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Abstract: A binder-free process for the electrode preparation for supercapacitor application was
suggested by drop casting graphene nanoplatelets on a carbon fiber (GnP@CF) followed by
electrodeposition of Ni nanoparticles (NPs). The microstructure of the electrode showed that
Ni was homogeneously distributed over the surface of the GnP@CF. XRD analysis confirmed the
cubic structure of metallic Ni NPs. The Ni-GnP@CF electrode showed excellent pseudocapacitive
behavior in alkaline solution by exhibiting a specific capacitance of 480 F/g at 1.0 A/g, while it was
375 F/g for Ni@CF. The low value of series resistance of Ni-GnP@CF (1 Ω) was attributed to the high
capacitance. The enhanced capacitance of the electrode could be correlated to the highly nanoporous
structure of the composite material, synergetic effect of the electrical double layer charge-storage
properties of graphene, and the pseudocapacitive nature of Ni NPs.

Keywords: graphene; nickel; electrochemical synthesis; electrochemical capacitor

1. Introduction

The supercapacitor (SC) is well-known and promising for energy storage devices because of its
high power density, extensive life cycles, and easy fabrication and maintenance [1–4]. SCs are mainly
classified according to the charge storage mechanism; electrochemical double layer capacitors (EDLCs)
stores the energy by non-Faradic process by the accumulation of the charges at the electrode–electrolyte
interface, while it is done by Faradic process for the pseudo capacitor (a reduction-oxidation based
capacitor) as in batteries [5,6].

Generally, carbonaceous materials, such as activated carbon, single and multiwalled carbon
nanotubes, and graphene, are used as electrode materials in double-layer capacitors [7–11]. Graphene is
a carbonaceous material with numerous exclusive features, such as 2D plane structure united with
one-atom thickness and extraordinary physiochemical properties. Graphene has inspired exploration
in energy material applications, owing to its high surface area, mechanical strength, and electrical
conductivity [1,8,12,13]. The overall performance of SC based on carbon materials is quite low due to
the limited charge-storage capacity.

Polymers 2020, 12, 1666; doi:10.3390/polym12081666 www.mdpi.com/journal/polymers

http://www.mdpi.com/journal/polymers
http://www.mdpi.com
https://orcid.org/0000-0001-8966-0336
http://dx.doi.org/10.3390/polym12081666
http://www.mdpi.com/journal/polymers
https://www.mdpi.com/2073-4360/12/8/1666?type=check_update&version=2


Polymers 2020, 12, 1666 2 of 11

Meanwhile, pseudocapacitive materials, such as transition metals and metal oxides, and
functionalized or doped graphene, have been studied for use in SCs owing to their larger
specific capacitance and higher energy density compared to pristine carbon-based materials [14].
Among various metals and metal oxides, earth-abundant and cost-effective nickel-based nanomaterials
have been used widely for energy storage applications due to the high theoretical specific capacitance,
electrical conductivity, specific surface area, and variable oxidation state [15–22].

Graphene-nickel based nanostructures, such as graphene-Ni(OH)2 and graphene-NiO, were
studied in depth for hybrid SC applications [16]. Further, these nanostructures have several potential
applications in the field of catalysis, nanoelectronics, sensors, photovoltaics, energy, and healthcare [23].
However, very few reports are available on the graphene-Ni NPs composites for electrochemical SCs
applications [24,25]. Ni NPs based electrocatalysts are the most promising, due to its remarkable
reversible redox reaction of Ni(OH)2/NiOOH in alkaline solution. The combination of Ni with
highly conductive graphene could boost their electrochemical performance by enhancing the electron
transfer between active materials [26,27]. However, these composites were generally prepared by a
mechanical mixing process, and it often resulted in a poor adhesion of active materials on the electrode
surface. In addition, the post-treatment of the catalyst requires the use of non-conducting polymer
binders, which reduces the electrical conductivity of the electrode and it induces the decrease of
electrocatalytic activity eventually. It is well known that graphene has relatively poor adherence
to substrate, and therefore, it is crucial to develop alternative techniques to increase the stability of
graphene and its composites without scarifying the electrical conductivity and electrocatalytic activity.

In the present study, we demonstrated a binder-free process to fabricate Ni-GnP@CF electrode by
a simple drop coating of GnP on the CF followed by electrochemical deposition of Ni. The Ni-GnP@CF
electrode showed superior electrochemical capacitance of 480 F/g, which was almost two times
higher compared to that of the previous reports with nickel-graphene composite electrodes [24,25]. It
could be attributed to the highly nanoporous structure, fast reversible redox reaction at Ni surface,
strong interconnection between composite material, and synergetic effect of GnP and Ni NPs in
the composite.

2. Materials and Methods

2.1. Materials and Reagents

Nickel (II) sulfate hexahydrate (Ni2SO4(H2O)6) and boric acid (BH3O3) were purchased from
Sigma Aldrich, Seoul, Korea. Sodium sulfate (Na2SO4) and potassium hydroxide were procured from
Daejung chemicals, Gyeonggi-do, Korea. Graphene nanoplatelets (GnP) were purchased from XG
science, Inc. (Lansing, MI, USA). Graphene nanoplatelets xGnP® 750 grade C had a surface area of
750 m2/g. Carbon fiber sheets were obtained from NARA Cell-Tech Corporation, Seoul, Korea.

2.2. Apparatus

Electrochemical measurements were performed with an electrochemical analyzer instrument
model versa stat 3 using a CF as working electrode, platinum metal foil as counter electrode, and an
Ag/AgCl (Sat. KCl) electrode as a reference electrode. Cyclic voltammetry (CV), galvanostatic
discharge-charge (GCD) and electrochemical impedance spectroscopy (EIS) were measured using
5 M KOH aqueous solution at room temperature. The specific capacitance value (Cs) of Ni@CF for
GCD study was estimated using the equation Cs = I × ∆t/m∆v, where I is the applied current
density of charge/discharge, t is the time of discharge, ∆v is potential different, and m is the mass of
active materials on the CF electrode. The active mass was about 0.0008 and 0.0011 g for Ni@CF and
Ni-GnP@CF, respectively. The prepared electrodes were characterized by X-ray diffractometer with Cu
Kα (λ = 0.15406 nm). The average crystallite size was obtained from the (1 1 1) reflection of nickel
at 44.46◦ using the Debye–Scherer formula: D = (0.94λ)/(β × Cosθ), where λ is the wavelength of
incident X-rays, β is the full width at half maximum, and θ is the angle obtained from 2θ value of
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the most intense peak of Ni. The morphology of the electrode was examined by a field emission
scanning electron microscope (JSM 7100 JEOL Ltd., Tokyo, Japan) and transmission electron microscopy
(JEM-3010 (JEOL Ltd., Tokyo, Japan). The Ni-GnP@CF electrode was scratched and transferred to
the copper grid for TEM analysis. Raman spectra were measured on a Micro Raman spectrometer
(Nanofinder 30, Tokyo Instruments Inc., Tokyo, Japan) using a laser operating at a wavelength of
approximately 532 nm. The X-ray photoelectron spectroscopy (XPS) measurements were performed
using a PHI 5000 versa probe spectrometer with monochromatic Al Kα radiation (hν = 1253.6 eV,
Kanagawa, Japan).

2.3. Fabrication of Ni@CF and Ni-GnP@CF Electrode

A simple drop coating technique was applied for the preparation of GnP@CF. For this, CF was drop
coated with commercially available graphene XG-750C dispersed in isopropanol (100 µL, 1 mg/mL)
and dried in air, then at 70 ◦C for 30 min in an electric oven. The electrochemical deposition of Ni
NPs on the CF and GnP@CF was performed in an electrolyte, including 0.05 M Ni2SO4(H2O)6, 0.05 M
Na2SO4, and 0.05 M BH3O3. A potential of −1.0 V vs. Ag/AgCl (Sat. KCl) was applied to a working
CF electrode for 1500 s. Nitrogen gas was bubbled in the solution for 30 min prior to the deposition of
Ni on CF. Then, the electrode was washed with distilled water and dried at 80 ◦C for 30 min in an
electric oven. The schematic diagram of the experiment is displayed in Figure 1.
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Figure 1. Schematic for fabrication of Ni-GnP@CF.

3. Results and Discussion

Figure 2 shows FESEM images of CF, GnP@CF, Ni@CF, and Ni-GnP@CF electrode. The surface
of pristine CF was smooth, as shown in Figure 2a. Figure 2b indicates the uniform anchoring of
GnP over the CF. Figure 2c and Figure S1 shows EFSEM images of Ni NPs deposited on CF by
electrochemical method with different magnifications. FESEM shows well decorated spheres like
the structure of Ni NPs on the CF and GnP@CF electrode (Figure 2c–d). Energy-dispersive X-ray
spectroscopy (EDS) mappings were carried to additionally examine the nature of the Ni@CF and
Ni-GnP@CF electrodes. Figure 2e–h displays the elemental mapping and EDS spectra of nickel,
carbon, and oxygen of Ni-GnP@CF electrodes, respectively. Similarly, the elemental mapping and EDS
spectra of Ni@CF is shown in Figure S1. These elemental maps demonstrate that the graphene was
well-covered by the Ni NPs, which is also consistent with the FESEM and TEM results [28].
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Figure 2. FESEM image of CF (a), GnP@CF (b), Ni@CF (c) Ni-GnP@CF (d); EDS mapping (e–g), EDS
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The TEM images and selected area electron diffraction (SAED) pattern of the Ni-GnP@CF sample
is depicted in Figure 2i–k, respectively. The Ni NPs are uniform in size of about 25 nm with a globular
shape. These NPs were well decorated on the surface of the graphene sheet. The SAED pattern of the
Ni-GnP@CF sample was composed of bright dots as well as rings (Figure 2k). The diffraction ring
pattern confirms the polycrystalline nature of the Ni NPs.

Figure 3a and Figure S2 shows XRD patterns of CF, Ni@CF, and Ni-GnP@CF. The XRD peaks of
Ni-GnP@CF were indexed with cubic metallic Ni [JCPDS 01-070-1849] and graphitic carbon from CF.
The XRD peaks at ≈44.46◦, 51.82◦, and 76.54◦ correlated with the characteristic planes, such as (1 1 1),
(2 0 0), and (2 2 0), respectively, of cubic metallic nickel [29]. The most intense peak of graphitic carbon
from CF at about 26.38◦ was interestingly suppressed with the deposition of Ni on CF, and further,
intensity decreased for Ni-GnP@CF (Figure S2). The XRD peak at 26.38◦ and 54.52◦ matches with the
standard XRD peaks of graphite (JCPDS 01-075-2078); its intensity was gradually suppressed with
the incorporation of Ni NPs. The decrease in the intensity of the XRD peak for graphitic carbon with
Ni loading demonstrates the distribution of Ni on the surface of the Supporting Material. The XRD
peaks for oxides of nickel with diverse phases were not observed [29]. The average crystallite size was
estimated by the Debye–Scherer formula [30]. The average crystallite sizes of Ni NPs were about 38
and 32 nm for Ni@CF and Ni-GnP@CF, respectively. The existence of GnP might be favorable for the
formation of small crystallites of Ni on the Ni-GnP@CF by increasing electrical conductivity of the
electrode and providing higher surface area.
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Figure 3b shows the Raman spectra of Ni@CF and Ni-GnP@CF. The peak located at 472.9 cm−1

was detected for Ni@CF and Ni-GnP@CF, indicating that the Ni was well bonded with the GnP. These
results are consistent with previous reports [31,32]. The Raman spectrum of Ni-GnP@CF exhibits the
combination of the characteristic peaks of Ni and GnP. The D band (1342.6 cm−1) is attributed to the
edge or in-plane sp3 defects, as well as disordered carbon; while the G band (1575.6 cm−1) is attributed
to the in-plane vibration of ordered sp2-bonded carbon atoms [33]. The intensity ratio, ID/IG, has a
high value of about 1.04, which reveals the high quality of GnP [7].

The chemical compositions of the Ni@CF and Ni-GnP@CF were studied using XPS in the range of
0–1200 eV. The survey spectra of both samples are shown in Figure 3c. The C1s spectrum of Ni@CF
shows only one peak at 286.19 eV, confirming the bond between Ni and CF; while the two peaks
observed for Ni-GnP@CF at 285.33 and 287.21 eV can be assigned to carbon atoms in C–O and C=O,
respectively (Figure 3d) [28]. Figure 3e shows the characteristic core level. The two main peaks at
874.35 and 856.66 eV in Ni2p XPS spectra were assigned to Ni2p1/2 and Ni2p3/2, respectively, with
a spin-energy separation of 17.6 eV for metallic Ni on Ni@CF. Furthermore, satellite peaks (Ni2p1/2,
satellite: 880.24 eV; Ni2p3/2, satellite: 862.25 eV) were also observed, which arise due to the Ni(OH)2
phase. [34,35]. Similarly, for Ni-GnP@CF, the peaks at 874.41 and 856.74 eV were assigned to Ni2p1/2
and Ni2p3/2, respectively. Further, the characteristic core level peaks of nickel Ni2p3/2 and Ni2p1/2 at
852.81 and 870.04 eV, respectively, corresponds to Ni0 [36]. The satellite peaks were generally located at
≈6 eV, followed by the main 2p peaks for metallic nickel. The absence of any doublet peak around 854
eV indicates the absence of nickel oxide (NiO) [37]. Here, two O1s components for Ni@CF (Figure 3f)
at 531.42 and 532.84 eV could be assigned to the existence of surface hydroxyl groups and chemically
or physically adsorbed water, respectively [38]. Similarly, for Ni-GnP@CF, the O1s core level peaks at
529.76, 531.55, and 532.91 eV correspond to the C=O group, surface hydroxyl groups, and chemically
or physically adsorbed water, respectively [7,17,39].
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Electrochemical Behavior

The CV of CF, GnP@CF, Ni@CF, and Ni-GnP@CF were measured at 50 mV/s in 5 M KOH to
investigate electrochemical behavior of each material (Figure 4a). The Ni@CF and Ni-GnP@CF showed
very strong reversible redox peaks compared with CF and GnP@CF due to the three-dimensional
deposition of Ni NPs and faradaic transformations of Ni2+/Ni3+. CV of the CF and GnP@CF showed a
rectangular shape without any redox peak, which is characteristics of electrical double layer capacitance
(EDLC) behavior of GnP. The shape of CV for Ni@CF and Ni-GnP@CF are obviously different from
those of CF and GnP@CF due to the strong reduction and oxidation reactions.
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Figure 4. (a) Cyclic voltammogram of CF, GnP@CF, Ni@CF, and Ni-GnP@CF at 50 mV/s in 5 M KOH;
(b) GCD curve of GnP@CF, Ni@CF, and Ni-GnP@CF at 1.0 A/g in 5 M KOH, inset magnified image of
GnP@CF; (c) CV of Ni@CF; (d) CV of Ni@GCCF in 5 M KOH; (e) specific capacitance vs. scan rate
for Ni@CF and Ni-GnP@CF; (f) GCD for Ni@CF and Ni-GnP@CF; (g) specific capacitance vs. current
density for Ni@CF and Ni-GnP@CF; (h) Nyquist plots of Ni@CF and Ni-GnP@CF electrodes; and
(i) cycling stability of Ni@CF and Ni-GnP@CF at 5.0 A/g.

Figure 4c–d showed the CV curves of the Ni@CF and Ni-GnP@CF electrodes at different scan
rates, which demonstrate the behavior of current density values with scan rates. The peak potential
of Ni-GnP@CF shifts negatively compared to Ni@CF, revealing enhancement in the electrochemical
kinetic Ni NPs in presence of GnP. Additionally, the plot for peak current density vs. square root of
scan rates are shown in Figure S3. The cathodic and anodic peak currents are linearly proportional to
the square root of the scan rates, which indicates the kinetics of the electrochemical reaction of the
electrodes [40].

The nature of redox peaks in the CV curves and increase in redox peaks with increasing scan
rate, reveals that the specific capacitance of the Ni-GnP@CF electrode was mainly attributed to
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pseudocapacitive behavior, depending on the reversible faradaic transitions of Ni2+/Ni3+ [28,41].
The anodic peak at about 0.45 V (vs. Ag/AgCl) was due to the oxidation of a few monolayers of
surface Ni(OH)2 to NiOOH, whereas the cathodic peak at 0.18 V (vs. Ag/AgCl) results from the
reverse reduction process [28,42]. This indicates the pseudocapacitance performance of the prepared
electrode [26]. For the Ni@CF electrode, faradaic reactions at the surface are represented as follows:

It is well known that the area under CV was related to the capacitance of material [26]. The area
under CV of Ni-GnP@CF was larger than that of Ni@CF, confirming that Ni-GnP@CF had higher
capacitance. The specific capacitance values of the Ni@CF and Ni-GnP@CF from CV are depicted in
the Figure 4e. The maximum specific capacitance of Ni@CF and Ni-GnP@CF was 379 and 498 F/g for
the scan rate of 10 mV/s, respectively.

Ni(OH)2 + OH− ↔ NiOOH + H2O + e− (1)

The GCD for GnP@CF, Ni@CF, and Ni-GnP@CF at 1.0 A/g in 5 M KOH is shown in Figure 4b.
The GCD of Ni@CF and Ni-GnP@CF exhibit a plateau at 0.25–0.35 V, which is characteristic of pseudo
capacitive nature. This demonstrated that the Ni-GnP@CF electrode had a high capability for SC
application. The enhanced electrochemical performance can be attributed to the interaction between
Ni and GnP because of EDLC from GnP and the pseudo capacitance arising from Ni sites [25]. It is
well-known that the behavior of nickel-based materials in an alkaline condition has been discussed in
previous reports [15,41]. Graphene with high conductivity and high surface area stores the charge
via the formation of the Helmholtz layer, while the Ni NPs exhibits a fast-faradaic reaction during
charge-storage. Therefore, the composite materials showed significantly higher capacitive performance,
compared with the individual components.

The electrochemical SC properties of Ni@CF and Ni-GnP@CF electrodes were studied by GCD
measurements with 5 M KOH aqueous solution in the potential range of 0–0.5 V vs. Ag/AgCl electrode.
Figure 4f shows the GCD plots of Ni@CF and Ni-GnP@CF at 0.5, 1.0, 2.0, 3.0, and 5.0 A/g. The charging
time and discharging time are nearly identical, suggesting a high reversibility of the faradaic reaction
occurring on the Ni surface [15]. The charging time and discharging time of Ni-GnP@CF electrode for
each cycle was almost double than that of the Ni@CF electrode, showing that the porous nature of
the material and strong interconnection with support can improve the capacitance performance of
Ni-GnP@CF electrode [15].

The estimated specific capacitance of the Ni@CF was 397, 375, 355, 322, 325 F/g, while for
Ni-GnP@CF it was about 491, 480, 524, 518, 500 F/g, at 0.5, 1.0, 2.0, 3.0, and 5.0 A/g, respectively
(Figure 4g). The specific capacitance of Ni-GnP@CF increased after the current density of 1 A/g due
to the higher ionic penetration in the electrode surface compared to low current rate. The higher
capacitance can be attributed to the existence of graphene and its interconnection with Ni without binder,
which was confirmed from Raman analysis. The confinement of graphene increased conductivity and
allowed dispersion of Ni NPs on its surface. These results demonstrate that Ni-GnP composites can act
as a decent electroactive material for SC application, and our results are comparable with previously
reported literature (Table 1).

Figure 4h presents the Nyquist plot of the electrodes, measured in the frequency range of 100 kHz
to 0.01 Hz, with an AC excitation signal of 4 mV. The almost straight line at small frequency ranges
demonstrates lower diffusion resistance of the Ni-GnP@CF than the Ni@CF electrode. This may be due
to highly nanoporous structures formed with graphene sheets and Ni NPs, which offers large surface
area for the easy diffusion of electrolyte ions [26]. The equivalence series resistance of Ni-GnP@CF
and Ni@CF electrodes were 1 and 1.34 Ω, respectively. The lower series resistance of Ni-GnP@CF was
attributed to its improved electrochemical capacitance.

The cycling stability was carried out in the potential range of 0–0.5 V for over 1000 cycles (Figure 4i).
The Ni-GnP@CF pseudo capacitor displays better cycling stability, retaining 81% after 1000 cycles.
The rate of capacitance was increased initially at about 100 cycles and reached at maximum value at
about 400 cycles. This is due to the penetration of the electrolyte solution and gradual activation of
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the active material [26,43]. The relative standard deviation of the specific capacitance for 10 pieces of
composite electrodes is about 4.3%. The higher and more stable cycling performance of the Ni-GnP@CF
electrode material is related to the nanoprorous nature of the samples, electrochemical properties
of the materials, and the synergetic effect of GnP and Ni NPs. The SEM images after cycling test
confirms the stability of Ni-GnP@CF (Figure S4). The SEM image of Ni-GnP@CF after use shows
surface passivation of the electrode, which might be attributed to the decreased rate of capacitance
retention. The incorporation of the graphene matrix improved the structural stability upon cycling,
and the electrical properties of Ni were enhanced due to GnP support. Further, synergetic effect
from the electrical double layer capacitance of GnP and pseudo capacitance of Ni nanostructures
also contributed towards enhanced electrochemical performance of Ni-GnP@CF. This reveals that
Ni-GnP@CF electrodes are promising for SC application.

Table 1. Parameters of nickel-graphene based SCs and their electrochemical performance.

Materials Substrate Synthesis Method Capacitance (F/g)
Current
Density
(A/g)

Electrolyte Ref.

PANMA/graphene/NiO GCE Hydrothermal 549 1.0 1 M H2SO4 [44]
Graphene/NiO GCE Hydrothermal-Precipitation 1328 1.0 2 M KOH [7]
Graphene/NiO Ni foam Hydrothermal 342.9 1.0 6 M KOH [15]

RGO–NiO Ni foam Solvothermal 576 1.0 6 M KOH [40]
Nio/graphene aerogel Ni foam Solvothermal 587.3 1.0 6M KOH [45]

NiO-graphene Ni foam Hydrothermal 617 1.0 5 M NaOH [46]
NiO-graphene Ni foam Electrochemical 745 1.4 3 M KOH [12]

NiO/RGO Ni foam Hydrothermal 96 1.0 6 M KOH [26]
NiO@graphene Ni foam Electrophoretic deposition 1258 5.0 6 M KOH [41]

Carbon-supported
NiO Ni foil Precipitation 127 1.0 1 M KOH [17]

Ni-graphene Ti foil Solvothermal-ball milling 275 2.0 1 M KOH [25]
NiO/RGO Ti foil Hydrothermal 590 1.0 1 M KOH [47]

Ni CF Electroless deposition 268 0.2 6 M KOH [24]

Ni-GnP CF Drop
coating-Electrochemical 480 1.0 5 M KOH This

work

4. Conclusions

The Ni-GnP@CF electrode was prepared by facile drop casting of GnP on the CF and the following
electrochemical deposition of Ni NPs on it. The structural and morphological properties of the
composite reveal that Ni NPs, ≈25 nm size, with cubic crystalline structure and without any trace of
nickel oxides are homogeneously distributed on the surface of GnP@CF. The specific capacitance of the
Ni-GnP@CF electrode, estimated from the GCD curves, was about 480 F/g at 1.0 A/g. This superior
performance with excellent cycling stability can be ascribed to the synergistic effect of the electrical
double layer charge-storage properties of graphene, pseudo capacitance nature of nickel, and lower
series resistance of the composite.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4360/12/8/1666/
s1—Figure S1: SEM images with different magnification (a–c), EDS mapping (d–f), and EDS spectrum of Ni@CF
(g); Figure S2: XRD pattern of CF, Ni@CF, and Ni-GnP@CF in the range of 20–80◦; Figure S3: Plot for peak
current density vs. square root of scan rates; and Figure S4: SEM comparison of both electrodes before and after
1000 cycles.
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