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Prediction
Immunohistochemistry (IHC) highlights specific cell types in tissues and traditionally involves antibody staining to-
gether with a hematoxylin counterstain. The intensity and pattern of hematoxylin staining differs between cell types
and reveals morphological characteristics of cells. Here, we propose that features in the hematoxylin stain can be
used to predict IHC labels, such as Neurofibromin (encoded by the gene NF1). The dataset consists of 7.2 million
cells from benign and kidney cancer cores in a tissue microarray. Morphology and hematoxylin (H&M) features de-
fined within QuPath are subjected to a clustering analysis in CytoMap. H&M features are also used to train 4 different
XGBoost models to predict high, low, and negative NF1 stain classes in benign renal tubules, clear cell (ccRCC), pap-
illary (PRCC), and chromophobe (ChRCC) renal carcinoma. The prediction accuracies of NF1 staining classes in be-
nign, ccRCC, ChRCC, and PRCC range between 70% and 90% with areas under the precision recall curve
PRAUCNF1-high= 0.82+0.12, PRAUCNF1-low= 0.62+0.25, and PRAUCNF1-negative= 0.83+0.16. Themost important
feature for predicting the NF1 class involves the minimum cellular hematoxylin staining intensity. Together, these re-
sults demonstrate the feasibility to predict NF1 expression solely from features in hematoxylin staining using open
source software. Since the hematoxylin features can be obtained from regular H&E and IHC slides, the proposed
workflow has broad applicability.
Introduction

Immunohistochemistry (IHC) has emerged as a powerful approach to in-
terrogate cellular mechanisms in normal and diseased tissues, as well as to
assist with diagnostic and prognostic questions.1,2 Using IHC protocols, tis-
sue sections on glass slides are stained with antibodies to visualize protein
expression in single cells and subcellular compartments. Further, tissues
are counterstained with hematoxylin (H) to identify cells and observe tissue
organization. IHC staining can be examined using a regular brightfield mi-
croscope and is widely used in clinical pathology practice. Slides stained
by IHC can be digitized on regular slide scanners and analyzed by image
analysis. Evaluating the staining of specific cells types within heterogenous
cell populations can be challenging because pathologists have to rely sole
on H without Eosin (E) for cellular characterization. However, IHC staining
only uses H without E. Machine-learning algorithms have the potential to
help with cellular classifications since they can be trained to distinguish dif-
ferent morphologies in H&E stained tissues.3–6 However, it is unclear
whether algorithms can utilize H staining by itself to separate cell types
and thus improve the interpretation of slides stained by IHC.
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Neurofibromin 1 (NF-1) is a tumor suppressor protein that negatively
regulates highly oncogenic RAS proteins.7 NF-1 contains an intrinsic gua-
nine nucleotide hydrolysis (GAP) function to convert active RAS-GTP to
RAS-GDP.8 In addition, NF-1 functions as a RAS effector, regulating RAS
signals for pathway activation. NF1 mRNA is expressed at varying levels
in adult tissues and is developmentally regulated during embryogenesis.9

To increase the activity of the tumor promoting RAS pathway, NF1 expres-
sion is decreased in multiple cancer types.10,11

Neurofibromin is a large (∼280 kDa)multifunctional protein and is one
of the largest genes in the human genome.12 Its best-known function is as a
GTPase-activating protein for Ras (Ras-GAP), thereby acting as an “off”
signal for the RAS-GTPase.13,14 However, neurofibromin hasmultiple addi-
tional interacting partners such as FAK, tubulin, and Spred (Sprouty-Re-
lated EVH1 domain-containing protein, another negative regulator of the
Ras-MAPK pathway), and is involved in several cell signaling pathways, in-
cluding the Ras/MAPK, Akt/mTOR, ROCK/LIMK/cofilin, and cAMP/PKA
pathways, thereby regulating many fundamental cellular processes includ-
ing proliferation and migration.7 NF1 loss-of-function mutation(s) within
the germline results in NF1 disease, a syndrome associated with an
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increased predisposition for benign peripheral nerve sheath tumors, neuro-
fibromas, as well as for malignant sarcomas, gliomas, pheochromocytomas,
gastrointestinal stromal tumors, and myeloid leukemia.15,16 Somatic NF1
mutations have been observed in many sporadic tumor types particularly
in melanoma, lung adenocarcinoma, and glioblastoma.17

QuPath is a multifunctional open-source software package for analysis
of whole-slide images stained with single or multiple stains. Using QuPath
commands, the user can co-register images, perform segmentation of ana-
tomical structures using pretrained convolutional neural networks, draw
the outlines of nuclei by using feature-based or deep learning-basedmodels
and obtain size, shape, and texture feature values from segmented
objects.18 As such, QuPath has broad applicability without the need of cod-
ing expertise. Recently, another open-source software called Histo-
Cytometric Multidimensional Analysis Pipeline (CytoMAP) became
available.19 CytoMap provides tools for data clustering, positional correla-
tion, dimensionality reduction, and 2D/3D region reconstruction to iden-
tify localized cellular networks and reveal both cellular- and tissue-level
relationships. We applied the unsupervised clustering function of CytoMap
to QuPath features. Cells in clusters can be visualized within the context of
the tissue architecture revealing interactions between clusters and allowing
for interpretation of cell morphology.19 Together, QuPath and CytoMap
provide a powerful toolkit based on multiple machine learning algorithms
for comprehensive analysis of cellular phenotypes and spatial relationships
in tissues stained by IHC.

In this study, we apply QuPath functionality to segment renal tubules
and single cells in kidney with and without cancer. We extract hematoxylin
and morphology (H&M) feature values from single cells and demonstrate
that H&M features can be used to separate cell populations in tissues
stained by IHC using clustering in CytoMap and to predict NF1 protein
expression.

Methods

QuPath software

We analyzed immunohistochemistry images from tissue sections in
QuPath (version 0.3.0), which is an open-source software for digital pathol-
ogy and whole-slide image analysis.20 Briefly, the software was developed
using Java 8, with a JavaFX interface for object annotation and visualiza-
tion. QuPath has built-in algorithms for general tasks, such as cell and tissue
detection, and interactive machine learning for object and pixel classifica-
tion. The software supports several image formats through Bio-Formats
and OpenSlide, including whole-slide images of IHC antibody stains.

CytoMap

CytoMap is an MatLab-based Histo-Cytometric Multidimensional Anal-
ysis Pipeline (CytoMap) for spatial analysis of segmented cell objects,19

which utilizes diverse statistical approaches to extract and quantify infor-
mation about cellular spatial positioning, preferential cell–cell associations,
and global tissue structure. CytoMAP is capable of simplifying spatial anal-
ysis by grouping cells into local neighborhoods and revealing complex pat-
terns of cellular composition and regional tissue structures.19

Cases, IHC staining, and TMA construction and imaging

We obtained tissue blocks from the pathology archive at the University
of Utah of patients who underwent nephrectomy for kidney cancer. The
study was approved by the Institutional Review Board under protocol
#00067518. Excess formalin-fixed and paraffin-embedded tissue was
used to generate tissue microarrays (TMA). The cases were deidentified be-
fore blocks were used for construction of TMAs. The digital slides from
these TMAs were also fully deidentified. For TMA construction, cylindrical
2 mm cores from benign and cancer regions were sampled from donor
blocks and placed into columns of recipient tissue array blocks. Each col-
umn consists of 6 cores from 1 patient, divided in 3 cores entirely composed
2

of benign renal parenchyma and 3 cores of cancer. Cases include 50 clear
cell renal cell carcinomas (ccRCC) in 5 TMA blocks, 30 chromophobe
renal carcinomas (ChRCC) in 3 TMA blocks, and 17 papillary renal carcino-
mas (PRCC) in 2 TMA blocks. TMA blocks were sectioned at 4-microns.
Slides were stained with the NF1 antibody on the Leica Bond Rx. NF1 anti-
body was purchased from Sigma–Aldrich (catalog #HPA045502), and was
validated in the Human Protein Atlas. The protocol on the Leica Bond Rx
consists of antigen retrieval #2 for 30 min and a 15-min incubation with
the antibody at a dilution of 1:200.

The NF1 antibody binding was visualized using 3, 3'-diaminobenzidine
(DAB). Slides were scanned on the Aperio AT2 slide scanner. Digital slides
were opened in QuPath and images of individual cores were saved with a
label of the row, column, and case ID number.
Renal tubule segmentation

We used a random tree-based algorithm available in QuPath to train a
pixel-level classification model to outline renal tubules. An algorithm was
trained in QuPath to outline renal tubules and consists of a random tree-
based pixel-wise classification model. The model was trained on manual
outlines of tubules from 10 tissue regions. To access the software module,
we applied the following commands: Classify>>Pixel classification>>Train
pixel classifier and used the detailed settings in Supplementary Table 1.
After training, the model was applied to all normal tissue cores to obtain
outlines of individual tubules with the minimum object size and minimum
hole size set at 50 and 20 μm2, respectively. The step-by-step process for
model training is illustrated in Supplementary Fig. 1.
Nuclear segmentation and generation of cell outlines

After applying the tubule segmentation algorithm, we segment nuclei
within the outlines of renal tubules in benign cores or across the entire tis-
sue of cancer cores. For segmentation of nuclei, we apply the STARDIST nu-
cleus segmentation algorithm21 to images at ×20 magnification. This
model is available withinQuPathwithout further training.We do not assess
its performance in our case because it was previously validated.21 To obtain
cell borders, we expanded the nuclear outlines by 5 pixels. The parameter
settings of the STARDIST code for nuclear segmentation are available in
the Supplementary Table 1.
Determining NF1 expression levels and calculation of H-scores

Determining cell-wise NF1 levels
Throughout the study, we use 3 ways to determine the expression of

NF1 protein in the cytoplasm in tissue sections stained by IHC.

1. Pixel level NF1 staining intensity: determined as the average intensity of
brown color in cytoplasmic pixels, named: “NF1 staining intensity.”

2. NF1 class: determined by an algorithm trained in QuPath that classifies
cells into negative, low, and high NF1 staining groups based on NF1
staining intensity level, named: “NF1 class.”

3. Predicted NF1 class: determined by an XGBoost model trained on H&M
features and named “predicted NF1 class.”
Calculation of NF1 staining intensity
The cell segmentation approach described above leads to a division of

cells into nuclear, cytoplasmic, andmembrane compartments. TheNF1 pro-
tein is expressed in the cytoplasm. Therefore, for each cell, the NF1 staining
intensity is calculated as the average intensity of cytoplasmic pixels. Each
pixel receives a value for the DAB channel proportional to the darkness of
brown staining in the pixel. The average of DAB pixel values in each cell
amounts to the cellular NF1 staining intensity. To determine the average
NF1 staining intensity of cells in the low or high NF1 classes, we averaged
the NF1 staining intensity across all cells in the class within each core.
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Determining cell-wise NF1 classes
We propose 3 NF1 classes, NF1-negative, -low, and -high. To determine

the class to each cell, we trained an algorithm to perform an automated
classification based on cytoplasmic NF1 staining. The algorithm was
trained using the object classification model in QuPath. Areas of tubules
containing high or lowNF1 stained cells as well as negative cells outside tu-
bules were manually annotated in 10 regions and used for training of a ran-
dom tree-based algorithm. Briefly, the training was performed using the
Classify>>Object classification>>Train object classifier module with the
detailed settings in Supplementary Table 1. The step-by-step training pro-
cess of themodel and the settings used in QuPath is available in Supplemen-
tary Fig. 2. Performance of the algorithm is assessed by visual evaluation of
each core. If the performance of tree-based NF1 classification model is
deemed unsatisfactory for a core, the algorithm is further trained with ex-
amples from that specific core.

The trainedNF1 classification algorithm is applied to segmented cells in
renal tubules and to cancer cores. The algorithm assigns each cell to either
the NF1-high, NF1-low, or to the NF1-negative class. Cell numbers in each
class are determined in Python 3.7.

Digital H-score
Digital H-scores are calculated using NF1 classes to summarize the NF1

expression in each core.22 The H-score is composed of percentages of cells
within high-, low-, or negative NF1 classes on a scale from 0 to 2 and calcu-
lated using the equation:

Digital H score ¼ 2∗high NF1 cell%þ 1∗ low NF1 cell%þ 0∗negative cell%

In the benign cores, we only include cells within renal tubules to calcu-
late the H-scores. In the cancer cores, we included all the cells.

Extraction of features from the hematoxylin channel, and cell clustering

Color deconvolution happens automatically, separating hematoxylin,
DAB and residual channels when images are uploaded to QuPath. We ob-
tained features from nuclear, cytoplasmic, and membrane compartments
using the hematoxylin channel. The features are divided into hematoxylin
(H) features capturing parameters from the distribution hematoxylin stain-
ing intensities and morphology (M) features capturing nuclear and cellular
shapes. Altogether, QuPath provides values of 33 H&M features from the
hematoxylin channel.

After nuclear segmentation in renal tubules and cancer regions, we
exported the coordinates and H&M features of each cell from QuPath. We
import feature values into CytoMap channels, normalize the features to
themaximumof each channel, and perform an unsupervised cell clustering.
Self-organizing map (SOM),23 an unsupervised clustering approach, was
used to assign each cell to a cluster designation. The Davies-Bouldin index
provides a score to determine the optimal number of clusters in the data
by calculating the ratio of similarity of feature values between clusters to
within a cluster. We retrieve the assignment of cell to cluster in QuPath
for visualization. We describe the code to provide cluster labels of cells in
tissue images in detail in the Supplementary Methods section.

Interrogation of biases in H&M feature values

Preanalytical variables during tissue collection and processing can gener-
ate abnormal hematoxylin staining, which in turn can introduce a bias in
hematoxylin-derived features. To identify a potential bias across TMA
cores, we used principal component analysis (PCA) on the hematoxylin fea-
tures from benign cores of all TMAs and plot the first 2 components. This
analysis showed the overlap of cases from 3 kidney cancer subtypes
(ccRCC, ChRCC, and PRCC) and no separation of cases into clouds, indicat-
ing the homogeneity of hematoxylin-derived feature values across all TMAs.

In addition to a potential preanalytical bias, we examined a bias that
might have arisen through incomplete unmixing between the hematoxylin
and DAB channel. This issue might lead to a contribution of brown NF1
3

staining intensity to the intensity of staining by blue hematoxylin.We calcu-
lated the Spearman correlation (R2 = 0.0017, Supplementary Fig. 3) be-
tween the average staining intensity of DAB and hematoxylin in the
cytoplasm of each cell, indicating the absence of a bias caused by insuffi-
cient unmixing of colors.

Training of models to predict the NF1 class

To train NF1 classification models using H&M features from each cell,
we divided cores into training, validation, and testing groups at the patient
level according to a ratio of 0.6:0.2:0.2. We trained separate models for
renal tubules, ccRCC, PRCC, and CRCC using the NF1 class as the prediction
target value. We evaluated the model performance using the classification
accuracy, which is the percentage of correctly classified cells. We per-
formed 5-fold cross validation on the training set in Python 3.7.

We tested the following models: DT – decision tree,24 RF – random
forest,25 LDA – linear discriminant analysis,26 XGBoost – regularization gra-
dient boosting framework,27 kNN – k nearest neighbor,28 MLP –multilayer
perceptron,29 and NB – naïve Bayesian.30 Model training parameters in
QuPath and Python are listed in Supplementary Table 2. We used the
published,31 default hyperparameters for each of the models.

To obtain variable importance of each of 33 H&M features, we applied
the XGBoost classificationmodel on all cases of renal tubules, ccRCC, PRCC,
or ChRCC cores. The XGBoost model outputs the variable importance score
of each feature in terms of its contribution to the overall accuracy.

Statistical analysis

Box plots were used to visualize differences between groups. Within
each box, the mean value is indicated by a black line and the whiskers of
the box include the 25th and 75th percentiles of data points.

We used OriginLab Pro 2022b to generate all visualizations. We used
One-way ANOVA to compare NF1 scores for 3 group (negative, low, and
high) comparisons and t-tests for 2 group comparison. We use a P-value
threshold of .05 to indicate significance.

We use accuracy, the area under the precision-recall receiver operating
characteristic curve (PRAUC), and the F1 score as metrics of performance
for the classification models, comparing both model performance with all
features and formodels trained on the top 5 features.We calculate accuracy
as the ratio between the number of correct predictions to the total number
of predictions, incorporating all 3 classes. We calculate the PRAUC and the
F1 score (the harmonic mean between precision and recall), for each class
versus the other 2 classes. The PRAUC and F1 score are particularly useful
for imbalanced data, i.e., when one class is rare compared to the others.

Results

Overview of workflow

The overall workflow in QuPath and CytoMap is depicted in Fig. 1. 10
TMA slides with clear cell renal cell carcinoma (ccRCC), papillary renal carci-
noma (PRCC), and chromophobe renal carcinoma (ChRCC) were stained for
NF1, digitized, and analyzed in QuPath.We trained a pixel-wise classification
algorithm to segment benign renal tubules and applied the STARDIST nuclear
segmentation algorithm for nuclear segmentation. We applied a tool in
Qupath to generate cell outlines by expanding nuclear contours. The analysis
of benign tissues involved only cells within tubules (Supplementary Fig. 1).

Next, we trained an algorithm in QuPath to automatically classify cells
into NF1-high (class label 2), NF1-low (class label 1), and NF1-negative
(class label 0) classes. To summarize the NF1 staining intensity in each
core, a digital H-score was calculated as the sum of products from each
class label times the percentage of cells in the class. The class designation
was also used for the training of models that predict the NF1 class from fea-
tures in the hematoxylin stain.

QuPath automatically unmixes the brown NF1 stain from the blue he-
matoxylin stain and calculates 33 feature values in the hematoxylin



Fig. 1.Workflow of data generation and visualization. (A)Data structure. 10TMA slides include 5 ccRCC TMAs (50 patients), 3 ChRCCTMAs (30 patients), and 2 PRCCTMAs (17
patients) displaying 3 benign and 3 cancer cores from each of 97 patients. TMA slides are stained by IHC with an anti-NF1 antibody. (B) Digital H-score. A digital H-score is
generated in QuPath for each core or for individual tubules. (C) Targeted feature extraction. After color deconvolution into hematoxylin (H channel) and DAB (NF1 channel)
channels in QuPath, 33 targeted feature values of morphology and hematoxylin (H&M features) are exported from each cell for further analysis. (D) Unsupervised cell
clustering based on H&M features using CytoMap. (E) Training of XGBost prediction model. H&M feature values are used as the input into prediction models that predict
the NF1 staining intensity class.
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channel. The features pertain to cell and nuclear morphology and hematox-
ylin intensity (H&M features) (Supplementary Table 3). We exported cell-
wise H&M features for unsupervised clustering of cells in CytoMap. In addi-
tion, we examined feature values for potential biases using principle com-
ponent analysis, before using the features to train machine learning
models predicting the NF1 class of each cell.

Digital H-score calculation in QuPath

In benign renal parenchyma, we observe three types of tubules com-
posed of cells within NF1-high, -low and -negative classes. Because propor-
tions of tubules vary amongst benign cores, we calculated a digital H-score
to determine the overall NF1 staining level of each core. Digital H-scores
were computed as described in the Methods section using the cell-wise
NF1 classes (Fig. 2A). We did not observe a significant difference (P >
.05) when comparing H-scores of benign cores associated with ccRCC,
PRCC, or ChRCC (Fig. 2B). For comparison with core-wise H-scores, H-
scores were calculated for populations of individual tubules that contain a
majority of either NF1-high or NF1-low cells. The same NF1 classification
used for benign tubules was applied to calculate the H-scores of cancer
cores (Fig. 2C). Hence, QuPath is capable of computing H-scores of tissue
sections with heterogenous IHC staining.

Cell cluster analysis in CytoMap

We generated cell clusters based on H&M features using the internal
functionality of CytoMap. The list of the 33 H&M features that are
4

generated by QuPath is shown in Supplementary Table 2. The 20 hematox-
ylin features include the mean, median, minimum, and maximum H stain-
ing intensity and standard deviation in whole cell, nuclear, cytoplasmic,
and cell surface compartments. The 13 morphology features that we ob-
tained from the H channel include the area, length, circularity, solidity
(area of nucleus/convex hull area), minimum, and maximum diameter of
the nuclear or cell outline and the nuclear to whole cell ratio. We excluded
potential biases in feature values caused preanalytical variables or inade-
quate unmixing of hematoxylin and DAP channels.

We transferred the 33 feature values together with the coordinates of
each cell fromQuPath to CytoMap. An unsupervised cell clustering analysis
was performed in CytoMap using all H&M features (Fig. 3A). The Davies-
Bouldin index reveals that 4 cell clusters are the optimal number for the
data (Fig. 3B). For each cluster, we determined the average NF1 expression
level in the cytoplasm and observed an average NF1 intensity of clusters 1
and 4 similar to high-NF1-expressing renal tubules, while clusters 2 and 3
displayed NF1 expression levels in the range of negative- and low-NF1 tu-
bules. Finally, using the cellular coordinates of each cell, we returned the
cell-wise cluster designations to QuPath. This allows visualizing the loca-
tions of cells within each cluster using a function called measurement map
in QuPath. Cells belonging to each cluster are labeled by a separate color
in a tissue overlay (Fig. 3C).

Tumor cores contain heterogeneous cell populations comprising cancer,
immune, and stromal cells. To determine if clustering in CytoMap can sep-
arate cell types, we analyzed cells from 1 core of ccRCC, PRCC, and ChRCC
(Fig. 4A). We obtained H&M features using QuPath from all the cells in the
core. While ccRCC and PRCC cores revealed 3 cell clusters, cells from



Fig. 2.Digital H score. (A) Benign tissue. Tubules are outlined as described in Fig. 1. Cells within tubules are classified based onNF1 staining intensity. NF1-high – red, NF1-low
– purple, and NF1-negative – blue. (B) H-scores in benign tubules.H-scores from entire cores are shown for benign cores associated with ccRCC, PRCC, and ChRCC cases. Each
dot in the box plot represents the H-score from 1 benign tissue core. For comparison of core-wise H-scores to H-scores of NF1-high and NF1-low tubules shown in the cell
segmentation panel in (A), the H-scores for high- and low-NF1 expressing tubules are shown in orange and light blue, respectively. H-scores of NF1 in tumor cores. All cells
in the core are analyzed. (C) H-scores of NF1 in tumor cores. All cells in the core are analyzed.

Fig. 3. Cell clustering using CytoMap. (A) Schematic workflow using CytoMap. Cell-wise H&M feature values together with cell coordinates are entered into CytoMap. (B)
CytoMap output. CytoMap identifies the optimal number of clusters in the data and provides each cell with a cluster label. The pink shaded areas represent the range of
NF1 staining intensity in high-NF1 expressing tubules, while the gray shaded area indicates NF1 staining levels in low-NF1 tubules. (C) Cluster visualization. Cluster labels
are retuned to QuPath for overlay with the original image.

W. Zhang et al. Journal of Pathology Informatics 14 (2023) 100196
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Fig. 4. Cluster analysis of ccRCC, ChRCC, and PRCC. (A) Representative region of interest from cores analyzed in CytoMap. Columns 1 and 2 show corresponding H&E and IHC
images after co-registration. The distance between the H&E and IHC tissue sections hinders a direct comparison at the cell level. The IHC image is analyzed in QuPath as
described in Fig. 2 to identify the NF1 class of each cell (third column). Fourth column shows the CytoMap cluster designation of each cell in the tissue context. (B) NF1
intensity comparison among clusters. Box plots show the NF1 staining intensity in each cluster. (C) Cluster representation inside NF1 classes. The percentage of cells within each
cluster is plotted on the y-axis for NF1-negative, NF1-low, and NF1-high classes (X-axis). Tissue images are screenshots at 40X magnification in QuPath.
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ChRCC were divided into 2 clusters (Fig. 4B). In ccRCC, the proportions of
cells in the three clusters are similar in NF1-negative, -low, and -high clas-
ses, while in ChRCC and PRCC, NF1-negative cells are primarily associated
with cluster 2 and cluster 1, respectively (Fig. 4C).

Next, we overlaid the cluster designation on an NF1 stained tissue
image to allow for visual interpretation of cell types (Fig. 4A, column
4). In ccRCC, we observed NF1 staining of stromal cells and a few cancer
cells, while in PRCC, immune cells, and stromal cells revealed greatest
NF1 staining. Cluster 1 in ChRCC contains NF1-high and -low cancer
cells, while cluster 2 contains mostly cells from the tumor microenviron-
ment. Altogether, the data demonstrate that the cluster analysis can re-
veal distinct cell types solely based on H&M features. It is notable that
the high NF1 expression in PRCC are immune and not cancer cells.
More importantly, CytoMap in conjunction with QuPath helps to resolve
cell types within tissues and improve the interpretation of positive cell
types.
6

Prediction of NF1 expression levels using H&M features

We find that H&M features can be used to predict NF1 protein expres-
sion levels in renal tubules and subtypes of kidney cancers. This is sup-
ported by the associations between NF1 classes and cell clusters that are
generated based on H&M features (Fig. 4). We trained 7 different machine
learning models using cells from benign cores to determine which model is
best suited to predict the NF1 class of a cell using the parameters for each
model described in SCIKIT-learn package.31 Cells were divided at the
patient level into training, validation, and testing groups. The training set
consists of 764 498, 752 750, and 376 243 cells in the NF1-negative, -
low, and -high classes, respectively. We performed a 5-fold cross validation
using the cells in the training set to determine how the selection of training
data effects the performance of the model. We assessed the performance of
each model by the percentage of accurately classified cells. Fig. 5A shows
that the Random Forrest (RF) model, the regularization gradient boosting



Fig. 5. Prediction of NF1 expression fromH&M. (A)Model selection. Eachmodel is trained on single cells using 33H&M features per cell to predict the NF1 class (high, low, and
negativeNF1 class). Data are divided at the patient level into training (60%), validation (20%), and testing (20%) sets. The accuracy (percent correctly classified cells) of each
model is determined and repeated in a 5-fold cross-validation approach. The resulting data points in the held-out test set are plotted on the y-axis. The types of models are
indicated below the x-axis (DT - decision tree, RF - random forest, LDA - linear discriminant analysis, XGBoost – regularization gradient boosting framework, kNN – k nearest
neighbor, MLP –multilayer perceptron, and NB – naïve Bayesian). (B) Comparison of “true class” and “predicted class” number of cells in NF1 classes. Cell numbers in NF1-high,
-low and -negative classes are depicted in the left bar, while cell numbers predicted by XGBoost are shown in the right bar. (C) Precision recall ROC curves of model trained on 33
H&M features. Gray – NF1 negative class, blue – NF1 low class, green – NF1 high class.
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framework (XGBoost) model, and a multi-layer perceptron (MLP) outper-
form the other 4 models. Based on its fast processing time, we selected
XGBoost to address additional classification questions.

As a next step, we used XGBoost to predict the NF1 class of cancer cells.
We trained separate models to predict NF1 classes in ccRCC, PRCC, and
ChRCC. Results shown in Fig. 5B demonstrate that numbers in the pre-
dicted NF1 classes are comparable to ground-truth NF1 classes and that
we have imbalanced number of classes. Misclassifications occurred
Table 1
Predicted versus ground-truth NF1 classes for benign tubules, cl
cell carcinoma (PRCC), and chromophobe renal cell carcinoma

Predicted NF1 expression class

T
ru

e
ssalc

n
oisser

p
xe

1
F

N

Benign cores Negative Low High P

Negative 0.6 0.33 0.064 N

Low 0.095 0.74 0.16 L

High 0.014 0.13 0.86 H

ccRCC Negative Low High C

Negative 0.86 0.14 0.005 N

Low 0.49 0.47 0.03 L

High 0.15 0.29 0.56 H
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primarily between negative and weak NF1 expressing classes in ccRCC
and PRCC, while in ChRCC, misclassification was primarily observed
between low and high NF1 classes (Table 1).

Because of the class imbalance of NF1 classes, we used precision and re-
call to evaluate the classification performance of each class (Fig. 5C). We
generated receiver operator curves (ROC) for 1 predicted NF1 class against
the other 2 classes and used the area under the curve (AUC) to evaluate the
performance of each model. The XGBoost models possess a good
ear cell renal cell carcinoma (ccRCC), papillary renal
(ChRCC).

RCC Negative Low High

egative 0.98 0.01 0.004

ow 0.62 0.30 0.08

igh 0.14 0.18 0.69

hRCC Negative Low High

egative 0.66 0.33 0.01

ow 0.16 0.81 0.03

igh 0.03 0.48 0.49



Table 2
Feature ranking in XGboost models trained on benign or individual cancer cells.
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performance for predicting NF1-high and -negative cells. However, the per-
formance of predicting the NF1-low class was reduced in ccRCC and PRCC
with PRAUC = 0.4 and PRAUC = 0.41, respectively. Using the harmonic
mean of precision and recall, we calculated F1 scores for all models and
classes (Supplementary Table 4), confirming the PRAUC results. We no-
ticed poor performance of an XGBoost model trained on benign tubules
and applied to cancer cores (data not shown). Altogether, the XGBoost
models trained separately on benign tubules and 3 subtypes of kidney can-
cer possess adequate performance to predict the NF1 classes, demonstrating
feasibility of predicting an IHC label from hematoxylin features.

While separate training of models was required for benign and cancer,
models may rely on the same H&M features to predict the NF1 class in
the respective tissue entity. To determine whether the 4 XGBoost models
prioritize the same or different features for NF1 class prediction, we ob-
tained a rank list of feature importance for each model (Supplementary
Fig. 5A). We also performed an ablation study, comparing models that
used decreasing numbers of features in the prediction, starting with a
model trained on only the top-ranked feature (Supplementary Fig. 5B).
Next, we compared the top 5 features that each model selected and noticed
considerable redundancy across models (Table 2). Altogether, there are
only 10 distinct features in the top 20 from all 4 models. The top selected
feature in all 4 models constitutes the minimum hematoxylin intensity in
the cell and encompasses the minimum hematoxylin intensities in the nu-
cleus and cytoplasm, whichwere also amongst the top features in the 3 can-
cer models. In addition, the standard deviation of hematoxylin pixel
intensity in nucleus was selected by 3 models, which can loosely be related
to chromatin compaction. Altogether, analysis of IHC stained tissues with
QuPath together with CytoMap is broadly applicable and reveals novel as-
sociations of hematoxylin features and IHC-stained cell types. Together, the
open source software packages can be used for quantitative analysis of tis-
sue staining and interpretation of staining patterns in tissues.

Discussion

Manual scoring of IHC images using H-scores, which is the current stan-
dard of practice, is known to have several shortcomings in terms of repro-
ducibility and scalability to large studies. The introduction of automated
digital image analysis has brought a new technique that may help to stan-
dardize and objectify pathological analysis for assessment of biomarkers.
In addition, the separation of hematoxylin andDAB channels in IHC-stained
slides allows us to determine whether features in the hematoxylin channel
can predict IHC labels.

We performed a comprehensive image analysis of tissues stained by IHC
to determine the expression of NF1 by leveraging the functionalities of the
interactive QuPath and CytoMap software packages. Compared to commer-
cial digital image analysis software (Halo and VisioPharm), QuPath is an
open source software for analysis of tissues stained by H&E, IHC, and
multiplexed immunofluorescence. Researchers have a chance to examine
and modify the code in order to optimize the performance for specific use
8

cases, reproduce analysis results through publishing the settings selected
for training of models, and share trained models with collaborating
teams, thereby benefitting the scientific community around the world
through transparency and rigor of image analysis approaches.

The features measured by QuPath belong to the category of targeted,
handcrafted (HC) features that can easily be interpreted. Several other stud-
ies highlight the ability of HC features and in particular nuclear features, to
predict patient outcomes.32 However, the currently published nuclear fea-
tures are related to shape, density, and orientation of nuclei and not related
to the staining intensity of hematoxylin. In contrast to models using mor-
phology features, our models, which predict NF1 IHC staining intensity,
mostly select hematoxylin features. As of December 2022, we did not find
a study in PubMed aiming to develop amodel that predicts IHC labels solely
based on multiple features in the hematoxylin channel. The closest to our
approach is a report that uses QuPath to identify features in tumor cells
that predict Ki67 positivity in the nucleus. The mean optical density of he-
matoxylin in the nucleus emerged as the best feature to distinguish Ki67
positive from negative cells, providing the pathologist with a fast method
of identifying the proliferating compartment of the tumor through a quan-
titative assessment of only 1 nuclear feature in the hematoxylin channel.5

Thus, it appears that our approach using multiple features in the hematox-
ylin channel has not been used previously. A potentially broad applicability
of using hematoxylin-derived features for prediction relies on the color
unmixing functions in QuPath that can generate hematoxylin channels
from slides stained with H&E, IHC, or Mason trichrome. Therefore, as a
follow-up study it would be interesting to compare the prediction of NF1
staining from unmixed H&E images or from virtual hematoxylin stains.

Because IHC staining is an expensive, time-consuming process which
can introduce discordant results due to variability in sample preparation
and pathologist subjectivity, multiple groups attempted to predict IHC la-
bels from H&E stained digital slides. In contrast to IHC staining, H&E stain-
ing—which highlights cellular morphology—is quick and less expensive. In
2016, a group at the University of Helsinki identified immune cell-rich and
immune cell-poor regions in H&E stained cancer tissues guided by the pan-
leukocyte marker, CD45. Using a pretrained convolutional neural network
(CNN) to quantify immune cell infiltration reached a high agreement with
the assessment by a pathologist.3 A different group trained a CNN to detect
Ki67+ and Ki67- cells in an H&E image. The group reported a correlation
coefficient of 0.8 between the percentage of Ki67 positive nuclei predicted
by the model and the percentage of nuclei stained by Ki67 in a parallel tis-
sue section.4 A similar strategy was applied to another use case, predicting
the estrogen receptor status inH&E images of breast cancer. The authors re-
ported an AUC = 0.92 in a heterogenous, multi-country dataset of 3474
patients.6 Most recently, the HEROHE grand challenge was organized to
identify high performing machine learning algorithms for prediction of
HER2 expression in breast cancer from H&E images.33 The top-performing
teams achieved AUCs of 0.71–0.74, with 1 team reaching an AUC of 0.84.
The H&E images and ground-truth IHC and ISH HER2 annotations for
each case are publicly available. The above studies represent a few
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examples of a large effort within the digital pathology community to de-
velop algorithms that can be used to predict IHC labels in cells from H&E
stained tissues. It is unclear whether both hematoxylin and eosin are
needed for the prediction or if one stain would be sufficient.

While we believe that our study bears considerable novelty, it also has
several limitations. The cases used for TMA construction represent a single
institution study, were processed by the same pathology laboratory over a
10-year period with minimal changes in protocols, were stained with the
same hematoxylin formulation and stained as 1 batch on the autostainer
for NF1. Neurofibromin was selected as a marker to provide proof-of-
concept of this analytical approach because of its broad relevance to cancer
and to the availability of validated antibodies. The slides were scanned al-
together on the same slide scanner. Therefore, the technical variability of
the study is smaller than what we would expect to see in a multi-
institutional cohort study and a larger, independent study set would be de-
sirable to confirm our results. The hematoxylin features provided by
QuPath do not include features that capture patterns of hematoxylin stain-
ing. It would be interesting to determine whether the model performance
could be improved by including texture features in the hematoxylin chan-
nel, which exist in Matlab.34 Finally, we experienced imbalances in the
data. The ccRCC and PRCC kidney cancer subtypes contain 70–80% of
NF1 negative cells, while the ChRCC mostly consists of low-expressing
NF1 cells. Even though, we used precision and recall to evaluate the perfor-
mance of the models, this does not overcome the imbalance effecting the
training data. Furthermore, the PRAUC analysis compares 1 group versus
the other 2 groups. This does take into consideration the ordinal structure
of the data. The data structure could be simplified by using a 2-tiered sys-
tem instead of our arbitrary choice of a 3-tiered system. The ultimate use
of NF1 results is needed to decide the appropriate number of NF1 classes.
Altogether, there is a need to further optimize and validate the approach
we propose and to determine how it might work for other IHC labels that
are different from NF1.

Conclusion

In conclusion, the open source digital image analysis software pack-
age, QuPath, provides a well-designed and multi-functional platform for
data generation and visualization in clinical studies and research that
does not require coding skills by the users. The compatibility of QuPath
with other software packages, for example, CytoMap, provides addi-
tional analytical opportunities. Our study shows that morphology and
hematoxylin features can predict NF1 expression levels in single cells
from renal tubules and kidney cancer, indicating the potential of ma-
chine learning approaches to improve cancer diagnosis, prognosis, and
treatment decisions.
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