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Abstract

Background: Infectious diseases are the second leading cause of death worldwide. In order to better understand
and treat them, an accurate evaluation using multi-modal imaging techniques for anatomical and functional
characterizations is needed. For non-invasive imaging techniques such as computed tomography (CT), magnetic
resonance imaging (MRI), and positron emission tomography (PET), there have been many engineering
improvements that have significantly enhanced the resolution and contrast of the images, but there are still
insufficient computational algorithms available for researchers to use when accurately quantifying imaging data from
anatomical structures and functional biological processes. Since the development of such tools may potentially
translate basic research into the clinic, this study focuses on the development of a quantitative and qualitative image
analysis platform that provides a computational radiology perspective for pulmonary infections in small animal
models. Specifically, we designed (a) a fast and robust automated and semi-automated image analysis platform and a
quantification tool that can facilitate accurate diagnostic measurements of pulmonary lesions as well as volumetric
measurements of anatomical structures, and incorporated (b) an image registration pipeline to our proposed
framework for volumetric comparison of serial scans. This is an important investigational tool for small animal
infectious disease models that can help advance researchers’ understanding of infectious diseases.

Methods: We tested the utility of our proposed methodology by using sequentially acquired CT and PET images of
rabbit, ferret, and mouse models with respiratory infections of Mycobacterium tuberculosis (TB), H1N1 flu virus, and an
aerosolized respiratory pathogen (necrotic TB) for a total of 92, 44, and 24 scans for the respective studies with half of
the scans from CT and the other half from PET. Institutional Administrative Panel on Laboratory Animal Care approvals
were obtained prior to conducting this research. First, the proposed computational framework registered PET and CT
images to provide spatial correspondences between images. Second, the lungs from the CT scans were segmented
using an interactive region growing (IRG) segmentation algorithm with mathematical morphology operations to
avoid false positive (FP) uptake in PET images. Finally, we segmented significant radiotracer uptake from the PET
images in lung regions determined from CT and computed metabolic volumes of the significant uptake. All
segmentation processes were compared with expert radiologists’ delineations (ground truths). Metabolic and gross
volume of lesions were automatically computed with the segmentation processes using PET and CT images, and
percentage changes in those volumes over time were calculated.
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Standardized uptake value (SUV) analysis from PET images was conducted as a complementary quantitative metric for
disease severity assessment. Thus, severity and extent of pulmonary lesions were examined through both PET and CT
images using the aforementioned quantification metrics outputted from the proposed framework.

Results: Each animal study was evaluated within the same subject class, and all steps of the proposed methodology
were evaluated separately. We quantified the accuracy of the proposed algorithm with respect to the state-of-the-art
segmentation algorithms. For evaluation of the segmentation results, dice similarity coefficient (DSC) as an overlap
measure and Haussdorf distance as a shape dissimilarity measure were used. Significant correlations regarding the
estimated lesion volumes were obtained both in CT and PET images with respect to the ground truths
(R2 = 0.8922, p < 0.01 and R2 = 0.8664, p < 0.01, respectively). The segmentation accuracy (DSC (%)) was 93.4 ± 4.5%
for normal lung CT scans and 86.0 ± 7.1% for pathological lung CT scans. Experiments showed excellent agreements
(all above 85%) with expert evaluations for both structural and functional imaging modalities. Apart from quantitative
analysis of each animal, we also qualitatively showed how metabolic volumes were changing over time by examining
serial PET/CT scans. Evaluation of the registration processes was based on precisely defined anatomical landmark
points by expert clinicians. An average of 2.66, 3.93, and 2.52 mm errors was found in rabbit, ferret, and mouse data (all
within the resolution limits), respectively. Quantitative results obtained from the proposed methodology were visually
related to the progress and severity of the pulmonary infections as verified by the participating radiologists. Moreover,
we demonstrated that lesions due to the infections were metabolically active and appeared multi-focal in nature, and
we observed similar patterns in the CT images as well. Consolidation and ground glass opacity were the main
abnormal imaging patterns and consistently appeared in all CT images. We also found that the gross and metabolic
lesion volume percentage follow the same trend as the SUV-based evaluation in the longitudinal analysis.

Conclusions: We explored the feasibility of using PET and CT imaging modalities in three distinct small animal
models for two diverse pulmonary infections. We concluded from the clinical findings, derived from the proposed
computational pipeline, that PET-CT imaging is an invaluable hybrid modality for tracking pulmonary infections
longitudinally in small animals and has great potential to become routinely used in clinics. Our proposed
methodology showed that automated computed-aided lesion detection and quantification of pulmonary infections
in small animal models are efficient and accurate as compared to the clinical standard of manual and semi-automated
approaches. Automated analysis of images in pre-clinical applications can increase the efficiency and quality of
pre-clinical findings that ultimately inform downstream experimental design in human clinical studies; this innovation
will allow researchers and clinicians to more effectively allocate study resources with respect to research demands
without compromising accuracy.

Keywords: Quantitative analysis; Pulmonary infections; Small animal models; PET-CT; Image segmentation; H1N1;
Tuberculosis

Background
There has been significant progress in the use of non-
invasive imaging technologies in human (clinical) and
animal (pre-clinical) research, using positron emission
tomography (PET), computed tomography (CT), and
magnetic resonance imaging (MRI). In addition to being
used in the clinical environment on human patients, such
as for diagnosing and tracking disease, CT and MRI have
been used extensively in small animal research for visu-
alization of normal and abnormal anatomical structures.
On the other hand, PET imaging provides functional
imaging of the biologic processes being studied, such
as for the measurement of the inflammatory response
in the lungs to an infectious disease or for quantify-
ing the severity of a cancerous tumor via the radio-
labeled glucose analog, 18F-fluorodeoxyglucose (FDG)
[1,2]. Recently, the use of PET along with CT and MR

imaging has been an active research area for small ani-
mal studies as well as for human studies, but automated
computer-assisted tools for image analysis in small animal
models are still scarce due to limited resolution, similar
visual appearances between normal and abnormal adja-
cent tissues, and heterogeneous imaging parameters such
as animal positioning, radiotracer dose, and respiratory
motion. In particular, automated quantification of func-
tional imaging data in small animal models has been
very limited.

Much of the small animal model literature has relied
on manual or semi-automated methods for image anal-
ysis with qualitative and/or semi-quantitative measure-
ments [3-10]. In these (mostly manual) approaches,
investigators need to visually select and then manu-
ally draw regions of interest in the images from which
they extract quantifiable information. For instance, it was
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shown in [3] that brain tumors were precisely delin-
eated by using a new triple imaging modality called
MRI photoacoustic-Raman nanoparticle, which helped
to identify brain tumor margins. This non-invasive pro-
cess allowed surgeons to remove brain tumors from mice
with great accuracy. In [4], lung cancers were stud-
ied in mice models, and their subsequent responses to
therapy in situ were examined using MRI. The authors
presented quantitative and analytical methods to bet-
ter visualize, understand, and quantify primary and
metastatic lung tumors’ severity and progression. In
another study, [5], genetically engineered mouse models
with non-small-cell lung cancer were used to question
the molecular complexity of mixed therapeutic response.
In [6], the total lung activity of mice with chemically
induced lung squamous cell carcinoma was used to mea-
sure tumor metabolic activity in lesions using longi-
tudinal PET scans. All of these approaches are highly
time-consuming, and thus, reduce the efficiency of the
research, in addition to lowering reproducibility and
findings.

Robust, accurate, and fast analytical tools for imag-
ing are especially needed for infectious disease research
because infected lesions often have a rapid progression
over days or weeks with heterogeneous structure (size,
shapes, and locations), in addition to being anatomically
multi-focal, with asynchronous changes over time. Most
of the small animal studies using non-invasive imaging
techniques in the literature, including the ones highlighted
above, are extensively focused on cancer for measuring
neoplasms.

Despite unique clinical challenges in quantification and
interpretation of infectious lung diseases, researchers
need to develop small animal models of infectious dis-
eases in order to study immunopathogenesis, enhance
clinical diagnostic accuracy, and test possible treatment
strategies [1,11,12]. Like cancer, research focusing on
infectious disease models may benefit from current func-
tional and structural non-invasive imaging techniques,
too. For example, by using a PET-CT imaging technique,
one can non-invasively visualize the quality and quantity
of inflammatory cell migration and aggregation, as well as
kinetics over time while also obtaining immediate infor-
mation about disease burden without requiring sacrifices.
Primarily, longitudinal imaging studies are invaluable for
analysis of infectious disease models and tracking rapid
changes in immune response.

In the presented study, we first showed the feasibility
of using PET-CT imaging to track pulmonary infections
in small animal images. Then, we examined the rela-
tionship between the severity and extent of pulmonary
infections as assessed by PET-CT imaging longitudi-
nally. For this purpose, we created a novel computational
pipeline for reliable and accurate quantification of small

animal models with respiratory infections. Our study used
an automated method for measuring areas of abnormal
uptake on PET images and an interactive method for
analyzing corresponding anatomical structures on CT
images. In addition, we longitudinally assessed lesion vol-
umes qualitatively and quantitatively in order to increase
the efficiency and quality of molecular imaging studies.
This proposed methodology aims to transform imag-
ing data into a common platform so that clinicians can
quantify, diagnose, and characterize disease progression
readily.

Fundamentals of PET-CT imaging
To obtain metabolic/functional information of tissues
through PET scans, molecular imaging probes, such as
18F-FDG and NaF, are used to interrogate specific targets
such as cell surface receptors, enzymes, and structural
proteins [2]. Given the low resolution in PET [13], the
superior anatomic localization of a lesion is achieved by
fusing the PET images to CT images such that the lesions
identified on PET are then anatomically localized by ana-
lyzing the corresponding cross-sectional CT slices. To
obtain anatomical and physiological information from tis-
sues and organs, CT is usually used in small animal studies
since it is the gold standard for clinical practice, partic-
ularly for lung studies [3,4]. This dual-imaging modality
approach provides a better understanding of the underly-
ing disease by fusing both modalities into a single view.

What to measure in CT
Structural imaging methodologies (i.e., CT and MRI) pro-
vide detailed knowledge of anatomical structures such
as their shape, numbers, dimensions, surfaces, geometric
arrangements, locations, and relative positioning. Among
these morphological measurements, the total lung volume
and the fraction of lungs occupied by disease are com-
mon measurements used by clinicians and researchers
to evaluate respiratory pathology. Abnormal CT imag-
ing patterns (volume occupied by gas, tissue, and total
number of alveoli) are also conventional measures fre-
quently used by clinicians to evaluate disease state, sever-
ity, and progression of respiratory disorders; however,
accurate, robust, and fast computation of these volumetric
measurements require computer-aided lesion detection,
image segmentation, and automatic quantification meth-
ods. Due to significant limitations in imaging (i.e., low
specificity and similar appearances between normal and
abnormal tissue), manual processing and computing the
aforementioned metrics are still too time-consuming and
difficult.

What to measure in PET
PET imaging, as a functional imaging methodology, pro-
vides a way for making in vivo measurements of specific
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biochemical reactions [5]. Conventionally, the standard-
ized uptake value (SUV), a quantitative measure of tissue
activity, is widely used in assessing PET images. SUV
can be used either voxel-wise or over a region/volume;
and particularly in the latter case, precise identifica-
tion of the region of interest (delineation) plays a vital
role in diagnostic decision systems. In addition, similar
to the morphological metrics used in structural imag-
ing methodologies, volume and area of activity regions,
as well as its SUV-related indexes, are used to eval-
uate disease extent, characterization, and severity. In
other words, the precise volume/surface information of
uptake regions is needed due to two reasons: (a) total
volume/surface occupied by radiotracer activity can be
used independently to compare the fraction of the lung
affected by the infection to the fraction of the abnor-
mal anatomical structure having activity, because only
a small percentage of the abnormal tissues (i.e., con-
solidation) may have high metabolic activity, depending
on the disease pathology, and (b) the accurate compu-
tation of SUV-related evaluation metrics requires pre-
cise delineation of uptake regions from PET scans. Even
small errors in delineation can distort SUV calculations
by changing the margin of the uptake regions [6], and
this can eventually affect the characterization of the dis-
ease, evaluation of response to therapy, and the therapy
planning.

Structural and functional imaging patterns pertaining to
pulmonary infections
Structural and functional abnormal imaging patterns are
often observed when lungs are infected. During a CT
examination, the infected lungs may include the follow-
ing abnormal imaging patterns: ground glass opacities
(GGO), tree-in-bud (TIB) nodularities, reticular opaci-
ties, random distribution of nodules, and consolidations
[4]. Though these visual patterns are not specific for
one pathogen, the proportion of lung volume exhibit-
ing these formations can provide further insights into
the severity of the infection [10]. On the other hand,
a PET examination shows increased radiotracer uptake
in regions of inflammation caused by infection over the
background levels of uptake, in the surrounding normal
tissues. Although SUV measurements are not specific
to one type of infection and cannot reliably distin-
guish between infection, neoplasm, or inflammation,
the focally increased areas of FDG radiotracer activ-
ity represent heightened cellular glucose metabolism
which can be serially assessed in order to investigate
the progression of a disease state. In our small ani-
mal infectious disease models, we mostly observed GGO
and consolidations (shown in Figure 1) on CT, with
corresponding areas of abnormal radiotracer activity
on PET.

Figure 1 Axial CT and fused PET-CT images from an infected
rabbit lung. Representation of two abnormal imaging patterns
common to infection: arrows in the top row point (A, B) to a large
area of diffuse consolidations, while the arrows in the bottom row (C,
D) indicate an area of ground glass opacity (GGO).

Methods
PET-CT imaging
The Administrative Panel on Laboratory Animal Care
approvals were obtained from each participating institute
prior to conducting this research. Internationally recog-
nized standard guidelines were followed as complied with
laboratory animal care approvals.

Our study included rabbits, ferrets, and mice, which
are frequently used small animals in infectious dis-
ease research. Following baseline scans, ten rabbits
(New Zealand White female) were infected with an
aerosolized respiratory pathogen (Mycobacterium tuber-
culosis, H37Rv strain) in a Madison chamber and imaged
every 5 weeks post-infection for 38 weeks or until euth-
anized for necropsy. For PET imaging, the rabbits were
injected with 1 to 2 mCi of 18F-FDG PET radiotracer,
via the marginal ear vein, and then imaged 45 min post-
injection for a period of 30 min. CT and PET imaging were
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performed without respiratory gating on the NeuroLog-
ica CereTom (NeuroLogica Corporation, Danvers, MA,
USA) and the Philips Mosaic HP scanner (Philips Medical
Systems, Eindhoven, The Netherlands), respectively, with
specifications as reported in Tables 1 and 2. A total of 92
images (46 PET and 46 CT scans) were used for this rabbit
study.

For the ferret study, following baseline scans pre-
infection, 12 ferrets (Mustela putorius furo) were inocu-
lated intra-nasally with a respiratory pathogen (the H1N1
influenza virus) and then subsequently imaged on days
1, 2, 3, and 6 post-infection or until euthanized for
histopathology analyses. The ferrets were injected intra-
peritoneally with 2 mCi of 18F-FDG and imaged 60 to 90
min post-injection. All PET and CT imaging were per-
formed with respiratory gating on a Siemens Inveon Tri-
modal scanner (Siemens AG, Munich, Germany) (Tables 1
and 2). A total of 44 images (22 PET and 22 CT scans) were
used for the ferret study. Although respiratory gating was
used in the ferret images, ungated CT could also be used.
As reported in [14], the effects of inspiration and expira-
tion can be ignored in small animal CT scans of ferrets
due to similar quality of ungated and gated CT scans.

For the mouse study, after baseline scans, three mice
were infected with an aerosolized respiratory pathogen
(necrotic TB) in a Glas-Col inhalation exposure cham-
ber (Glas-Col, Terre Haute, IN, USA) and subsequently
imaged on weeks 6, 10, and 14 post-infection or until euth-
anized for histopathology analysis. Mice were injected
with approximately 0.200 mCi of 18F-FDG, via tail vein,
and then imaged 45 min post-injection. PET images
were collected using a Philips Mosaic HP scanner, and
CT images were acquired using a Bioscan Inc Mediso
SPECT/CT scanner (Bioscan Inc, Paris, France) (Tables 1
and 2). All images were acquired without respiratory
gating. Although respiratory gating may improve image
quality with less noise and motion artifacts, due to well-
known effects of breathing cycle on CT imaging of mice,
repeated in vivo-gated CT scans are recommended only
not more frequently than weekly intervals [15]. How-
ever, our model was not optimized for that convention
(i.e., having 4-week intervals between scans); therefore,
the free-breathing mode was selected as complied with

the standard imaging techniques for similar conditions in
other studies. A total of 24 images (12 PET and 12 CT
scans) were used for the mouse study. Details of each small
animal species’ CT and PET imaging parameters, as well
as scanner and reconstructed image properties, can be
found in Tables 1 and 2.

Small animals were imaged in different scanners, at
different institutions, with varying scanner parameters
(i.e., respiratory gating, slice thickness, resolution, etc.);
therefore, our study constituted a good set of images for
verifying the ‘robustness’ of the proposed computational
platform, in terms of handling varying conditions, as well
as different animal sizes and anatomies.

Proposed computational framework
The proposed computational framework for longitudinal
and quantitative analysis of lung abnormalities is illus-
trated in Figure 2. The following are the steps involved in
the computational framework for longitudinal and quan-
titative analysis:

Step 1. PET and CT images were acquired from the
scanner.

Step 2. PET and CT images were aligned into a common
anatomical reference space in order to provide
one-to-one voxel correspondences between
anatomical and functional images (if the images
were not from the same scanner). See Additional
file 1 for technical details.

Step 3. The lungs were segmented from CT scans using
the proposed interactive region growing (IRG)
image segmentation method. Since measurements
within the lung volumes play a significant role in
identifying the nature of lung disorders, it is
desirable to constrain the analysis of PET uptake
regions.

Step 4. Mathematical morphology (smoothing by the
erosion, prior to the space multiplication of two
images) was conducted between the segmented
lung volumes from CT scans and corresponding
PET images in order to avoid FP uptake from
nearby structures of the lungs. This may

Table 1 Imaging parameters for ferret, rabbit, and mouse studies (CT scan)

Animal CT scanner Voxel In-plane Current (μA); Slice

size (mm3) resolution voltage (kVp) thickness (mm)

Rabbit NeuroLogica CereTom (CT) 0.29 × 0.29 × 0.63 512 × 512 5,000; 120 1.25

Ferret Siemens Inveron 0.20 × 0.20 × 0.20 384 × 384 500; 80 0.21

Trimodal (PET/CT)

Mouse Mediso Bioscan Inc (CT) 0.20 × 0.20 × 0.20 176 ×176 1,500; 45 0.20

Trimodal (PET/CT)
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Table 2 Imaging parameters for ferret, rabbit, and mouse studies (PET scan)

Animal PET scanner Voxel In-plane Slice Radiotracer

Size (mm3) resolution thickness (mm)

Rabbit Philips Mosaic HP (PET) 1.0 × 1.0 × 1.0 128 ×128 1.0 1.2 mCi 18F-FDG

Ferret Siemens Inveron 0.78 × 0.78 × 0.80 128 × 128 0.8 2 mCi 18F-FDG

Trimodal (PET/CT)

Mouse Philips Mosaic HP (PET) 0.20 × 0.20 × 0.20 128 ×128 1.0 0.2 mCi 18F-FDG

occasionally appear in the border of the lungs due
to the resolution difference of PET and CT as well
as the interpolation operator. Resultant PET
images, therefore, only show radiotracer uptake
regions within the lung.

Step 5. Significant radiotracer uptake regions were
isolated from background noise and tissue
through segmentation. To do this, we segmented
radiotracer uptake regions from PETM images
using adaptive thresholding, following clinical
conventions in SUV computations as well as
boundary uncertainty information from fuzzy
c-means algorithm (FCM). All of these steps are
explained in the following subsections in details.

Ground truth construction
Establishing the true delineation of any object of interest
(i.e., lung region, pathological object, etc.) from biomed-
ical images is impossible when histology images are not

available [16]; therefore, an appropriate surrogate truth is
often used when evaluating segmentation methods. For a
surrogate truth of the gold standard (namely the ground
truth), participating expert radiologists used the live-wire
(LW) algorithm [17,18] to segment the lungs in the sagit-
tal, coronal, and axial domains simultaneously. In the LW
algorithm, as demonstrated below in Figure 3, the user
provided recognition help by tracing the boundary of the
object of interest and the computer delineated the object’s
boundary by automatically snapping to the edges. Even
though the LW algorithm was used for ground truth con-
struction, observers were expected to manually correct
the resulting delineations in order to follow the stan-
dards of the state-of-the-art ground truth construction
techniques [19,20]. For this purpose, any other manual
tracing methods could also have been used, but since the
LW algorithm provides a globally optimal solution for
the segmentation given their respective cost functions, we
preferred to use the LW method in order to guarantee that

Figure 2 Determination of PET functional volume in an infected rabbit. CT and PET images are acquired from the scanner (step 1). Affine
registration of images is conducted to achieve a one-to-one voxel correspondence between CT and PET images (except when the images are in
registration due to simultaneous acquisition) (step 2). Lung segmentation is achieved using an interactive region growing (IRG) algorithm (step 3).
The segmented lung is used as a binary mask in whole body PET imaging in order to bound functional uptake only pertaining to the lungs (PETM)
(step 4). Significant uptake regions of PETM are delineated using an adaptive thresholding method (step 5). Resulting segmentation of uptake
regions (PETS) and segmented regions with PET intensity values (PETT) are used for quantification and monitoring of the disease extent.
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Figure 3 Sample delineation process via LW. Sagittal (A), coronal
(B), and axial (C) plane from a rabbit CT scan. As seen in (C), the user
provides guidance by clicking a few anchor points and LW
automatically traces the boundary of interest between anchor points.
(D) 3D visualization of the segmented lungs, at the end of LW
process, is shown in green.

the algorithm did not to fall into local minima far from the
best solution and minimize the intra- and inter-observer
variations through recognition help [17,21].

To test the accuracy and efficiency of our proposed
IRG and adaptive thresholding segmentation methods,
we used a widely accepted evaluation criterion of DSC
[16,22,23] and Haussdorf distance (HD) [23]. DSC is a
measurement of spatial overlap (in percentage) between
segmented object and ground truth, and HD is a
shape dissimilarity metric measuring the most mis-
matched boundary points between the segmented object
and ground truth delineation. While higher DSC and
lower HD values indicate a highly accurate segmenta-
tion, one may need to also consider inter- and intra-
observer agreement rates because it is often expected
that the proposed method should be comparable to one
of those agreement rates to determine if the method
is accurate and robust. For further information on
these evaluation metrics and their computations, see
Additional file 1.

Co-registration of PET-CT scans
When fusing the complementary information obtained
from different imaging modalities, there is a need for
image registration to integrate anatomical context with
functional image information [24]. This is particularly
important in studies where PET and CT images are
acquired from separate scanners or when PET and CT
are done at different times, both with possible interval

changes in animal positioning. In our work, image regis-
tration is treated as an optimization problem, which uses
normalized mutual information as a similarity metric to
align different image modalities of the same subject [25].
See Additional file 1 for further technical information on
image registration used in this study.

Interactive image segmentation of lung volumes from CT
scans
Region growing (RG) is one of the simplest, yet most
effective, image segmentation approaches for segment-
ing lung regions within CT scans [23,26]. Segmentation
via RG methods is generally favored particularly in noisy
images where borders are extremely difficult to detect.
Although RG has been successful with the segmentation
of the normal lungs in both human and small animal
studies, pathological lung tissue caused by pulmonary
infections can make automatic lung segmentation from
CT scans very challenging. In practice, the boundaries
between dense abnormal regions such as consolidations
and other organs are not well defined; therefore, we used
IRG segmentation, where minimal user interaction was
required for the segmentation of dense abnormal regions
that can cause conventional RG segmentation method
to fail. The proposed algorithm starts merging unallo-
cated neighboring voxels, based on the refined region
homogeneity criteria, which is set prior to the segmen-
tation procedure. This procedure continues iteratively
until all voxels are assigned with class labels (object
or background). Region homogeneity is simply set as
the difference between a voxel’s intensity value and the
region’s mean.

As a result of our research, we defined two alternative
versions of RG segmentation so that users can select the
slice-by-slice segmentation in 2D or direct segmentation
in 3D, and resultant 3D segmentation can be refined by
minimal user interactions. When necessary, a user can
reallocate a few seeds to include some pathological parts
into the segmented lung regions. This latter step is con-
ducted in 2D, and refined segmentation is immediately
included in the final outcome.

The benefit of integrating pathological regions into the
lung volume computation is due to the fact that some
of those regions may not be included by the RG algo-
rithm because of existence of the pathologies. Further-
more, slice-by-slice IRG is suited best for segmentation of
abnormal imaging patterns because the number of slices
occupying imaging abnormalities is usually small, and
user interaction for this method is not time-consuming.
Nevertheless, this part can also be conducted in full 3D
version of the region growing algorithm. Additional file 2
shows a demo video of the interactive lung segmentation
from a CT scan, in 2D and 3D. Alternatively, one may con-
sider a machine learning-based method to make the whole
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process fully automated rather than interactive. For exam-
ple, Sofka’s pathological lung segmentation method [27]
may potentially be adapted for small animal CT images.
However, it should be noted that the main computational
difficulty in fully automated pathological lung segmen-
tation problems is the large anatomical and pathological
variability as well as low efficiency due to high computa-
tional cost (e.g., Sofka’s proposed method takes an average
of 40 to 45 min for a high-resolution CT scan from a
human patient).

Segmentation of radiotracer activities from PET scans
Segmenting functional regions from PET scans is
mandatory in the quantitative evaluation of functional
images. It does not only give information about vol-
umetry of functional uptake, but it also provides cor-
rect margins for the precise computation of SUV
parameters [23,24]. We recently proposed a graph-
theoretic segmentation method for radiotracer uptake
regions, with ‘non-diffusive appearances’ from PET
images, which achieved higher sensitivity and speci-
ficity compared to the state-of-the-art methods [16,24].
However, since abnormalities within the lungs of a
small animal infectious disease model show ‘diffusive
(multi-focal) appearances’ with non-convex geometrical
shapes, it may cause graph-based segmentation algo-
rithms to leak into non-object territories within the
scene. Therefore, we designed an adaptive threshold-
ing method, suited well specifically for small animal
models of pulmonary infections, in addition to the use
of our previously proposed graph-based segmentation
method (named random walk image segmentation of PET
images [28,29]).

Although thresholding-based image segmentation
methods are the current convention in clinics, finding
globally optimal threshold level is technically chal-
lenging. The standard clinical threshold level is 40%
to 43% of the PET image histogram in human stud-
ies; however, the optimal level can change readily in
small animal studies. Therefore, we adapted the con-
ventional FCM segmentation procedure into the regions
of the PET image as well as a possibility of getting
interactive information from expert radiologists in
identifying the near-optimal thresholding level. Once
FCM finds the number of participating objects within
the scene, our adaptive thresholding method tries to
find the near-optimal thresholding level in the vicin-
ity of the object boundaries. The search algorithm in
the vicinity of the object boundaries was based on the
iterative search algorithm, ultimately finding the max-
imum entropy value under the histogram of the PET
image under consideration. See Additional file 3 for a
demo video of the segmentation from a PET scan, in
2D and 3D.

Incorporating image registration pipeline for volume change
analysis from serial scans
Quantitative measurements of change in radiotracer
uptake’s spatial position require serial registration of a
longitudinal image sequence from the same subject into a
common space. Jointly aligning all image sequences - dif-
ferent scans from the same subject - to a common space
allows researchers to visualize how radiotracer uptake
are changing over time. This information is critical when
identifying disease-related changes, particularly when
exploring the severity and extent of the diseases. After
aligning them into a common space, segmented struc-
tures from the same subject can be compared both locally
and globally. However, direct pairwise registration of seg-
mented PET images is not feasible because of limited
anatomical markers within the images. Several image reg-
istration algorithms have been developed to achieve this
goal [24,30-34]. Among them, we used locally affine and
globally smooth image registration of serial CT images
[24,33] and transfer the resulting deformation fields to
the corresponding PET images because the registration
method reported in [24,33] has been shown to be much
more accurate than simple affine and rigid registrations.
With this procedure, one can bring PET images within a
common anatomical space (CT).

The scenario of our proposed registration framework
is demonstrated in Figure 4. Our approach includes two
different phases. In the first phase (phase I), we aligned
all image sequences of CT scans into a baseline scan
and stored the deformation fields resulting from regis-
tration process. Note that since we already segmented
the lungs from CT scans, we performed nonlinear reg-
istration using binary lung volumes instead of using the
CT gray level images. The key idea was to use CT scans
for image registration since CT includes more (consis-
tent) information, and determining spatial correspon-
dences between CT scans is relatively easier compared
to PET-to-PET registration. Furthermore, by extracting
lung regions from CT scans, we maximized the informa-
tion available for finding correspondences between scans
from different time points. In the second phase (phase
II), we applied the stored deformation fields (obtained
from first phase, d(t → base)) to the corresponding PET
images named parallel transportation [32]. Once trans-
formation fields were applied to PET images to align
with their corresponding CT scans, we segmented the
radiotracer uptake regions (PETR,aligned). This step can
be visualized and analyzed without doing any further
steps.

Results
To assess the efficacy and utility of our segmentation
methods (in CT and PET images) quantitatively, we used
accuracy measurements which are related to how well
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Figure 4 Scenario of our proposed registration framework. In the first step (left) for each animal ‘R’, we registered segmented CT volumes
(CTR,S) from different time points (tn) to a baseline scan and stored the deformation fields (dtn → base). Since the PET images are co-registered with
these CT scans, we applied the corresponding deformation field to the segmented PET scan (PETR,S) in order to align the PET radiotracer regions
over time (PETR, aligned)(right). This process allowed visualization of changes in active PET lesions throughout the imaging study.

segmentation results compare with the true delineation
of objects. Ground truths of delineation for the objects
were obtained by expert radiologists’ annotations. We also
considered efficiency measurements for the segmentation
evaluation, where efficiency pertains to the practical via-
bility of the method which is determined by the amount
of time required for the computations to provide the user
the help needed during segmentation.

Observer agreement study - evaluation on CT scans
Two expert observers (blinded to the other’s operations)
delineated the lungs from CT scans in two different
time points. We computed the variance of the entire
lung volumes in both healthy and infected animals to
determine the intra- and inter-observer agreements by
calculating the ratio of tissue samples segmented cor-
rectly by the two segmentation methods. The agree-
ments between expert observers were computed over
the entire lung volumes of the subjects (namely, over-
lap ratios of these measurements were computed and
averaged). For intra-observer agreement, the rates were
computed using the same observer’s segmentation taken
days apart. Figure 5 shows intra- and inter-observer
variability for different anatomical (CT) slice levels for
rabbit, ferret, and mouse animals. The average inter-
observer agreement rates were 80.6% ± 9.5% in the rab-
bit, 77.2% ± 11.2% in the ferret, and 89.5% ± 3.7% in
the mouse models, while the intra-observer agreement
was 84.7% ± 6.0%, 80.3% ± 4.4%, and 94.7% ± 1.3%,
respectively.

Observer agreement study - evaluation on PET scans
We compared the functional volume - determined by
adaptive thresholding levels - between two expert radi-
ologists who were blinded to their evaluations. Similar
to the inter- and intra-observer agreement evaluation in
CT segmentation, we computed the variance between
the entire lung functional volume in both healthy and
pathological lungs in order to determine inter- and
intra-observer agreements. Figure 6 shows segmentation
variations by setting 5% difference in threshold values.
This difference could readily be observed in decisions
of the same observer in different time points, or, in
decisions of different observers. For quantification of
the segmentation process for inter- and intra-observer
agreements, we followed the same overlap ratio compu-
tation explained in the previous subsection. The mean
agreements in PET uptake volume between observers
were 89.8% ± 14.7% in the rabbit, 81.5% ± 16.2% in the
ferret, and 83.2% ± 3.6% in the mouse models, while the
mean intra-observer agreements were 92.3% ± 14.4%,
92.7% ± 12.6%, and 86.6% ± 2.4%, respectively. These
intra-observer and inter-observer agreements are good
despite the difficulties in determining global thresholding
levels.

Evaluation of the interactive segmentation method on CT
scans
We evaluated our proposed IRG segmentation method
and summarized our results in Table 3. While obtaining
the results, we averaged the rates obtained from ground
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Figure 5 Intra- and inter-observer variability for different anatomical (CT) slice levels for rabbit, ferret, and mouse animals. (A,C,E) Multiple
CT axial image slices from a rabbit, ferret, and mouse that have been segmented manually using a live-wire algorithm, by the same operator, in two
different time points (red, time number 1; green, time number 2). (B,D,F) Rabbit and ferret segmentations from two different observers highlighted
in red and green, respectively, across multiple lung locations. Intra-observer (A,C,E) and inter-observer (B,D,F) evaluations of the segmentation
process show good agreement across four different lung locations. Quantitative evaluations of these processes are reported in Table 3.

truths in order to avoid any bias towards a particu-
lar observer’s evaluation, as complied with the standard
evaluation techniques [19,20]. We tested segmentation
accuracy and efficiency in both normal and pathological
lungs and observed a DSC of 93.4% ± 4.5% and 86.0% ±
7.1%, respectively. The mean HD between different seg-
mentation was 4.0 ± 1.4 mm in subjects with normal
lungs and 4.5% ± 1.4 mm in subjects with pathological
abnormalities. Furthermore, Pearson correlation between
estimated anatomical volume of lesions by the proposed
method and the ground truth was R2 = 0.8922, p <

0.01. We also compared the segmentation results to the
ground truth delineations as well as the commonly used
RG algorithm from ITK implementation [35]. Figure 7

summarizes the average DSC rates for pathological lung
segmentation for all small animal models in compar-
ison with conventional RG method (ITK implementa-
tion), with and without using interactive refinements.
Note that the proposed algorithm has higher rates than
the conventional RG algorithm but has similar perfor-
mances if the user interaction is allowed to refine the
FP regions. Moreover, we qualitatively show the perfor-
mance of the IRG segmentation method (shown in white)
compared to ground truth delineation (shown in red) in
Figure 8. Columns and rows of the figure show differ-
ent views of the same lung segmented from a CT scan
of a rabbit. Note that high volume overlap ratios are
observed.
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Figure 6 Segmentation variations by 5% difference in threshold values. (A) Multiple PET axial image slices from a rabbit with an active lung
infection are shown for demonstration purpose (color code: cold). Areas of light color indicate higher PET intensities, while areas of darker color
signify background, noise, or uptake belonging to minimum metabolism. (B) Two locally adaptive threshold levels outline areas of interesting
uptake regions. Here, only a 5% difference in thresholding level is shown by green and red (i.e., pink outline is the inner boundaries of red outline),
respectively.

Evaluation of the adaptive thresholding method on PET
scans
We evaluated the utility of our adaptive thresholding
method for functional volumes in the small animal model
by comparing the areas delineated by different threshold
levels. Our observations show that clinical convention is
usually suited for the segmentation experiments of PET
scans for non-infected small animals, which is to set 40%
of the overall histogram as a threshold value. This sit-
uation might change when infection exists: 60% to 65%
of the overall histogram was usually set as a thresh-
old value in later weeks. Moreover, we also observed
that expert observers agreed within 5% of this thresh-
old value. Therefore, starting at 20% of the PETS image
histogram and ending at 90% as threshold values, we
computed the DSC and HD between threshold levels
varying by 5% of the image’s histogram (i.e., 20% and
25%, 25% and 30%, etc.) and then averaged DSC and HD
values over different threshold values and different sub-
jects. The DSC and HD for rabbit, ferret, and mouse are

reported in Table 3. Similar to the evaluation of segmen-
tation results from CT images in the previous subsection,
we averaged the rates obtained from ground truths in
order to avoid any bias towards a particular observer’s
evaluation as complied with the standard evaluation tech-
niques [19,20]. Furthermore, Pearson correlation between
estimated metabolic volume of lesions by the proposed
method and the ground truth was found to be R2 =
0.8664, p < 0.01.

We compared our proposed adaptive thresholding
method with the state-of-the-art PET image segmenta-
tion methods, including RG [35], iterative thresholding
(ITM) [36], adaptive Otsu thresholding [37], and fuzzy
locally adaptive Bayesian method (FLAB) [38]. Figure 9
shows the average DSC rates for this comparison for all
small animal models used in our experiments. Note that
our proposed algorithm was superior to the state-of-
the-art methods among which the performance of the
ITM and region growing methods were close to each
other. Furthermore, we observed that FLAB was superior

Table 3 Evaluation of inter/intra-observer agreements over CT and PET image segmentations is shown

Animals Observer Observer Evaluation of PET Evaluation of

agreement rates agreement rates segmentation between interactive

for CT volume for PET volume consecutive threshold segmentation for

levels (difference by 5%) pathological lung

Rabbit Intra(%) 84.7 ± 6.0 Intra (%) 92.3 ± 14.4 DSC (%) 86.0 ± 3.6 DSC(%) 86.0 ± 7.1

Inter (%) 80.6 ± 9.5 Inter (%) 89.8 ± 14.7 HD (mm) 13.2 ± 2.3 HD (mm) 14.2 ± 2.1

Ferret Intra(%) 80.3 ± 4.4 Intra(%) 92.7 ± 12.6 DSC(%) 84.0 ± 5.8 DSC(%) 83.4 ± 8.6

Inter (%) 77.2 ± 11.2 Inter (%) 81.5 ± 16.2 HD (mm) 10.6 ± 1.6 HD (mm) 4.0 ± 1.4

Mouse Intra (%) 94.7 ± 1.3 Intra (%) 86.6 ± 2.4 DSC(%) 86.5 ± 1.1 DSC(%) 95.1 ± 2.8

Inter (%) 89.5 ± 3.7 Inter (%) 83.2 ± 3.6 HD (mm) 10.8 ± 1.8 HD (mm) 0.26 ± 0.48

DSC and HD measurements are also reported for evaluating the interactive and adaptive thresholding-based segmentation algorithms compared to ground truths.
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Figure 7 Average DSC rates for pathological lung segmentation from CT scans. Average DSC rates for pathological lung segmentation results
are given in comparison with frequently used region growing algorithm (from ITK repository), with and without using manual refinements.

to Otsu and fixed thresholding when uptake regions
were more homogeneous. In addition to the quantitative
results and comparison given above, we also demon-
strated qualitatively our proposed adaptive thresholding
method in comparison with a fixed thresholding method
for a given ferret PET image. As exampled in Figure 10,
three PET slices were taken from different anatom-
ical locations of the selected ferret in each row, and

the resulting fixed and proposed adaptive thresholding
based segmentation are given in the second (Figure 10B)
and third (Figure 10C) columns, respectively. Since the
fixed thresholding method did not take into account the
intensity similarities, as opposed to FCM, the resulting
delineations (Figure 10B) were sub-optimal. On the other
hand, the proposed adaptive thresholding method used
FCM (Figure 10C) to refine the segmentation boundary

Figure 8 Performance of the IRG segmentation method compared to ground truth delineation. Segmented lung volume by expert (red) and
interactive region growing algorithm (white) were overlaid for qualitative assessment. High volume overlaps and small deviation of the boundary
differences can easily be observed from these images. Columns and rows show the different views of the same animal’s (rabbit) segmented lung
volumes.
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Figure 9 Comparison of proposed segmentation method with the state-of-the-art image segmentation methods. The state-of-the-art
image segmentation methods for PET scans from small animals are compared to our proposed segmentation method.

based on the initial delineations; therefore, the refined
delineations were visually plausible as complementary to
the quantitative results given in Table 3 and Figure 9.

Evaluation of image registration
In order to quantitatively assess the registration accu-
racy, anatomical landmark points were manually placed
in a subset of selected small animals’ images on anatom-
ically distinct regions or points by an expert radiolo-
gist [39]. Similarly, the corresponding landmarks were
manually identified in the follow-up scans. This process
was repeated for small animal images of the all types. We

used a total of 120, 90, and 60 landmark points for rab-
bits, ferrets, and mice images, respectively. Landmarks
were grouped into head, lung, liver, and skin body equally
when manually identified by the experts. Note that a grid
of 15 landmark points per organ was often shown to
be sufficient enough for landmark-based registration and
evaluation for small animal images in the literature [40].
The minimum (min), mean, maximum (max), and stan-
dard deviation (std) of the landmark distances between
baseline and follow-up scans after deformable registration
were recorded. Table 4 shows the average pairwise image
registration error (i.e., landmark distance) for the whole

Figure 10 Three different PET slices of a ferret are shown in the first column. While PET slices in column (A) show original images, delineations
resulting from the fixed and the proposed adaptive thresholding methods are shown in columns (B) and (C), respectively.
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Table 4 Statistics of landmarks error (in mm) using
deformable group-wise registration of segmented CT
images

Landmark distance Min
(mm)

Mean
(mm)

Max
(mm)

Std
(mm)

Rabbit 1.01 2.66 4.50 1.74

Ferret 1.86 3.93 4.65 1.24

Mouse 0.23 2.52 6.00 1.62

experiment. The landmark-based registration errors show
that the proposed registration framework - using paral-
lel transportation of deformation fields from CT-to-CT
registration into PET-to-PET registration - had high reg-
istration accuracy as shown by the small landmark dis-
tances. We also conducted a t test between registration
errors resulted from different animals, and we observed
that there was no statistically significant difference (p >

0.05) between registration results and different images of
the small animals.

Figure 11 gives combined hybrid visualizations of qual-
itative and quantitative evaluations in a single scene. In
Figure 11A, the volume-rendered body region of a rab-
bit is combined with quantitative surface information of
the segmented lungs, while Figure 11B shows the PET
image volume pertaining to the lungs in color code after
the morphological operations (i.e., PETM) within the same
volume-rendered body region of the rabbit. Additionally,
Figure 11C demonstrates the projection-based view from
the CT scans to further enhance anatomical localiza-
tion of structures along with functional lung information.
Figure 12 shows a simplified quantitative visualization in
three different views of a segmented lung surface from a
CT scan of a rabbit overlaid onto the segmented signif-
icant uptake regions from PET images. Note that in this
quantitative visualization, objects are rendered in surface

levels after segmentation process. Color code is used to
indicate the hottest uptake regions within the significant
uptake regions delineated from PET images.

Computational cost, parameter training, and efficiency
All programs used in this study were developed using
C++ gcc 4.5 (copyright 2010 Free Software Foundation) on
a Linux platform (Ubuntu; Canonical USA Inc., Lexing-
ton, MA, USA), and all statistical computations and user
interface to access segmentation, registration, and quan-
tification algorithms were processed in Matlab (copyright
2010 MathWorks Inc., Natick, MA, USA). All the pro-
grams were executed on an Intel� Core(TM) i7 CPU 930
at 2.80 GHz with 12 GB RAM workstation. While man-
ual segmentation of the lung regions from CT scans takes
around 60 to 90 min depending on the severity of the dis-
ease, the interactive lung segmentation takes only 16.52 s
on average for approximately 250 slices. This timing can
take up to 10 min for very severe cases, where a refine-
ment step with interactive one-click process for some
slices is necessary. On the other hand, segmentation of
PET images takes only 11 s on average for approximately
250 slices.

Users deem it necessary to incorporate some pre-
processing steps prior to actual segmentation of CT
images or SUV analysis of PET images. Our proposed
computational framework offers this flexibility of pre-
processing images prior to conducting image analysis, as
exemplified partially in the Additional files 1 and 2 demo
videos. There may be other necessary steps for proper
segmentation due to unconventional image features or
scanner dependent variations. For instance, a scan may
be loaded into the system in a prone position rather than
supine, and PET correspondence of the anatomical image
may be aligned in opposite direction (head to toe align-
ment), considering all these issues in a fully automated

Figure 11 Combined hybrid visualizations of qualitative and quantitative evaluations in a single scene. Qualitative (volume rendering) and
quantitative (surface rendering) evaluations of the segmented (A) lung and (B) PET uptake pertaining to the lungs are shown. In (C), rendered body
region and PET uptake are overlaid with CT projection views on the sides in order to further simplify anatomical localization of the anatomical and
functional information (rabbit number 3 at week 5).
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Figure 12 Simplified quantitative visualization in three different views of a segmented lung surface. Simplified view for a segmented lung
surface from a CT scan of a rabbit. (A,B,C) Segmented significant uptake regions from PET images are shown in three different positions. While red
indicates the highest uptake, green indicates the relatively lower uptake but still within the significant uptake regions delineated from PET images.

way requires an extensive search and individualized event
detection algorithms. It may take longer for a fully auto-
mated computer algorithm to identify these problems first
and take the appropriate actions due to the difficulty of
‘recognizing’ an unexpected problem. On the other hand,
a human observer can easily handle these issues by visual
inspection and take the necessary action within seconds.
This is one of the main reasons that many research tools,
including our proposed computational framework, are
being developed in a way to allow users to efficiently
interact with the tools [41].

Imaging findings and longitudinal analysis of pulmonary
infections
One of the clinical research questions for this study was
to investigate the immune response in the lungs to pul-
monary infections over time through FDG PET-CT imag-
ing. To demonstrate how our proposed computational
pipeline would be used for longitudinal analysis of pul-
monary infection, we present here an illustrative example
of the TB rabbit model. For the TB rabbit model, as stated
earlier, the rabbits were infected with TB and imaged lon-
gitudinally at various time points (0, 5, 10, 15, 20, 30, and
38 weeks) after initial baseline scans. Once the images are
acquired, the quantification of inflammatory response can
be carried out using the proposed computational frame-
work. Since the amount of change of functional uptake
volume and their strength from PET images as well as
the change of pathological volume from CT images can
be used as reliable markers for showing disease progres-
sion in longitudinal manner, we quantified the disease
progression and resolution with these three markers. For
the amount of functional uptake volume, the volume of
the significant uptake regions automatically segmented
from the PET images was used. For the delineated region’s
signal strength, maximum SUV (i.e., SUVmax) was used.
Lastly, for the pathological volume marker: the volume of
segmented pathologies from the CT images was used. In
other words,

• The SUVmax was used to show how ‘intense’ the
disease is

• The functional uptake volume was used to
demonstrate how ‘much’ immune response and
inflammation was present, and

• The pathological volume was used to show how
much the parenchyma of the lungs had been altered
due to the infection as seen on CT.

Furthermore, researchers can easily add other quan-
titative metrics to our proposed framework, such as
SUVmean (the mean SUV over the functional uptake vol-
ume) and SUVlbm (lean body mass-based SUV), which
can give an even more in-depth look at the disease
progression. However, novel exploration of quantitative
and semi-quantitative metrics is outside the scope of
this paper.

After registration and segmentation, the SUVmax of
the delineated lesions was calculated by taking the high-
est SUV within the functional uptake volume. Figure 13
shows the progression of SUVmax in the serial scans of
all rabbits from 0 to 38 weeks. It was noted that the
highest variation in SUVmax was observed soon after
the animals were infected with TB, and in all weeks,
SUVmax was higher compared to the metabolic activi-
ties measured at baseline scans. It was revealed from
the figures that the general trend of the change in
SUVmax and the functional uptake volume percentage
over time was similar. Figure 14a,b,c shows metabolic
and gross pathology volume percentage of the lungs for
three different rabbits (i.e., rabbit numbers 6, 7, and 8).
Figures 15 and 16 summarize the pathological lung per-
centage and FDG volume uptake changes for all rabbits
over all weeks, respectively. It is important to note that
even though there is not necessarily a one-to-one corre-
spondence between the functional and structural volume
ratio (i.e., not all areas of consolidations have signifi-
cant FDG uptake), the trends of the longitudinal patho-
logical volume changes in these figures coincide with
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Figure 13 SUVmax distributions for all rabbits are shown over
weeks.

the experimental evaluations including qualitative visual
inspection by the participating radiologists and nuclear
physicians.

In order to visualize longitudinal changes of signifi-
cant uptake within the lung regions, three movie samples
representing the longitudinal FDG uptake of rabbits num-
bers 6 and 7 and ferret number 2,214 are provided in
Additional files 4, 5, and 6. For these visualizations, the
registration pipeline was the most crucial part where
the deformation fields from CT-to-CT registration were
obtained and transported into the PET image correspon-
dences in order to overlay segmented functional uptake
of the same animal’s different scans within the same spa-
tial domain. This process enhances the understanding of
how disease is progressing over time as well as indicating
the spatial localization of pathology, which aids in tak-
ing corresponding histology slices for biopsy purposes.
Note also that our visualizations are based on surface ren-
derings of the segmented objects; therefore, quantitative
surface and volume information are available in contrast
to commonly used qualitative volume rendering. In the
demo movie of Additional file 2, we kept the lung and
trachea together for visualization purpose only (i.e., to
guide pathologists to identify the anatomical slice level
when doing histology analysis); however, for quantitative
evaluation of the lung volume and related calculations (as
demonstrated in the movies of Additional files 4, 5, and
6), we used the conventional trachea removal tool, which
was based on a simple Hough transform. Relevant infor-
mation regarding this conventional method can be found
in [42,43].

Figure 14 Metabolic and gross pathology volume percentage of
the lungs for three different rabbits. The pathological lung volume
ratio (both functional and structural) with respect to total lung
capacity over weeks are plotted for individual rabbits: rabbit 6 (A),
rabbit 7 (B), and rabbit 8 (C), respectively.

Discussion
Our study presents a computational platform for auto-
mated and interactive methods for measuring areas of
abnormal uptake on PET and corresponding anatomi-
cal structures on CT, with longitudinal assessment of
lesion volumes, in order to increase the efficiency and
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Figure 15 Pathological lung volume changes for all rabbits. The
pathological lung volume ratios, computed through delineation of CT
images, and their longitudinal changes are plotted for all rabbits.

quality of quantitative imaging studies. Although some
of the methodologies presented in this manuscript such
as segmentation from CT scans, PET segmentation, and
co-registration aspects of the image processing tasks
have been established more or less in the literature, a
computational pipeline that takes into account the unique
challenges of PET-CT imaging, particularly for small ani-
mal models and pulmonary infections, has not previously
been explored. Considering (a) the exploration of the
feasibility of PET-CT multi-modality imaging in small

Figure 16 Longitudinal FDG uptake changes for all rabbits.
Longitudinal FDG uptake volume changes, computed through
delineation of PET images, are plotted for all rabbits.

animals and (b) the unique challenges of pulmonary infec-
tions (i.e., multi-focal uptake in PET, diffusive abnormal
imaging patterns in CT, the challenge of segmenting
pathological lung regions, etc.), to the best of our knowl-
edge, our study is the first one taking into account all these
difficulties and propose a reliable, fast, and accurate com-
putational platform to be used in pre-clinical and clinical
studies.

For this study, the FDG radiotracer was used because
it is the most commonly used agent for molecular imag-
ing, but the method can also be applied to any PET tracer.
In addition to the CT anatomical imaging, our proposed
computational framework can also be used with MRI data
fused with PET imaging; therefore, multi-modal anatom-
ical images with functional correspondences can readily
be quantified within our system. Moreover, the study pre-
sented herein focuses on small animals - rabbits, ferrets,
and mice. Given the need for increasing the efficiency,
speed, and quality of molecular imaging in pre-clinical
research, this application of automated quantitative imag-
ing studies for small animal models is warranted.

Our study applies to infectious disease in particular
because this disease category has some unique chal-
lenges such as multi-focal heterogeneous lesions with
rapid progression, necessitating more efficient meth-
ods for quantifying molecular imaging data. Given
the accuracy and efficiency of our presented results,
this methodology can also be applied to measuring
tumor volumes in oncologic research, because diffuse
PET uptake patterns and intensities caused by inflam-
mation and infections can have very similar charac-
teristics compared to those caused by cancer within
the thoracic cavity [1]. Indeed, the segmentation of
diffuse patterns (both from CT and PET) is much
more challenging compared to the segmentation of
solid tumors; hence, our methods can readily be used
within different frameworks concerning cancer-related
problems. Our computational platform can also pro-
vide automated tumor volume measurement using the
same approach as the demonstrated measurement of
abnormal PET-CT findings in infection to provide
serial volumetric data and longitudinal changes in SUV
intensity.

In this paper, infectious disease progression was ana-
lyzed and reported for small animals; however, the ulti-
mate aim within the scope of this research is to find
and understand the progression of infectious diseases in
human subjects as well. To the best of our knowledge,
there is no systematic study exploring this longitudinal
phenomena in human clinical trials yet. Based on our
previous research [44-46] and some other works show-
ing the imaging findings of pulmonary infections, there
are certain similarities in image analysis of pre-clinical
and clinical subjects. Consolidations and GGOs are the



Bagci et al. EJNMMI Research 2013, 3:55 Page 18 of 20
http://www.ejnmmires.com/content/3/1/55

two main imaging patterns from CT images which are
observed both in human subjects and small animals. Sim-
ilarly, SUV analysis of lesions detected from PET images
is conducted in the same way for human subjects and
small animals [14]. On the other hand, we can argue that
the spectrum of the observed imaging patterns from CT
images will be wider than the observed imaging patterns
of small animals. For instance, in parainfluenza and H1N1
infections in human subjects [44-46], we observed not
only GGO and consolidations but also tree-in-bud, nod-
ules, pleural effusions, and interstitial thickening. There-
fore, additional individual analysis of how those patterns
change longitudinally (i.e., shape and volume) could bring
certain additional insights into the exploration of pul-
monary infection dynamics in human subjects. How-
ever, these analyses require separate CAD systems for
each abnormal imaging pattern pertaining to pulmonary
infections.

Future studies will aim to correlate the automated algo-
rithm’s performance with other parameters of respiratory
disease such as histopathology, inflammatory cell counts,
and viral/bacterial titers. For this purpose, we are cur-
rently developing novel methods for automatic airway
extraction and quantification as well as simultaneous co-
segmentation and co-evaluation of CT, MRI, and PET
multi-modality images [28,47].

Conclusions
Experimental results showed that automated computer-
detection of lesions in pulmonary infections through our
proposed computational pipeline is efficient and accurate
relative to the manual approaches and thereby increases
reproducibility of automated quantification of disease
immunopathology in small animal models. The immense
importance of infectious disease imaging in small ani-
mal models is based on the fundamental necessity to
study disease pathogenesis and host immune response
as well as to assess therapeutic measures such as med-
ications and vaccines, on a time scale basis on the
same subject(s). Measuring disease follow-up is especially
important because the evaluation of the natural progres-
sion of untreated disease as compared to the regression
of treated disease requires accurate serial quantification
over time.

Our proposed computational platform is novel and
unique, which is suited well for analysis and quantifica-
tion of pulmonary infections in pre-clinical and clinical
research questions. We demonstrated our computational
framework’s feasibility and robustness using longitudi-
nal PET and CT images obtained from multiple small
animals and compared its performance to expert delin-
eations.We concluded from the clinical findings derived
from the proposed computational pipeline that serial
PET-CT imaging is an invaluable hybrid modality for

tracking pulmonary infections in small animals and has
great potential to become the state-of-the-art imaging
tool in routine clinics for pulmonary infections. In a
broader perspective, we hope that the methods and
experiments presented here will support further explo-
ration of infectious diseases in different small animal
models.

Additional files

Additional file 1: Supplementary information for image registration,
image segmentation, and formulation for DSC and HD evaluation is
given.

Additional file 2: Movie 1. Segmentation and quantification of lungs
from CT. Please click the link below (using google account may avoid
possible browser problems): https://docs.google.com/file/d/
0B2XUKmP9htKTNDM5ZmtOY2Q2SUk/edit?usp=sharing.

Additional file 3: Movie 2. Segmentation and quantification of PET
images. Please click the link below (using google account may avoid
possible browser problems): https://docs.google.com/file/d/
0B2XUKmP9htKTQ2xoM01JWDZSUUU/edit?usp=sharing.

Additional file 4: Movie 3. Visualization of FDG uptake longitudinally
(rabbit 6). Please click the link below (using google account may avoid
possible browser problems): https://docs.google.com/file/d/
0B2XUKmP9htKTVTI4bFZ6NTJWTlk/edit?pli=1.

Additional file 5: Movie 4. Visualization of FDG uptake longitudinally
(rabbit 7). Please click the link below (using google account may avoid
possible browser problems): https://docs.google.com/file/d/
0B2XUKmP9htKTcE5EMUltbUpJd0E/edit?usp=sharing.

Additional file 6: Movie 5. Visualization of FDG uptake longitudinally
(ferret 2214). Please click the link below (using google account may avoid
possible browser problems): https://docs.google.com/file/d/
0B2XUKmP9htKTaUkyQzVzbDZaenc/edit?usp=sharing.
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