed to infer cell type 

abundance, cell type-specific GEPs, or both from bulk tissue expression profiles2–8. These 

methods generally assume that biological mixture samples can be modeled as a system of 

linear equations, where a single mixture transcriptome m with n genes is represented as the 

product of H and f, where H represents an n × c cell type expression matrix consisting of 

expression profiles for the same n genes across c distinct cell types, and f represents a vector 

of size c, consisting of cell type mixing proportions.

To infer cell type abundance using this linear model within CIBERSORTx, let M be an n × k 
matrix with n genes and k mixture GEPs, let matrix B be a subset of H containing 

discriminatory marker genes for each of the c cell subsets (i.e., signature or basis 

matrix15,74,75), and let M’ be the subset of M that contains the same marker genes as B. 

Given M’ and B, the following equation can then be used to impute F, a c × k fractional 

abundance matrix with columns [f1,f2,…,fk]:

B × F • , j = M • , j′ , 1 ≤ j ≤ k (1)

where Fi,j ≥ 0 for all i, j, the system is overdetermined (i.e., n > c), and expression data in 

M’ and B are represented in non-log linear space76. (Note that Mi,• and M•,j denote row i 
and column j of matrix M, respectively). Many methods either normalize F or impose an 

additional constraint on F such that for each mixture sample, the inferred mixing coefficients 

sum to one, allowing F to be directly interpreted as cell type proportions (with respect to the 

cell subsets in B)3. We previously introduced CIBERSORT as a method to estimate F using 

an implementation of ν-support vector regression, a machine learning technique that is 

robust to noise, unknown mixture content, and collinearity among cell type reference 

profiles15. CIBERSORT was used to impute F in this work, and within this imputation 

Newman et al. Page 12

Nat Biotechnol. Author manuscript; available in PMC 2019 November 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



workflow, the batch correction scheme described below was used for all cross-platform 

analyses, unless stated otherwise (Supplementary Table 1).

Group-mode expression purification.—The fractional abundance matrix F can be 

determined for the bulk GEP matrix M, either through expression deconvolution as 

described above2,3 or with prior empiric knowledge of the compositional representation of 

cell types within the bulk specimen (e.g., by an automated hematology analyzer, or by flow 

cytometry)25. Once F is determined for a given M, a representative imputed GEP for each 

cell type in F can be estimated by solving the following system of linear equations:

Hi, • × F = Mi, •, 1 ≤ i ≤ n (2)

where H is a n × c expression matrix of n genes and c cell types, Hi,j ≥ 0 for all i, j, and F is 

defined as above with the constraint that relative cell fractions sum to one for each mixture 

sample. Like Equation 1 above, the system should be overdetermined (k > c), with a greater 

difference between k and c generally leading to improved GEP estimation (Fig. 3e, 

Supplementary Fig. 6). To ensure biologically realistic estimates of gene expression, we 

employ non-negative least squares regression (NNLS), an optimization framework to solve 

the least squares problem with non-negativity constraints. Although NNLS is robust on 

simple mixtures and toy examples, its performance on more complex mixtures inherent 

within real tissue samples can be affected by noise, imprecision, and missing data in the 

linear system15. We therefore developed a series of novel data normalization and filtering 

techniques to help mitigate these issues (Fig. 3b-d, see ‘Imputation of group-mode 
expression profiles’ in Supplementary Note 1).

Rationale for high-resolution expression purification.—Despite the utility of 

Equation 2 for imputing cell type-specific gene expression from bulk tissues (e.g., in silico 
purifications in Fig. 3), it can only estimate a single representative GEP for each cell type. 

Therefore, to explore cell type-specific differentially expressed genes (DEGs) between more 

than one condition of interest, cell type transcriptomes must be re-generated for each 

condition (e.g., responders versus non-responders to a given therapy, early versus advanced 

stage disease, etc.). To more broadly address this issue, we extended the model in Equation 2 

within a novel method for “high-resolution” in silico cell purification.

Our approach decomposes a matrix of bulk tissue GEPs (i.e., M) into c gene expression 

matrices of equal size, one for each cell subset in the cell fraction matrix F. Unlike previous 

approaches22,23,25–28, this method is entirely agnostic to phenotypic class structure and can 

be formulated as a unique non-negative matrix factorization (NMF) problem with partial 

observations. Let M and F be defined as above (n × k and c × k matrices, respectively), and 

assume the latter is estimated by CIBERSORT15. Then, for each gene i, we seek to 

determine an expression matrix Gi, defined here as a k × c expression matrix of k mixture 

samples by c cell types. Fixing M and F to solve for G yields the following constrained 

matrix decomposition problem:
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diag Gi, • , • × F = Mi, •, 1 ≤ i ≤ n (3)

where Gi,j,k ≥ 0 for all i, j, k. Unlike the linear systems in Equations 1 and 2, there are no 

closed-form solutions for G, which is a 3D n × k × c matrix, and existing numerical 

techniques are unlikely to yield biologically plausible estimates without additional 

constraints (e.g., regularization). Since conventional approaches for non-negative matrix 

factorization77 are not directly applicable to Equation 3, we therefore developed a novel 

heuristic algorithm to estimate G, depicted schematically in Supplementary Fig. 7 and 

described below.

Our approach for inferring G makes two distinct assumptions that improve the tractability of 

the problem while generating biologically plausible solutions. First, we assume each gene 

can be analyzed independently. Although ignoring gene-gene covariance relationships will 

likely impact the resolving power for some genes, we found this assumption to be effective 

in practice (e.g., Figs. 4, 5, 6a-b, Supplementary Fig. 9). Second, for a given gene, we 

assume that at least some evidence of cell type-specific differential expression is detectable 

in bulk tissue samples, even if statistically insignificant.

We evaluated this hypothesis using a previously published dataset of cell type-specific DEGs 

in the human pancreas21. In this dataset, the authors analyzed 5 pancreatic endocrine islet 

cell types (ranging from ~5% to 44% median fractional abundance within whole islets) for 

DEGs exhibiting >1.2 fold-change between non-diabetic normal subjects (n = 6) and 

patients with type 2 diabetes mellitus (T2D; n = 4)21. Importantly, these DEGs were 

identified by scRNA-seq profiling21, allowing us to test for evidence of differential 

expression in bulk islets reconstructed in silico.

Consistent with our hypothesis, when grouped by known phenotypic classes (non-diabetic 

versus T2D), 98% of DEGs associated with T2D showed at least some concordant change in 

the expected orientation in reconstructed islets (Supplementary Fig. 8a). This striking 

concordance suggested that cell type-specific DEGs might be discernible in bulk tissues 

without prior knowledge of phenotypic class labels. Indeed, when we independently ordered 

each gene in reconstructed islets by expression levels, and split each vector evenly into high 

and low expression groups (i.e., 50th percentile split), diabetic patients were skewed to low 

or high expression for 80% of previously defined cell type-specific DEGs. Among these 

genes, the enrichment direction matched the orientation of the known fold change in 99% of 

cases (Supplementary Fig. 8b). We therefore conclude that variation in bulk gene expression 

data can be leveraged to infer latent phenotypic class structure in the underlying cell 

subpopulations.

Pseudocode for high-resolution expression purification.—Given these 

foundational assumptions along with a mixture GEP matrix M and cell type fractional 

abundance matrix F, we developed a heuristic algorithm for high-resolution purification. An 

overview of this heuristic is outlined in the text below, with a corresponding graphical 
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summary in Supplementary Figure 7 and additional algorithmic details provided in 

Supplementary Note 1:

1. For a given gene i, estimate whether the gene is significantly expressed by at 

least one cell type (Supplementary Fig. 7c, step 1). If so, proceed to step 2. If 

not, proceed to the next gene.

2. Sort the gene’s corresponding bulk mixture vector Mi,• into ascending order 

(Supplementary Fig. 7c, step 2). Any cell type-specific DEGs with detectable 

signal in Mi,• will influence this ordering, and the most prominent DEGs are 

likely to skew to one side of the distribution (e.g., Supplementary Fig. 8b).

3. Split the vector into two groups using a sliding window strategy (Supplementary 

Figure 7c, step 3). For each group, impute cell type-specific gene expression 

coefficients for c cell types (denoted g1 for group 1 and g2 for group 2) 

(Supplementary Figure 7c, step 3, left). Find the g1, g2 pair that best explains 

Mi,• (Supplementary Figure 7c, step 3, right).

4. Perform significance testing to determine whether the gene is statistically 

different between g1 and g2 for each cell type (Supplementary Figure 7c, step 4).

5. Refine estimates of g1 and g2 based on the significance of their differential 

expression (Supplementary Figure 7c, step 5).

6. Impute smooth expression values for each cell type using a sliding window 

strategy, and store as matrix Ĝ (Supplementary Figure 7c, step 6).

7. Adjust smooth expression vectors in Ĝ to maximize their agreement with g1 and 

g2 (Supplementary Figure 7c, step 7).

8. Restore the original sample ordering of Ĝ (based on sample ordering in step 2; 

Supplementary Figure 7c, step 8).

9. Repeat steps 1 through 8 for all genes.

Within this framework, cell type-specific gene expression vectors are imputed using NNLS 

(detailed in Supplementary Note 1). In order to capture variation in expression across Mi,•, 

Equation 2 is iteratively solved on subsets of mixture samples grouped by similar expression 

values. The size of each subset is governed by a sliding window of length w. In order to 

satisfy NNLS constraints and to avoid overlapping phenotypic classes, w is bounded by the 

interval c < w ≤ (k/2), where c denotes the number of cell types and k denotes the number of 

samples. We observed favorable performance of this approach across a broad range of w 
values. Nevertheless, given the marginal gains observed with increasingly large w values 

within our saturation analysis of group-mode expression purification (Fig. 3e, 

Supplementary Fig. 6), we set w to 4–5 fold greater than c, which balances performance 

with practical considerations based on our empirical observations. To address potential 

instability in the linear system and to infer expression coefficients with robust standard 

errors and confidence intervals, NNLS is run using bootstrapping. Additional details are 

provided in Supplementary Note 1.
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Cross-platform deconvolution.

While several prior studies have applied CIBERSORT to RNA-seq, including to reference 

phenotypes derived from single-cell transcriptome profiling11,14, our original description of 

CIBERSORT did not explicitly handle technical variation between the signature matrix and 

bulk mixture profiles. To the best of our knowledge, there is no previously described 

approach that can be applied to eliminate technical variation between mixture sample 

expression profiles (denoted M) and a signature matrix comprised of cell type reference 

profiles (denoted B) while preserving biological signal. This is because, unlike technical 

batches of the same sample type, both biological differences and technical batches are 

inherently conflated in the setting of deconvolution. Since previous techniques for 

addressing technical dropout and cross-platform normalization in bulk GEP and scRNA-seq 

data are not directly applicable to this problem57,58,78,79, we developed a novel approach for 

cross-platform deconvolution (Supplementary Fig. 1). By exploiting the fact that M can be 

modeled as a linear combination of B, and by estimating M from B (denoted M*), batch 

correction can be directly applied to M and M*. Our approach comprises two distinct 

strategies (B-mode and S-mode) to apply gene expression deconvolution across distinct 

platforms and tissue storage types (e.g., fresh/frozen versus FFPE). A decision tree to guide 

users in selecting the most appropriate strategy is provided in Supplementary Figure 1a. A 

comprehensive description of our approach is provided in Supplementary Note 1.

B-mode.—Bulk-mode batch correction (i.e., B-mode) removes technical differences 

between a signature matrix derived from bulk sorted reference profiles (e.g., bulk RNA-seq 

or microarrays) and an input set of mixture samples (Supplementary Fig. 1c). The technique 

can also be applied to signature matrices derived from scRNA-seq platforms, provided that 

transcripts are measured analogously to bulk mixture GEPs (e.g., full-length transcripts 

without UMIs profiled by SMART-Seq2). Given a set of mixture samples M, the approach 

creates a series of estimated mixture samples M*, where the latter consists of a linear 

combination of imputed cell type proportions in M along with the corresponding signature 

matrix profiles (in non-log linear space). Although the strategy is general and can flexibly 

accommodate different deconvolution and batch correction methods, we used ComBat79 (an 

empirical Bayesian method) to eliminate technical variation between M and M* after log2-

adjustment. Once cross-platform variation has been minimized, cell proportions are re-

estimated using the adjusted mixture samples in non-log linear space. In addition to cell type 

enumeration, this approach can also be applied to cell type-specific gene expression 

purification, allowing for down-weighting of genes whose expression levels are low or 

absent from the collection of cell types in the signature matrix. An absolute minimum of 3 

mixture samples is required to perform the batch correction procedure, though at least 10 is 

recommended. We found that application of this strategy to LM22, a microarray-derived 

signature matrix, results in improved deconvolution performance across multiple datasets 

and platforms (Supplementary Fig. 2d).

S-mode.—Despite the benefits of the above technique, deconvolution may fail when 

excessive technical variation is present (e.g., when cell types that are expected to be present 

are observed to “drop out” in bulk GEP samples after deconvolution). In this study, we 

observed this phenomenon when using signature matrices derived from 10x Chromium 
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without batch correction (Fig. 2b, Supplementary Fig. 1d,k). This discrepancy was not 

surprising given the major differences in transcriptome representation between UMI-based 

and 3’/5’-biased methods, such as 10x Chromium, and those that capture full transcripts 

without UMIs, such as SMART-Seq2 (Figure S3E in Ziegenhain et al.16). Because B-mode 

requires an initial round of fractional abundance estimates prior to normalization, it 

inherently cannot address cellular dropout and is insufficient to overcome excessive variation 

(Supplementary Fig. 1d). We therefore developed a second strategy for single-cell batch 

correction (i.e., S-mode), tailored for signature matrices derived from droplet-based or UMI-

based scRNA-seq techniques, including 10x Chromium, but also applicable to other 

challenging datasets (Supplementary Fig. 1b).

Like B-mode, the primary objective of S-mode is to obtain cell frequencies from a set of 

mixture GEPs, while minimizing technical variation. However, unlike B-mode, S-mode 

directly adjusts the signature matrix, rather than the mixture matrix. We found this strategy 

to deliver superior performance on datasets with considerable technical variation (e.g., 

Supplementary Fig. 1d). Details of S-mode are provided in Supplementary Note 1 and 

validation data are shown in Supplementary Fig. 2a-c.

Software implementation and website.

Similar to its predecessor, CIBERSORTx was developed within a web framework with its 

back-end based on R and PHP and hosted at http://cibersortx.stanford.edu. This web 

framework minimizes inherent dependencies on specific hardware, software packages and 

libraries, and file-system attributes. Users are presented with a detailed guide employing 

several step-by-step Tutorials, and allowing the recreation of key figures in this work, 

including for each step depicted in Figure 1. Through this interface, CIBERSORTx allows 

users to process gene expression data representing a bulk admixture of different cell types, 

along with (1) a signature gene file that enumerates the genes defining the expression profile 

for each cell type of interest. For the latter, users can either use existing/curated signature 

matrices for reference cell types, or can create custom signature gene files by providing the 

reference gene expression profiles of pure cell populations. Specifically, to create a custom 

signature gene matrix, users can provide single-cell RNA sequencing data or data from bulk 

sorted samples, along with the phenotypic identities of single cell types or cell populations 

of interest.

Given these input files, CIBERSORTx allows (2) imputation of the fractional representations 

of each cell type present in the mixture, similar to its predecessor. However, unlike 

CIBERSORT, CIBERSORTx now supports deconvolution from bulk RNA-seq data by 

implementing the critical batch correction methods described above. CIBERSORTx also 

allows imputation of GEPs for individual in silico purified cell-types in two distinct modes 

as described above (i.e., (3) group-mode and (4) high-resolution). The resulting imputed cell 

fractions and imputed cell type-specific GEPs are then rendered as heat maps, tables, 

stacked bar plots for visualization and downloading. In addition, customizable t-SNE plots 

are automatically generated for high-resolution purification results.

The interactive CIBERSORTx user interface is powered by the jQuery JavaScript library and 

various open source libraries (including phpMailer, idiorm, blueimp jQuery-File-Upload, 
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DataTables, phpExcel and mPDF), with the graphical user interface of the website powered 

by Twitter Bootstrap 2.3.2 and R Shiny. The site runs on an Apache server on a virtual 

machine and stores user and job data in a MySQL database. However, users have complete 

control over their data and can delete them at will. Each user’s environment includes 

example datasets used for benchmarking, tutorials for the use of CIBERSORTx and 

preparation of input data, and other example files.

Statistical analysis.

Linear concordance between known and predicted cell-type features (i.e., proportions or 

GEPs) was determined by Pearson correlation (r), Spearman correlation (rho), or linear 

regression (R2), as indicated, and a two-sided t test was used to assess whether the result was 

significantly nonzero. Lin’s concordance correlation coefficient (CCC) was determined by 

comparing predicted and expected log2-adjusted expression profiles using the CCC function 

from the R package, DescTools. When data were normally distributed, group comparisons 

were determined using a two-sided t test with unequal variance or a paired t test, as 

appropriate; otherwise, a two-sided Wilcoxon test was applied. Multiple hypothesis testing 

was performed using the Benjamini and Hochberg method unless stated otherwise. Results 

with P < 0.05 were considered significant. Statistical analyses were performed with R and 

Prism v7 (GraphPad Software, Inc.). The investigators were not blinded to allocation during 

experiments and outcome assessment. No sample-size estimates were performed to ensure 

adequate power to detect a pre-specified effect size.

Code availability.

CIBERSORTx v1.0 was used to generate the results in this work and is freely available for 

academic research use at http://cibersortx.stanford.edu.

Data availability.

All expression datasets analyzed in this work, including accession codes, file names, and 

web links (if available), are listed in Supplementary Table 1. Expression data generated in 

this study are available at http://cibersortx.stanford.edu and through the Gene Expression 

Omnibus with accession code GSE127472.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Framework for in silico cell enumeration and purification. A typical CIBERSORTx 

workflow involves a serial approach, in which molecular profiles of cell subsets are first 

obtained from a small collection of tissue samples and then repeatedly used to perform 

systematic analyses of cellular abundance and gene expression signatures from bulk tissue 

transcriptomes. This process involves: (1) transcriptome profiling of single cells or sorted 

cell subpopulations to define a “signature matrix” consisting of barcode genes that can 

discriminate each cell subset of interest in a given tissue type; (2) applying the signature 

matrix to bulk tissue RNA profiles in order to infer cell type proportions and (3) 

representative cell type expression signatures; and (4) purifying multiple transcriptomes for 

each cell type from a cohort of related tissue samples. Using metastatic melanomas as an 

example, Figure 6 illustrates the application of each step.
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Figure 2. 
Bulk tissue deconvolution with single-cell reference profiles. (a) Left: t-SNE projection of 

scRNA-seq data from the peripheral blood of a patient with NSCLC, with six major 

leukocyte populations indicated. Right: Heat map of signature matrix genes distinguishing 

these six subsets. (b) Enumeration of leukocyte frequencies in RNA-seq profiles of whole 

blood (n = 12 healthy adults) using the PBMC signature matrix from panel a, shown before 

and after cross-platform normalization. Performance gains are shown as Pearson correlations 

and assessed for each sample across five cell types quantified by flow cytometry and 

automated complete blood counts (CBCs): B cells, NK cells, CD8 T cells, CD4 T cells, and 

monocytes. Statistical significance was determined using a two-sided Wilcoxon signed-rank 

test. Data are presented as boxplots (n = 12 per group; center line, median; box limits, upper 

and lower quartiles; whiskers, maximum and minimum values). (c) t-SNE projection of 

scRNA-seq data from 23 head and neck squamous cell carcinoma (HNSCC) tumors9 (left) 

and training/validation approach for assessing single-cell deconvolution performance (right). 

(d) Concordance between cell type proportions measured by scRNA-seq and CIBERSORTx 

deconvolution for 20 held-out HNSCC tumors for validation from panel c. All tumor GEPs 

were reconstructed from single-cell data. (e) Analysis of cell subset enumeration across 

diverse signature matrices, tissues, and platforms. Deconvolution was run with batch 

correction (Methods). Ground truth cell proportions were determined by scRNA-seq 

(HNSCC, melanoma) or by flow cytometry and automated hematology leukocyte 

differential counter (blood). Cell subsets within the gray band are significantly concordant 

with ground truth by Pearson correlation (P < 0.05). Signature matrices are provided in 

Supplementary Table 2, with the exception of LM2215. Data are presented as medians ± 

interquartile range. Additional details are provided in Supplementary Note 1. (f) Left: t-SNE 

plot of pancreatic islet subsets from ten human subjects, five of which were profiled by 

scRNA-seq, bulk RNA-seq, and IHC21 (also see Supplementary Fig. 3f-i). Right: 
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Scatterplots depicting concordance between the frequencies of four major islet subsets 

quantitated by IHC versus scRNA-seq (top) and CIBERSORTx deconvolution of bulk RNA-

seq (bottom), as determined by linear regression. The significance of the result was assessed 

by a two-sided t test. Cell subset abbreviations: Mono, monocytes; Macs, macrophages; 

DCs, dendritic cells; Mast, mast cells; CAFs, cancer-associated fibroblasts; Endo, 

endothelial cells; Myo, myocytes.
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Figure 3. 
Purification of representative cell type-specific transcriptome profiles from a group of 

specimens. (a) Approach for in silico purification and validation of group-mode cell type-

specific GEPs. (b) Scatterplots comparing genome-wide expression profiles of 

mathematically purified (x-axis) and FACS-purified (y-axis) B cells and CD8 T cells from 

FL lymph nodes. (c) Scatterplots showing the predicted expression level of each gene in 

panel b (y-axis) as a function of its uncertainty, as captured by the geometric coefficient of 

variation (c.v.) (x-axis). (d) Same as b, but after applying an adaptive noise filter based on 

the transcriptome-wide distribution of c.v. values for each cell type. Concordance in b,d was 

determined by applying Pearson correlation (r), Spearman correlation (ρ), and linear 

regression (diagonal line) to genes with detectable expression on both platforms. (e) 

Analysis of the impact of sample size on group-mode gene expression purification for three 

FL tumor cell subsets, as assessed by Spearman correlation against corresponding FACS-

purified GEPs (“ground truth”) in log2 space. For each sample size, tumors were subsampled 

without replacement from a larger cohort (n = 302) 10 times, and the results are shown with 

and without adaptive noise filtration. Data are presented as boxplots (center line, median; 

box limits, upper and lower quartiles; whiskers, 1.5x interquartile range; points, outliers). (f) 
Heat map comparing imputed and ground truth expression profiles for three FL immune 

subsets, with LM22 genes as rows and immune cell types as columns. Genes that were not 

predicted to be expressed or that were removed by adaptive noise filtration are colored navy 

blue. (g) Same as f, but for immune (CD45+), epithelial/cancer (EpCAM+), and stromal 
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(CD10+ or CD31+) subpopulations imputed from bulk RNA-seq profiles of 26 NSCLC 

tumors. Ground truth GEPs (y-axis) were obtained from FACS-purified populations.
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Figure 4. 
High-resolution purification of cell type-specific expression from synthetic mixtures. (a) 

Schematic illustrating a hypothetical example of unobserved (left) and observed (right) 

expression data for a series of four randomly admixed immune subsets, each with one or two 

sets of ground truth DEGs (indicated by colored block-like patterns). (b) Results of in silico 
purification applied to the bulk tissue expression matrix in panel a. (c) t-SNE representation 

of purified expression matrices in b (n = 400 samples), performed separately for each cell 

type and color-coded by the class corresponding to each block pattern in b (red = leftmost 

block, blue = rightmost block). (d) Left: Synthetic GEP matrix of four randomly admixed 

immune subsets, one of which contains DEGs in the shape of a bullseye (monocytes). Right: 
Results of in silico purification. (e) Analysis of the sensitivity and specificity of DEG 

recovery in synthetic mixtures (n = 50) across 30 conditions (six CD8 T cell proportions and 

five DEG fold changes) when sample classes are known. Left: DEGs with a given fold 

change were added into the reference profile of CD8 T cells, which were spiked at a 

predetermined proportion into random mixtures of three other immune subsets. A colon 

cancer cell line GEP was added into each mixture to simulate ~50% unknown content. After 

in silico purification, known CD8 T cell DEGs were assessed in each purified cell type by 

ranking genes by fold change with respect to known DEG classes. The area under the curve 

(AUC) for DEG recovery was calculated for each combination of fold change and cell type 

spike-in fraction, and shown as a heat map. Data in panels a-b,d were log2 adjusted and 

median-centered for each gene prior to rendering the heat maps.
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Figure 5. 
High-resolution expression profiling of bulk tumor biopsies. (a–c) Analysis of CREBBP 
mutation-associated expression changes in B cells from follicular lymphoma (FL) tumors. 

(a) Schema outlining the application of high-resolution purification to identify CREBBP 
mutation-associated DEGs in follicular lymphoma B cells. (b) Heat map confirming loss of 

MHC class II expression in CREBBP-mutant FL B cell GEPs inferred by CIBERSORTx. 

Expression values were median-centered prior to plotting. (c) Analysis of published gene 

sets29 associated with lower (left) or higher (right) B cell expression in CREBBP-mutant FL 

tumors. Scatter plots show the corresponding log2 expression of each gene in digitally sorted 

B cell GEPs, after median centering and averaging by CREBBP mutation status. Group 

comparisons in b and c were assessed by a two-sided Wilcoxon signed-rank test. Data are 

presented as means ± s.d. WT, wildtype (n = 10); MT, mutant (n = 14). (d–f) High-

resolution expression profiling of tumor cell subpopulations from non-small cell lung cancer 

(NSCLC) tumors. (d) Schema for profiling and validating expression signatures of epithelial 

and cancer cells (Epith., EpCAM+), immune cells (Imm., CD45+), fibroblasts (Fib., CD10+), 

and endothelial cells (Endo., CD31+) in 1,022 NSCLC tumor and 110 adjacent normal GEPs 

from TCGA. (e) Left: tSNE plots showing population-specific transcriptional diversity 

imputed from 1,132 bulk NSCLC GEPs, color-coded to denote tumor histological subtype 

(LUAD vs. LUSC) and adjacent normal tissues. Plots were created with perplexity set to 10. 

Right: PCA plots of 21 GEPs from corresponding FACS-purified populations, color-coded 

by tumor histological subtype. Histological differences are highlighted by ovals. (f) Heat 

maps showing DEGs identified in epithelial/cancer, immune, and fibroblast populations 
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identified in NSCLC tumors from TCGA (left, n = 1,022 tumor samples) and RNA-seq 

profiles of corresponding FACS-purified populations from 21 NSCLC patients with LUAD 

or LUSC (right; Supplementary Table 1). The same genes are shown in both heat maps and 

are ordered identically. For clarity, a maximum of 300 over- and under-expressed genes are 

shown for each cell type (all DEGs are provided in Supplementary Table 4). Median 

centering was applied to each cell population separately. To quantify DEG concordance 

between CIBERSORTx and the bulk-sorted validation profiles in panel f, we used a Monte 

Carlo strategy described in Supplementary Note 1. LUAD, lung adenocarcinoma; LUSC, 

lung squamous cell carcinoma.
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Figure 6. 
Cellular signatures of melanoma driver mutation status and immunotherapy response. (a,b) 

High-resolution expression profiling of mutation-associated phenotypic states in distinct 

tumor cell types. (a) Top: tSNE plot showing 8 major tumor subpopulations profiled from 19 

melanomas by scRNA-seq10. Bottom: schema for characterizing and validating context-

dependent expression variation in 342 bulk melanoma tumors from TCGA. (b) Heat maps 

depicting cell type-specific DEGs identified by CIBERSORTx that are associated with 

BRAF or NRAS driver mutations in melanoma. Expression values were averaged across 

TCGA tumor samples (CIBERSORTx, left) and single-cell GEPs (scRNA-seq, right) for 

clarity. Underlying data are provided in Supplementary Fig. 16 and Supplementary Table 4. 

Only cell types with DEGs detected by CIBERSORTx and with available single-cell 

validation data are shown. For clarity, a maximum of 300 over- and under-expressed genes 

are shown for each cell type. CAFs, cancer associated fibroblasts; MT, mutant; WT, 

wildtype. (c) Left: Heat map showing the absolute difference in gene expression, expressed 

as ranks, between a normal CD8 T cell reference profile61 and the following three melanoma 

CD8 TIL GEPs: ‘Imputed (FF)’, a group-mode CD8 TIL GEP imputed from 473 bulk RNA-

seq profiles of fresh/frozen (FF) tumors generated by TCGA44; ‘Imputed (FFPE)’, a group-

mode CD8 TIL profile predicted from 42 FFPE tumors50; ‘scRNA-seq’, a representative 

CD8 TIL profile derived from aggregated single-cell data of 19 melanoma patients10. The 

heat map is ordered by the difference in ranks between the “Imputed (FF)” vector and the 
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normal CD8 T cell GEP. All imputed profiles were processed by adaptive noise filtration. 

Genes predicted in the FF but not FFPE cohorts (owing to noise filtration) are colored gray 

in the latter. Selected T cell exhaustion genes are indicated. Right: Gene set enrichment 

analysis (GSEA)62 of a previously published melanoma CD8 TIL-associated gene set49, 

assessed relative to the ordering of genes in the heat map. (d) Framework for characterizing 

the clinical relevance of PDCD1+CTLA4+ CD8 T cells in bulk melanoma tumors using 

single-cell reference profiles. (e) Estimated levels of PDCD1+CTLA4+ CD8 T cells in bulk 

tumor expression profiles from melanoma patients who received immunotherapy, stratified 

by clinical response. VA, Van Allen and colleagues50 (n = 37); N, Nathanson and 

colleagues55 (n = 24); C, Chen and colleagues20 (n = 26). Statistical comparisons were 

performed using a two-sided Mann-Whitney test. Data are expressed as boxplots (center 

line, median; box limits, upper and lower quartiles; whiskers, maximum and minimum 

values). (f) Kaplan-Meier plot showing differences in overall survival between melanoma 

patients with high and low estimated levels of PDCD1+CTLA4+ CD8 T cells in biopsies 

preceding immune checkpoint blockade (pre-treatment). Patients were split by the median 

estimated fractional abundance of PDCD1+CTLA4+ CD8 T cells into high and low groups, 

and subsequently pooled across two studies with available overall survival data50,55. 

Statistical significance was calculated by a two-sided log-rank test. HR, hazard ratio. 95% 

HR confidence intervals are shown in brackets.
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