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Ryanodine receptors (RyRs) and inositol triphosphate receptors (InsP3Rs) are structurally
related intracellular calcium release channels that participate in multiple primary or
secondary amplified Ca2+ signals, triggering muscle contraction and oscillatory Ca2+
waves, or activating transcription factors. In the heart, RyRs play an indisputable role
in the process of excitation–contraction coupling as the main pathway for Ca2+ release
from sarcoplasmic reticulum (SR), and a less prominent role in the process of excitation–
transcription coupling. Conversely, InsP3Rs are believed to contribute in subtle ways, only,
to contraction of the heart, and in more important ways to regulation of transcription
factors. Because uncontrolled activity of either RyRs or InsP3Rs may elicit life-threatening
arrhythmogenic and/or remodeling Ca2+ signals, regulation of their activity is of paramount
importance for normal cardiac function. Due to their structural similarity, many regulatory
factors, accessory proteins, and post-translational processes are equivalent for RyRs and
InsP3Rs. Here we discuss regulation of RyRs and InsP3Rs by CaMKII phosphorylation,
but touch on other kinases whenever appropriate. CaMKII is emerging as a powerful
modulator of RyR and InsP3R activity but interestingly, some of the complexities and
controversies surrounding phosphorylation of RyRs also apply to InsP3Rs, and a clear-cut
effect of CaMKII on either channel eludes investigators for now. Nevertheless, some effects
of CaMKII on global cellular activity, such as SR Ca2+ leak or force-frequency potentiation,
appear clear now, and this constrains the limits of the controversies and permits a
more tractable approach to elucidate the effects of phosphorylation at the single channel
level.
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CaMKII REGULATION OF CARDIAC RYANODINE RECEPTORS
GENERAL CONSIDERATIONS
Ryanodine receptors (RyRs) are the calcium release channels of
sarcoplasmic reticulum (SR) that provide the majority of the
calcium ions (Ca2+) that are needed for contraction of car-
diac and skeletal muscle. In the heart, these intracellular Ca2+
release channels are essential for normal cell development and
indispensable for life, as demonstrated by the fact that genetic
ablation of RYR2, the gene encoding for the cardiac isoform
of the RyR channel (RyR2), causes death at early embryonic
stage in mice (Takeshima et al., 1998). In humans, single amino
acid mutations in RyR2 lead to life-threatening cardiac arrhyth-
mias, also as demonstrated by the ∼160 mutations that have
been linked so far to catecholaminergic polymorphic ventricu-
lar tachycardia (CPVT; Priori and Chen, 2011). Thus, in their
intracellular environment, RyR2 channels must be finely regu-
lated so that their output signal (Ca2+) may induce finely graded
cell contraction without igniting cellular processes that may lead
to aberrant electrical activity or pathological cellular remodeling.
This review will concentrate on regulation of RyR2 by phos-
phorylation, a common post-translational process that confers
dynamic functional modulation to a myriad of ion channels and
transporters. In the majority of cases, phosphorylation of ion

channels or transporters provides an additional layer of regu-
lation without actually being the effector or trigger of activity,
i.e., in the case of RyR channels, phosphorylation modulates
the effect of Ca2+ on cardiac RyR (RyR2) or depolarization
on skeletal RyR (RyR1) without having the inherent ability to
open or close the channel per se. In a useful analogy, phos-
phorylation and Ca2+/depolarization would be similar to the
“volume” and “on/off” switches, respectively, of the radio in
which RyR songs are played. However, as we will see on several
sections of this review, this mode of regulation is so contro-
versial that a definitive role for RyR2 phosphorylation has not
been reached yet, despite the paramount importance of this pro-
cess in physiological and pathophysiological conditions. RyR2
may be phosphorylated in vitro and in vivo by several kinases,
but here we will concentrate on CaMKIIδ (the most abundant
CaMKII expressed in the heart and referred to here simply as
“CaMKII”), and incorporate protein kinase A (PKA) whenever
relevant, as these two kinases share some common transduction
pathways, bear the most relevance in cardiac diseases and have
been studied the most. Similarly, at least two splice variants of
CaMKIIδ are expressed in cardiomyocytes, CaMKIIδC (cytosolic)
and CaMKIIδB (nuclear), and we will identify their differential
effect whenever appropriate.
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RyR2 CHANNEL PROTEIN: COMPLEX STRUCTURE AND MULTIPLE
PHOSPHORYLATION SITES
The RyR2 channel is a homotetrameric protein of ∼2 million
Da that is often complexed with several accessory proteins (see
below), forming an intricate multi-protein array (Marx et al., 2000;
Bers, 2004; Valdivia, 2013). The RyR2 monomer (almost 5,000
amino acids) is organized as a series of discrete domains, with
the carboxy-terminal segment crossing the SR membrane as few
as four and as many as ten times (depending on the model) and
forming the Ca2+-permeable pore, whereas the bulk of the pro-
tein (∼90%) protrudes into the cytosol to bridge a ∼15–20 nm
gap between the SR and t-tubule membranes (Hamilton and Sery-
sheva, 2009; Capes et al., 2011; Van Petegem, 2012). The cytosolic
portion of the channel contains multiple regulatory domains, most
prominently Ca2+ activation and inactivation sites, but also bind-
ing sites for energy sensors such as nucleotides (ATP, ADP, and
AMP) and inorganic phosphate, metabolites such as pyruvate,
fatty acids and polyamines, and ions such as Mg2+, H+, and Cl−
(Zucchi and Ronca-Testoni,1997; Fill and Copello,2002; Meissner,
2004). The cytoplasmic site harbors also multiple phosphoryla-
tion epitopes (see below). Therefore, the RyR2 channel may act as
a molecular switchboard that integrates a multitude of cytosolic
signals such as dynamic and steady Ca2+ fluctuations, oxidation,
metabolic states, β- adrenergic stimulation (phosphorylation), etc.
and transduces these cytosolic signals to the channel pore to release
appropriate amounts of Ca2+. Furthermore, Ca2+ release is criti-
cally influenced by luminal (intra-SR) factors such as Ca2+ content
and protein interactions, thus conferring RyR2 channels an addi-
tional role as integrative switch-valves that restrict luminal Ca2+
overload, e.g., during sympathetic stimulation. Most of the signal-
decoding structures are integral domains of the RyR2 protein, but
as if this huge structural assembly were not sufficiently complex,
RyR2 channels are also capable of protein–protein interactions
that allow them to bind, in some cases steadily and in other cases
in a time- and Ca2+-dependent manner, to smaller and inde-
pendently regulated accessory proteins that add another layer of
versatility (and complexity) to regulation of Ca2+ release in vivo.
The best known RyR2-interacting proteins are calmodulin (CaM),
which tonically inhibits Ca2+ release (Balshaw et al., 2002; Yang
et al., 2014) FKBP12.6, which stabilizes RyR2 closures (Marx et al.,
2000; Kushnir and Marks, 2010; but see also Timerman et al., 1996;
Xiao et al., 2007), sorcin, which inhibits Ca2+ release in a Ca2+-
dependent manner (Farrell et al., 2003), and the ternary complex
triadin-junctin-calsequestrin, which “senses” luminal Ca2+ con-
tent and modulates RyR2 activity, probably by acting as direct
channel ligands (Gyorke et al., 2004). More recently, RyR2 has
been found to hold anchoring sites for PKA, protein phosphatase 1
(PP1) and 2A (PP1 and PP2A), phosphodiesterase 4D3 (PDE4D3)
and CaMKII (Marx et al., 2000; Currie et al., 2004; Lehnart
et al., 2005), underscoring the importance of RyR2 regulation by
phosphorylation.

RyR2 AS SUBSTRATE FOR CaMKII AND PKA
The multi-protein complex described above that includes kinases
and phosphatases associated to the RyR2 strongly suggest that
this channel is an avid target of downstream signaling effectors
of the β-adrenergic system. PKA is a classical effector of the

β-adrenergic pathway and, although the extent of activation of
CaMKII by β-adrenergic stimulation and the precise signaling
pathways involved are still incompletely understood, it is also
accepted that CaMKII is involved in the inotropic and lusitropic
effects of sympathetic stimulation (Grimm and Brown, 2010).
Therefore, RyR2 proteins are natural targets of PKA and CaMKII
and indeed, stimulation of beating hearts with β-adrenergic ago-
nists readily triggers phosphorylation of RyR2 (Takasago et al.,
1989; Witcher et al., 1991; Benkusky et al., 2007). Which kinase
phosphorylates RyR2 to a greater extent? As early as 1989 (and
before the controversy surrounding the stoichiometry of CaMKII
and PKA phosphorylation of RyR2 that started in 2000, see below),
Takasago et al. (1989) reported that the extent of RyR2 phospho-
rylation by CaMKII was ∼4 times greater than that of PKA in
dog hearts. This was confirmed by Witcher et al. (1991) in the
same animal species. Later, using phospho-specific antibodies and
autoradiograms, Rodriguez et al. (2003) confirmed that CaMKII
phosphorylated at least four sites per each PKA-phosphorylated
site. Hence, there is significant evidence indicating that RyR2 are
far better substrates for CaMKII than they are for PKA, which is
not entirely surprising given that the phosphorylation consensus
for CaMKII: R/K-X-X-S/T (where X is any amino acid residue) is
less stringent than that for PKA: R-R-X-S/T (Pinna and Ruzzene,
1996; however, as we will see below, a CaMKII or PKA phospho-
rylation consensus does not necessarily result in CaMKII or PKA
phosphorylation).

Despite the presence of multiple phosphorylation consensuses
in each RyR2 subunit (George, 2008) and the fact that RyR2 chan-
nels are eager substrates for several kinases (see above), only three
phospho-sites have been discovered to date. Let’s discuss the most
salient features of each of these sites.

Serine 2808 (S2808, mouse and human nomenclature) was first
discovered by Witcher et al. (1991) as a CaMKII site but later
Marx et al. (2000), Wehrens et al. (2006) labeled it as an exclu-
sive PKA site, despite the fact that RyR2 channels with specific
ablation of this phospho-epitope (RyR2-S2808A) were still phos-
phorylated by PKA (Benkusky et al., 2007). So, a major issue with
this site is whether it’s a preferred substrate for CaMKII or PKA.
Since the study by Marx et al. (2000) reporting that S2808 was
hyperphosphorylated in heart failure patients and that its phos-
phorylation enhanced dramatically the activity of RyR2 channels,
several groups have studied this phospho-site in detail (Jiang et al.,
2002; Rodriguez et al., 2003; Stange et al., 2003; Currie et al., 2004;
Ai et al., 2005; Xiao et al., 2005; Carter et al., 2006; Kohlhaas
et al., 2006; Huke and Bers, 2008; MacDonnell et al., 2008; Fis-
cher et al., 2013), with the majority of evidence pointing to S2808
being a target for PKA, CaMKII and possibly PKG. Also, most
studies find S2808 constitutively phosphorylated [basal phospho-
rylation ∼50–75% in several animal species and humans (Jiang
et al., 2002; Rodriguez et al., 2003; Carter et al., 2006; Huke and
Bers, 2008)], thus raising doubts that this site may be a reli-
able index of abnormal PKA-phosphorylation in heart failure
patients. Indeed, Benkusky et al. (2007) found that mice with
genetic ablation of the S2808 phospho-epitope (RyR2-S2808A)
do not alter their β-adrenergic response, have cardiomyocyte
function almost unchanged, and are not significantly protected
against the maladaptive cardiac remodeling induced by chronic
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stress. Further, although PKA phosphorylation of RyR2 modi-
fied single-channel activity, its effect was modest and occurred
at activating (systolic) [Ca2+], only, not at the expected low
(diastolic) [Ca2+], where it would cause significant Ca2+ leak
(Bers et al., 2003). The lack of protection against heart failure
dysfunction as well as the normal β-adrenergic response of the
RyR2-S2808A mice were confirmed by MacDonnell et al. (2008),
Zhang et al. (2012) using the same transgenic mouse line. In the
scheme of Marx et al. (2000), which is continuously validated and
extended by additional reports by the same group (for example,
Wehrens et al., 2006; Shan et al., 2010a,b), PKA phosphoryla-
tion of S2808 led to dissociation of FKBP12.6, which in turn
destabilized the closed state of the channel and induced multi-
ple subconductance states, overall increasing RyR2 Ca2+ fluxes,
especially at diastolic [Ca2+]. However, most of the central tenets
of this scheme have not been confirmed by others (reviewed by
George, 2008; Currie, 2009; Eschenhagen, 2010; Bers, 2012; Val-
divia, 2012). Specifically, Stange et al. (2003) found no effect of
ablating the S2808 phospho-site (RyR2-S2808A) or simulating
constitutive activation (RyR2-S2808D) in the activity of the chan-
nel or its affinity for FKBP12.6. That phosphorylation of RyR2
does not appear to dissociate FKBP12.6 was also found by Xiao
et al. (2004), Guo et al. (2010). Also, there are no reports, except by
the Marks’ group, indicating that RyR2 phosphorylation induces
subconductance states, presumably the hallmark of FKBP12.6
dissociation. Lastly, several groups have independently reported
that FKBP12.6 does not affect RyR2 activity at all (Timerman
et al., 1996; Xiao et al., 2007) or that it has modest effects, only
(Guo et al., 2010). Thus, although it is indisputable that S2808
is phosphorylated by PKA, CaMKII and possibly other kinases,
the functional output of such reaction has been difficult to pin
down and is the subject of intense debate. Further studies are
needed and should continue to provide insights as drugs designed
to prevent FKBP12.6 dissociation enter clinical trials and testing
in humans.

Serine 2814 (S2814) was discovered by Wehrens et al. (2004)
as a CaMKII site and, although there is consensus that CaMKII
is the preferential kinase for this site, there is less agreement
that it is the only CaMKII site in RyR2. As mentioned above,
S2808 is also a target for CaMKII, and since there are at least
∼4 CaMKII sites for each PKA site, this suggests that there are still
other CaMKII sites yet to be discovered. Although S2814 is only
six amino acid residues downstream of S2808 and forms part of
the same RyR2 “phosphorylation hot spot” (Valdivia, 2012; Yuchi
et al., 2012) the role of S2814 has been less controversial because
so far it appears to be a more specific substrate for CaMKII,
despite the fact that it forms part of a non-canonical CaMKII
phosphorylation consensus: 2805RRISQTSQVSV2815 (S2808 and
S2814 are underlined). Interestingly, another serine residue within
that hot spot, S2811, is also part of a non-canonical CaMKII
consensus and yet, it appears to be phosphorylated in vitro by
PKA and CaMKII (Yuchi et al., 2012) and in vivo in mice stim-
ulated by β-adrenergic agonists (Huttlin et al., 2010). Whether
S2811 contributes to the effect of CaMKII phosphorylation of
RyR2, or distorts the signal of phospho-specific antibodies pS2808
and pS2814 (Huke and Bers, 2008), making it difficult to dis-
cern the specificity of kinases for these phospho-epitopes, is

still unclear. In quiescent cardiomyocytes, S2814 is barely phos-
phorylated (unlike S2808), and although its activity-dependent
phosphorylation may be prevented by CaMKII inhibitors, the
basal phosphorylation at rest is maintained by a Ca2+-dependent
kinase other than CaMKII (Huke and Bers, 2008). Thus, at
least two Ca2+-dependent kinases phosphorylate S2814, possi-
bly leading to the same functional output (discussed below).
Whether S2814 phosphorylation contributes to the inotropic
effects induced by β-adrenergic stimulation has not been firmly
established. However, mice with germline ablation of the S2814
phospho-epitope (RyR2-S2814A) appear more resilient than WT
against a variety of cardiac insults. van Oort et al. (2010) found
that RyR2-S2814A mice were protected from catecholaminergic-
and pacing-induced tachyarrhythmias, whereas Ather et al. (2013)
reported that arrhythmogenic spontaneous Ca2+ waves that were
prevalent in the mdx mice (Duchenne muscular dystrophy model),
were suppressed by crossbreeding with the RyR2-S2814A mice.
In a protocol of ischemia-reperfusion injury, the RyR2-S2814A
mice exhibited significantly fewer premature beats (that could be
ascribed to delayed afterdepolarizations) than WT, a protection
that was not seen in mice with ablation of two phospholam-
ban phospho-sites (PLB-DM; Said et al., 2011). Respress et al.
(2012) reported by RyR2-S2814 mice fared much better than
WT after TAC (transverse aortic constriction)-induced heart fail-
ure, but interestingly, were not protected against MI (myocardial
infarction)-induced heart failure, proposing that CaMKII phos-
phorylation of RyR2 plays a role in non-ischemic forms of heart
failure, only. Purohit et al. (2013) reported that CaMKII acti-
vation and phosphorylation of S2814 were required to induce
atrial fibrillation in angiotensin-infused mice. Thus, several lab-
oratories (albeit all of them using the same mouse line) have
independently bestowed on S2814 a preponderant role in cardiac
protection, wherein inhibition of S2814 phosphorylation averts
the functional and structural damage to the heart induced by
heart failure, atrial fibrillation, and other insults. Since it appears
illogical that S2814 phosphorylation, a seemingly common reac-
tion, was naturally designed to wreak havoc in the heart’s function
and structure, it is therefore important to demarcate the limits
in which S2814 phosphorylation turns pathogenic. Interestingly,
mice with constitutive activation of S2814 (S2814D), have struc-
turally and functionally normal hearts without arrhythmias (van
Oort et al., 2010) which is surprising in the context of the presum-
ably malicious role played by S2814 phosphorylation described
above.

Finally, Serine 2030 (S2030) was found by Xiao et al. (2005)
using classical phospho-epitope mapping. Although S2030 is
squarely within a CaMKII phosphorylation consensus (2027R-L-
L-S2030), oddly this site is preferentially phosphorylated by PKA,
at least in vitro. This site, therefore, like the other sites discussed
above, does not follow in silico predictions of kinase specificity and
conforms instead to the cryptic rules of steric hindrance, topolog-
ical association to specific kinases, substrate availability, etc. that
operate in vivo and separate predicted from actual phosphorylation
sites. Experiments in vitro revealed a major role for S2030 in the
control of RyR2 activity, and in heart failure patients, it appeared
as a reliable marker of RyR2 dysfunction (Xiao et al., 2006), pre-
sumably even superseding S2808 (Marx et al., 2000). The RyR2
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channel appears to be completely unphosphorylated at S2030 in
quiescent cardiac myocytes, and phosphorylation is promoted by
β-adrenergic stimulation (Huke and Bers, 2008), in line with in
vitro experiments that indicate PKA phosphorylation of this site.
However, the precise role of S2030 in intracellular Ca2+ homeosta-
sis and cardiac performance, and its involvement in pathological
states of the heart are not well understood yet. Mouse lines with
genetic ablation of this site (RyR2-S2030A) have just been gener-
ated (Camors et al., 2014) and should shed light on the functional
role of this novel phopho-site.

FACTORS THAT COMPLICATE INTERPRETATION OF RyR2
PHOSPHORYLATION EFFECTS
Many lines of evidence demonstrate that RyR2 channels are phos-
phorylated in vitro and in vivo, but a fundamental question still
pervades the field: what is the functional effect of RyR2 phosphory-
lation? This appears as a simple question, set for a straightforward
answer, but examining the diverse and apparently opposite effects
that have been published in the topic in the last ∼2 decades, the
only safe response seems to be that phosphorylation does some-
thing to RyR2 activity. All potential functional outcomes for RyR2
phosphorylation (increase, decrease, and no effect on activity)
have been reported, with tantalizing hints toward, but no clear
factors responsible for, the radical differences. Also, the question
needs to be framed in a specific integrative context for a defined
response to hold some truth. For example, whereas there is com-
pelling evidence that PKA can alter RyR2 activity at the single
channel level (Hain et al., 1995; Valdivia et al., 1995; Marx et al.,
2000; Jiang et al., 2002; Uehara et al., 2002; Carter et al., 2006;
Wehrens et al., 2006; Benkusky et al., 2007; Li et al., 2013), multi-
ple self-regulatory systems operating in intact cells (not to mention
the whole heart) may bring down this response to undetectable
levels so that the answer from the cellular viewpoint would appear
to be “no effect.”

Although not always sure foretellers of a defined outcome, there
are some factors that modify the activity of RyR2s and are likely
to complicate their response to phosphorylation. First, as stated
above, RyR2 channels contain multiple phosphorylation sites that,
depending on their phospho-state, may attenuate or synergize
the effect of the other sites, or may require prior phosphoryla-
tion to activate the whole protein. This has become evident in
experiments in which it has been possible to link variable levels
of phosphorylation with defined single-channel activity (Carter
et al., 2006) and also where it is clear that phosphatases activate
RyR2 channels to higher levels than either PKA or CaMKII alone
(Lokuta et al., 1995; Terentyev et al., 2003), suggesting that dephos-
phorylation uncovers a set of phospho-sites that modulate RyR2
activity but are not affected by either kinase. Second, RyR2 activ-
ity has long been established to be dependent on the speed of
Ca2+ application [as inferred by Fabiato in his classical experi-
ments that characterized CICR (Fabiato, 1985) and demonstrated
in single channel experiments (Gyorke and Fill, 1993)], and this
in turn may greatly influence the overall effect of phosphorylation
(Valdivia et al., 1995; Jiang et al., 2002). For example, PKA phos-
phorylation of RyR2 channels increases their transient component
of activity (peak activation) and accelerates their rate of adaptation
to a steady level of activity. In cellular settings, this effect would

translate into faster rates of Ca2+ release in response to a fast and
transient Ca2+ entry (such as ICa) and into little effects on steady
RyR2 activity. In fact, experiments in which SR Ca2+ load and ICa

were kept constant showed that β-adrenergic stimulation of ven-
tricular myocytes accelerated the rate of Ca2+ release (Ginsburg
and Bers, 2004), and in permeabilized cells with constant [Ca2+],
PKA had little effect on RyR2 activity (Li et al., 2002). Thus, not all
effects of RyR2 phosphorylation are detectable at constant [Ca2+],
the preferred method of testing for such effects; fast and transient
Ca2+ stimuli are required to unveil some of its most critical effects.
Third, there exist self-correcting mechanisms that preclude per-
sistent activation (or inhibition) of RyR2s in intact cells and can
mitigate effects of phosphorylation in a few beats (Eisner et al.,
1998). These mechanisms invoke restoration of steady-state Ca2+
fluxes when a single component of the excitation–contraction cou-
pling machinery is perturbed or malfunctions. Thus, in its simplest
terms, if the effect of PKA phosphorylation of RyR2 channels was
to cause a persistent Ca2+ leak (as postulated by Marx et al., 2000),
then the persistent leak of Ca2+ would necessarily cause at least
partial SR Ca2+ depletion, which in turn would re-tune Ca2+
release and stop the leak. Thus, again, RyR2 responses to phos-
phorylation that are discretely detected at the single channel level
for a relatively long period of time, may be short-lived or unde-
tectable in cellular settings due to self-correcting mechanisms.
Lastly, other factors such as Mg2+ (Li et al., 2013) and luminal
[Ca2+] (Xiao et al., 2005) seem to be required in just about the
right quantity for phosphorylation to exert maximal effects. Over-
all then, the response of RyRs to phosphorylation is neither simple
nor monotonous; it is complicated by factors intrinsic and extrin-
sic to the channel protein and depends critically on the context
(molecular, cellular, whole heart) in which it is examined.

OVERVIEW OF CURRENT MODEL OF RyR2 PHOSPHORYLATION
Despite the recognized difficulty in linking RyR2 phosphorylation
with a defined functional output, the current model of RyR2 phos-
phorylation is extremely simple, and needs revision. In its simplest
version, PKA phosphorylation of S2808 dissociates FKBP12.6 and
activates the channel by inducing long-lived subconducting states,
whereas CaMKII phosphorylation of S2814 activates the chan-
nel by a different mechanism (Marx et al., 2000; Wehrens et al.,
2004). However, this model disregards the S2030 phospho-site, a
bona fide PKA site (Xiao et al., 2006), and does not give weight to
the potential contribution of other phospho-sites, hitherto uncov-
ered but convincingly supported by several lines of evidence. This
model also does not bode well with recent structural data, wherein
S2808 and S2814, by virtue of its immediacy (only six residues
apart in a ∼5000 amino acid subunit), form part of a larger “phos-
phorylation hotspot” that encompasses S2811 and possibly T2810
(2805RRISQTSQVSV2815; Yuchi et al.,2012). This phosphorylation
hotspot is harbored in a flexible loop connecting two symmetrical
repeats interacting with one another through β strand interactions
(Yuchi et al., 2012). Because the flexible loop is exposed to solvent
and protrudes prominently on the RyR2 surface, it is not surpris-
ing that the whole phosphorylation hotspot may be easily accessed
by several kinases. Because of the tight clustering of phospho-sites
in this hotspot, there emerges the interesting possibility that they
all provide functional redundancy, i.e., phosphorylation of S2808
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may lead to the same downstream effects as phosphorylation of
S2811, or S2814. In this scenario, the sequential addition of phos-
phate groups to the hotspot would lead to a graded (instead of
all-or-none) response of RyR2 to kinases, which could explain
the widely variable response detected by investigators to a spe-
cific phosphorylation maneuver. Of course, this alternative model
based on the phosphorylation hotspot alone does not explain the
distinct effect of CaMKII and PKA on RyR2 activity (see below),
and to fill this void it is necessary to invoke the participation of
S2030 and likely other as-yet-unrecognized phospho-sites. Thus,
in an obligatorily more complex model (Figure 1) that we call
“multi-phosphosite model” (Valdivia, 2012), the differential effect
of PKA and CaMKII on RyR2 activity is dictated by the inte-
grated response of the phosphorylation hotspot and of additional
phosphorylation sites. For example, phosphorylation of S2808
and S2030 by PKA could coordinate channel openings in response
to fast calcium stimuli (Valdivia et al., 1995; Ginsburg and Bers,
2004), and phosphorylation of S2814 and other CaMKII site(s)
could open RyR2s at diastolic [Ca2+], which would translate in
Ca2+ leak. Certainly, until we understand the molecular basis by
which the phosphorylation hotspot and other phospho-sites talk

to the channel’s gating domains, this structurally-based model
will remain speculative and incomplete. Nonetheless, it takes into
consideration compelling evidence on the existence of various
phosphorylation sites and departs substantially from the simpli-
fied notion that one kinase phosphorylates one site and produces
one effect.

CaMKII PHOSPHORYLATION OF ISOLATED RyR2 CHANNELS
Ryanodine receptor 2 channels have long been known to be a
suitable substrate for CaMKII. In fact, in 1984, long before the
controversies surrounding RyR2 phosphorylation and before the
purification of RyR2, Seiler et al. (1984) observed that “high
molecular weight proteins,” later identified as RyR2 channels,
were excellent substrates for CaMKII. In the experiments of Marx
et al. (2000), where RyR2 was initially presented as a structural
scaffold for multiple accessory proteins, CaMKII was not identi-
fied as part of that macromolecular complex. However, Currie
et al. (2004) and J.H. Brown’s group (reviewed in Grimm and
Brown, 2010), have provided ample evidence that CaMKII is inti-
mately associated to RyR2 (although the actual biding site is not
known), logically portending an important effect of CaMKII on

FIGURE 1 | Multi-site model of RyR2 phosphorylation. This model
considers the three phospho-sites known to date, and gives also
significant weight to other as-yet-uncovered sites. The classical sites
S2808 and S2814 are part of a “phosphorylation hotspot” that is located
in a protruding part of the channel, is targeted by several kinases, and
may contain other phospho-epitopes not yet characterized (for example,
S2811). Phosphorylation of individual residues within this hotspot may be
undistinguishable by the channel’s gating domain, but gradual addition of
phosphate groups here may contribute to a tunable effect instead of an
all-or-none response. Assuming that the phosphorylation hotspot works
collectively toward a single effect, the differential regulation of PKA and

CaMKII on channel gating may come about by the combined effect of
each kinase on phospho-residues of the hotspot and other
phosphorylation sites, such as S2030. This model also accommodates
solo effects of S2030 or the phosphorylation hotspot on gating domains
of the channel, as well as indirect effect on gating via interaction with
classical Ca2+ activation sites. CaMKII and protein phosphatase 1 (PP1)
are depicted close to the phosphorylation hotspot because the latter is
readily phosphorylated/dephosphorylated by endogenous CaMKII and PP1.
Demonstrated effect of kinases on S2808, S2814, and S2030 in intact
cells or hearts is shown with a solid line, and in vitro effect is shown
with a broken line.
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modulation of RyR2 activity. At the single channel level, the
preponderance of results suggests that CaMKII activates RyR2
channels, but again, the results are not unanimous. Let’s briefly
review the reports.

Although indirect evidence of RyR2 modulation by CaMKII
was initially obtained by [3H]ryanodine binding assays (Takasago
et al., 1989), the first direct demonstration was provided
by Witcher et al. (1991) using single channel recordings of
canine RyR2 channels reconstituted in lipid bilayers. These
authors observed activation of RyR2 channels by both, endoge-
nous (cardiac SR-resident) and exogenous (purified from brain
homogenates) CaMKII, and correlated their results with bio-
chemical assays showing additive levels of phosphorylation by
endogenous and exogenous CaMKII. This was also the report
that unveiled S2808 (S2809 in dogs) as a major CaMKII site,
although the proportion of the total RyR2 phosphorylation for
which S2808 was solely responsible could not be determined.
Thus, if the endogenous CaMKII of Witcher et al. (1991) is the
same CaMKII intimately attached to RyR2 (Currie et al., 2004;
Grimm and Brown, 2010), it appears that this CaMKII phospho-
rylates a subset of RyR2 phospho-sites only, fewer than what is
actually possible by exogenous CaMKII. Thus, the recurring point
that emerges is that multiple CaMKII sites concur in the RyR2
protein, each potentially exerting a defined level of control in the
channel and not always phosphorylated by a given experimental
condition. This might have been why Lokuta et al. (1995) detected
inhibition of single RyR2 channel activity by exogenous CaMKII,
similar to Takasago et al. (1989), who used exogenous CaMKII
in [3H]ryanodine binding experiments. Nevertheless, multiple
CaMKII sites as justification for apparent discrepancies may not
be universally applied, as Hain et al. (1995) found activation of
RyR2 channels by CaMKII, using methods and animal species
(dog) similar to Lokuta et al. (1995). The four studies mentioned
above [Witcher et al. (1991), Lokuta et al. (1995), Takasago et al.
(1989), Hain et al. (1995)] all used high (μM) [Ca2+] to keep
the RyR2 channels open, and none of them frontally addressed
the question of whether CaMKII activates RyR2 at low (diastolic)
[Ca2+], a question of paramount importance given the current
thinking that CaMKII increases SR Ca2+ leak (see below). This
was technically difficult at the time because CaMKII itself was
known to require Ca2+ as a cofactor for activation, and the Ca2+-
free, auto-phosphorylated active form of the enzyme was not
widely known. Hence, more studies are needed to clarify the Ca2+-
dependence of CaMKII effect on isolated RyR2 channels. Lastly, in
an oversimplified scheme that largely ignored the overwhelming
evidence for the aforementioned multiple CaMKII sites, Wehrens
et al. (2004) found that CaMKII activated single RyR2 channels
and postulated that ablation of a single phospho-site (S2815)
was sufficient to inhibit CaMKII phosphorylation completely. In
summary, CaMKII phosphorylation of isolated RyR2 channels is
readily detected at the biochemical level, and the preponderance of
results indicate that CaMKII activates RyR2 channels by targeting
multiple sites; however, some studies find that CaMKII may inhibit
RyR2 channel activity and the nature of this apparent discrepancy
is not easily explained. Furthermore, whether CaMKII phosphory-
lation activates individual RyR2 channels at low (diastolic) [Ca2+]
has not been firmly established yet and needs more refined studies.

EFFECT OF CaMKII ON SR Ca2+ RELEASE
Many studies have addressed the role of CaMKII phosphorylation
in SR Ca2+ release and excitation–contraction coupling of intact
ventricular myocytes, and most of them are detailed in excellent
reviews (George, 2008; Currie, 2009; Grimm and Brown, 2010;
Currie et al., 2011; Luo and Anderson, 2013; Bers, 2014). Here
we will simplify the discussion by concentrating on the studies
that have addressed the role of CaMKII phosphorylation on the
most direct indicators of RyR2 function, namely, SR Ca2+ leak,
spontaneous Ca2+ waves, and Ca2+ sparks. This circumvents the
problem of interpreting CaMKII effects on RyR2 based on whole
cell results or global Ca2+ transients, which are the product of
multiple nodes of activity interacting in complex ways.

Most studies find that β-adrenergic stimulation increases SR
Ca2+ leak, and that chronic adrenergic stimulation of ventric-
ular myocytes such as that occurring in heart failure produces
a cellular substrate favorable for generation of Ca2+-triggered
arrhythmias. To what extent are CaMKII and RyR2 channels
responsible for these effects? We examined in preceding para-
graphs that, although the precise transduction pathways have not
been completely elucidated yet, it is clear that CaMKII is acti-
vated upon β-adrenergic stimulation of the heart (Grimm and
Brown, 2010). In addition, a significant number of studies [but
not all (Yang et al., 2007)] find that CaMKII activation increases
SR Ca2+ leak (Maier et al., 2003; Currie et al., 2004; Guo et al.,
2006; Curran et al., 2007) and that the SR Ca2+ leak that is char-
acteristically increased in heart failure (Kirchhefer et al., 1999;
Marx et al., 2000; Ai et al., 2005) may be prevented by specific
CaMKII inhibition (Wu et al., 2002; Ai et al., 2005; Curran et al.,
2010; Sossalla et al., 2010; Respress et al., 2012), but not by PKA
inhibition (Curran et al., 2010). Hence, making the reasonable
assumption that RyR2 channels are the main pathway for SR
Ca2+ leak, and deriving from the reports above that CaMKII
activation evokes arrhythmogenic SR Ca2+ leak, then it is fair
to conclude that CaMKII phosphorylation activates RyR2 at dias-
tolic [Ca2+] to produce unchecked SR Ca2+ release that is capable
of bringing membrane potential to threshold (delayed afterdepo-
larizations) and quite possibly ignite cellular pathways that lead
to cardiac remodeling. From this perspective, CaMKII is pre-
sented as an arrhythmogenic, deleterious kinase, and RyR2 its
main instrument of deraignment. Obviously, the seemingly belit-
tled positive effect of CaMKII in normal cell function cannot
be discounted, and a balance between physiological and patho-
logical effects of CaMKII activation must exist in vivo. Thus,
an emerging notion is that normally, acute CaMKII and PKA
activation result in an increased magnitude and rate of Ca2+
release, respectively (Ginsburg and Bers, 2004), which account
in no small part for the inotropic effects of β-adrenergic stim-
ulation. This hypothesis is supported by studies that find that
CaMKII increases fractional Ca2+ release (reviewed in Ander-
son et al., 2011) and that PKA increases the rate of Ca2+ release,
only, in cells with controlled L-type Ca2+ channel trigger and SR
Ca2+ content (Ginsburg and Bers, 2004). The role of CaMKII
in force-frequency stimulation is also well known (Krishna et al.,
2013). On the other hand, it appears that most of the deleteri-
ous effects of CaMKII are exerted under conditions that allow
its chronic activation. It has become evident that CaMKII is not
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only a sensor of Ca2+ signals, but it is also exquisitely sensitive
to oxidative stress (Luczak and Anderson, 2014). Oxidative stress
is an important ingredient of the pathogenic recipe that deranges
cardiomyocytes in atrial fibrillation, heart failure, sinus node dys-
function, and other cardiomyopathies. Thus, persistent activation
of CaMKII by reactive oxygen species (ROS), is an expected (and
demonstrated) side effect of many cardiac insults, and a consti-
tutively activated CaMKII has an ample range of action (hence
the name multi-functional), including several ion channels and
transporters that control membrane excitability and excitation–
contraction coupling (Bers and Grandi, 2009), and others that
control excitation–transcription coupling (Bers, 2011). Since, as
we noted above, RyR2 channels are natural and avid substrates of
CaMKII and are themselves affected by oxidative stress (Donoso
et al., 2011), the contribution of RyR2 to altered Ca2+ homeosta-
sis in these cardiac pathologies is almost assured. Overall, then,
CaMKII walks a fine line separating “good” from “evil,” and a
great part of this dichotomy is dictated by its effect on RyR2 chan-
nels and its capacity to induce (potentially excessive) SR Ca2+
leak. Studies aimed at demarcating the pivotal point in which
CaMKII contributes to health or disease continues at great strides.
Until then, inhibiting CaMKII phosphorylation of RyR2 channels
as targeted approach to prevent the excessive Ca2+ leak and the
spontaneous Ca2+ waves that undergird several cardiomyopathies
appears enticing, but needs further studies.

CaMKII REGULATION OF INOSITOL 1,4,5-TRIPHOSPHATE
RECEPTORS
GENERAL CONSIDERATIONS
In the majority of mammalian cells, complex intracellular Ca2+
signals elicited by neurohormonal stimuli are mediated through
the generation of inositol 1,4,5-triphosphate (InsP3) and the acti-
vation of its receptor, the InsP3R. InsP3 originates from the
hydrolysis of the membrane phospholipid phosphatidylinositol
4,5-bisphosphate (PIP2) by phospholipase C (PLC; reviewed in
Foskett et al., 2007; Taylor and Tovey, 2010). Concomitant bind-
ing of InsP3 and Ca2+ is necessary for InsP3R activation, and
this in turn leads to Ca2+ release within the cytoplasm. Multi-
ple stimuli by a given agonist result in repetitive InsP3R-mediated
Ca2+ releases (Ca2+ oscillations) that propagate as Ca2+ waves
through the entire cell first and may ultimately stimulate neigh-
boring cells to form inter-cellular Ca2+ waves. In cardiac myocytes,
localization of InsP3Rs in the nuclear envelop underlies their role
in excitation–transcription coupling, but recent evidence (mostly
from atrial cells) suggest that although their abundance is low
in the t-tubules and the sarcolemma, InsP3Rs can also rev up
excitation–contraction coupling and eventually trigger cellular
arrhythmias (Mackenzie et al., 2002; Zima and Blatter, 2004; Li
et al., 2005). Similar to RyR2 channels, InsP3Rs are scaffolding
proteins highly regulated by ions (Ca2+, H+), nucleotides (ATP),
accessory proteins (FKBP12, calmodulin), and also undergo major
post-translational modifications such as phosphorylation (Taylor
and Tovey, 2010). The first evidence for InsP3Rs phosphoryla-
tion was obtained in the late 80s by Greengard’s and Sydner’s
groups from rat cerebella (Supattapone et al., 1988; Walaas et al.,
1988). Today, at least 15 different kinases and phosphatases,
including CaMKII, are postulated to target the InsP3Rs and

regulate their activity in an isoform- and tissue-specific manner.
This second part of this review will focus on the newly discov-
ered CaMKII site (Ser150), on the physiological consequences of
CaMKII phosphorylation of InsP3R, and on the mechanisms by
which this event may participate in cardiac Ca2+ signaling. Fur-
ther details on the general properties of InsP3R and their role
in cardiac myocytes may be found in excellent reviews (Foskett
et al., 2007; Kockskämper et al., 2008; Vanderheyden et al., 2009;
Taylor and Tovey, 2010).

InsP3R CHANNEL: FROM STRUCTURE TO FUNCTION
In mammals, three different genes (ITPR1, ITPR2, and IPTR3)
encode for ∼300 kDa subunits that assemble as homo- or hetero-
tetramers to form a functional InsP3R channel. Similar to RyR2,
the low resolution of InsP3Rs crystals shows a mushroom-like
structure with a large cytosolic cap constituted by the N-terminal
and central regions of the protein and a short stem, inserted
into the membrane by the C-terminal domain (Da Fonseca
et al., 2003). The InsP3-binding domain (or “core”) is located
within the first amino acids of the channel, while up to eight
Ca2+ binding sites are distributed throughout its entire sequence
(including two sites within the InsP3-binding core; Mignery et al.,
1990; Mignery and Sudhof, 1990; Pietri et al., 1990; Sienaert
et al., 1996, 1997). The Ca2+ pore is formed by a classic P-loop
between the membrane-spanning segments 5 and 6. Altogether
the organization of InsP3Rs suggests that the opening of the
channel depends on large allosteric movements that, by anal-
ogy with the RyR2s, may be finely tuned by phosphorylation
(Van Petegem, 2012).

Depending on the subtype, the apparent Kd of the receptors
for InsP3 varies from 10 to 80 nM (with InsP3R-2>>InsP3R-
1>InsP3R-3; Newton et al., 1994). Remarkably, the binding of
InsP3 to the receptor channel is stoichiometric and regulates the
properties of the InsP3R-mediated Ca2+ release. At low intra-
cellular concentrations, InsP3-binding induces the opening of
single InsP3R channel promoting a unitary Ca2+ release (dubbed
“Ca2+ blip”). Increasing InsP3 concentrations facilitate the open-
ing of clusters of InsP3Rs, allowing CICR within a cluster. At
high concentration, InsP3 promotes CICR between the clusters
and intracellular Ca2+ waves (Bootman et al., 1997). A note-
worthy property of the InsP3Rs is their high affinity for Ca2+,
causing maximal activity at diastolic [Ca2+]i (100 nM) while in
similar conditions RyR2 are closed (Ramos-Franco et al., 1998).
Therefore in myocytes stimulated by Gq–protein coupled recep-
tor (GqPCR) agonists, InsP3Rs-mediated Ca2+ release may occur
during diastole and “prime” the RyR2 to open, thus potentially
increasing RyR2-mediated SR Ca2+ leak and triggering of arrhyth-
mias (Mackenzie et al., 2002; Zima and Blatter, 2004; Li et al.,
2005).

EFFECT OF CaMKII PHOSPHORYLATION ON InsP3R ACTIVITY
Since the first reports of InsP3R phosphorylation more than
two decades ago (Supattapone et al., 1988; Walaas et al., 1988),
the growing number of kinases that target InsP3Rs and either
decrease or increase their activity have uncovered the complexity
of InsP3Rs regulation. Among those enzymes, recent observations
demonstrate that CaMKII plays a critical role for InsP3R function.
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The consequences of CaMKII phosphorylation of InsP3R were
first ascertained in permeabilized embryonic mouse fibroblasts
(Zhang et al., 1993). In these cells, CaMKII phosphorylation per-
mits the activation of the InsP3R channel upon addition of InsP3

or an agonist cocktail (bradykinin + GTPγS). This activation takes
place at intracellular [Ca2+] ranging from 30 to 100 nM. At higher
[Ca2+]i, calcineurin activity prevails and dephosphorylation of
the channel occurs. In agreement with these results, Cameron
et al. (1995) observed that CaMKII enhanced the InsP3-sensitive
Ca2+ flux in rat cerebellum microsomes. However, these out-
comes were challenged by observations made in intact HeLa cells
stimulated by histamine (Zhu et al., 1996). In this model, it is
the Ca2+ released by the InsP3R that activates CaMKII, which
phosphorylates back InsP3R to terminate the release. In a second
step, the activation of a phosphatase (likely PP1/PP2A) dephos-
phorylates InsP3Rs to restore its activity. This model is particularly
elegant since the authors also demonstrated that activated CaMKII
facilitates the ER Ca2+ refilling by increasing SERCA activity
(likely through PLN phosphorylation). As a consequence, the
alternation between phosphorylated and dephosphorylated states

of InsP3Rs seemed to be the basic mechanism for histamine-
induced intracellular Ca2+ oscillations (Figure 2, left panel).
Later, similar inhibitory effects of InsP3Rs phosphorylation by
CaMKII were reported in channels reconstituted in lipid bilay-
ers (Bare et al., 2005) as well as in Xenopus oocytes (Matifat
et al., 2001) and bovine endothelial cells (Aromolaran and Blat-
ter, 2005). Today, the origin of these conflicting observations
remains unclear but a fair approximation is that it is linked to
the high variability of the InsP3Rs sequence induced by alterna-
tive splicing, or to tissue-specific expression of accessory proteins
(Foskett et al., 2007).

Recently, Mignery et al. (1990), Maxwell et al. (2012) iden-
tified Ser150 (S150) as a distinct CaMKII phosphorylation site
on InsP3R-2s. They demonstrated in lipid bilayers that the
replacement of S150 by the non-phosphorylatable residue alanine
(InsP3R-2S150A) abrogates the inhibitory effects of CaMKII phos-
phorylation. Conversely, the phospho-mimetic mutant InsP3R-
2S150E reproduced the blunted channel activity of phosphorylated
WT receptors. Noticeably, S150 belongs to a suppressor domain
located prior to the InsP3-binding core. The ablation of that

FIGURE 2 | CaMKII phosphorylation of Ser150 as a modulator of

InsP3R-mediated Ca2+ release. The activation of GqPCRs leads to the
production of InsP3 by PLC and initiates InsP3R-mediated Ca2+ release.
The released Ca2+ activates CaMKII, which in turn phosphorylates
InsP3R-S150 to inhibit channel function. Depending on the intracellular
location, CaMKII phosphorylation of InsP3Rs could be implicated in
multiple responses. In the endoplasmic reticulum of most of the
mammalian cells (left panel ), CaMKII phosphorylation of S150 alternates
with protein phosphatases dephosphorylation to trigger intracellular Ca2+
oscillations and mediate complex Ca2+ signals. In the SR of cardiac
myocytes (middle panel ), InsP3Rs are able to activate RyR2s by CICR
even though they seem to be excluded from the dyadic cleft. This
increases Ca2+ transients and might trigger delayed afterdepolarizations
(via NCX activation). CaMKII phosphorylation of InsP3R-S150, which has

not been determined yet, could then prevent the uncontrolled activation
of RyR2s and decrease the incidence of arrhythmias. In the nucleus (right
panel ), InsP3R Ca2+ release activates CaMKII, which phosphorylates
HDAC proteins to promote transcription. S150- phosphorylation by CaMKII
could limit InsP3Rs activation in time and space. However, if associated
with calcineurin-dephosphorylation of S150, CaMKII could favor
InsP3R-dependent Ca2+ oscillations as secondary mechanism to activate
gene expression. ATPase, sarco/endoplasmic reticulum Ca2+ ATPase;
NFAT/CN, NFAT-calcineurin complex; DAD, delayed after depolarization;
DAG, diacylglycerol; GqPCR, Gq–protein coupled receptor; HDAC, histone
deacetylase; LTCC, L-type Ca2+ channel; MEF2, myocyte enhancer
factor-2; NCX, Na+/Ca2+ exchanger; PLC, phospholipase C; PIP2,
phosphatidylinositol 4,5-bisphosphate; PP, protein phosphatase (1, 2A,
and/or 2B).
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domain increases InsP3R affinity for InsP3 but additionally blocks
Ca2+ release by the channel (Uchida et al., 2003). The proposed
mechanism is that the suppressor domain participates in the trans-
duction of the allosteric movements that are necessary for channel
opening (Uchida et al., 2003). Therefore, it is possible that phos-
phorylation of S150 by CaMKII also blocks the transmission of
the activation signal to the pore domain rather than decreas-
ing the affinity of the InsP3Rs for the InsP3. This hypothesis is
reinforced by the fact that high [InsP3]i is not able to reverse
the inhibition of InsP3Rs activity after CaMKII phosphorylation
(Zhu et al., 1996).

InsP3R IN THE HEART: CONSEQUENCES OF CaMKII PHOSPHORYLATION
The mammalian heart expresses all three InsP3R isoforms. InsP3R-
1 is abundant in endothelial cells and Purkinje fibers. InsP3R-2 is
the main isoform of cardiac myocytes and pacemaker cells. Finally,
InsP3R-3s are present in all cell types but at a lower level (5–15%
total InsP3R expression; Perez et al., 1997; Lipp et al., 2000; Ju
et al., 2011). Although the roles of InsP3Rs in the cardiac func-
tion have been overlooked, recent evidence assigns to InsP3R-2s
an important role in pathologic hypertrophy and Ca2+-triggered
arrhythmias.

InsP3R-2, CaMKII, and excitation–transcription coupling
In both atrial and ventricular myocytes, InsP3R-2s are mainly
present in the nuclear envelope where their implication in
pathological excitation–transcription coupling has been recently
uncovered (reviewed in Kockskämper et al., 2008). During cardiac
hypertrophy induced by pressure overload or chronic activation
of the GqPCRs, the InsP3R-2s activation leads to a subsequent
release of Ca2+ in the nucleoplasm, which activates the nuclear
isoform of CaMKIIδ (CaMKIIδB). CaMKIIδB phosphorylates the
histone deacetylases (HDACs) to induce their nuclear export
and relieve their inhibition on the transcription factor MEF-2
(myocyte enhancer factor-2; Zhu et al., 2000; Wu et al., 2006;
Ago et al., 2010). In this context the inhibition of the InsP3Rs
by a CaMKIIδB feedback phosphorylation would limit in time
and space the InsP3R-mediated Ca2+ release and consequently
be anti-hypertrophic. Conversely, a possible pro-hypertrophic
role for CaMKIIδB phosphorylation of InsP3R is borne out
from recent observations. First, InsP3R-mediated Ca2+ release
is able to activate two targets of calmodulin: CaMKIIδB and
calcineurin, a perinuclear phosphatase that translocates to the
nucleus complexed with the transcription factor NFAT (reviewed
in Molkentin, 2000; Bootman et al., 2009). The inhibition of
either CaMKII or calcineurin prevents the InsP3R-mediated car-
diac hypertrophy (Molkentin et al., 1998; Taigen et al., 2000; Zhu
et al., 2000). Second, in addition to their classical localization
in the sarcolemma, GqPCRs have been recently identified in
the nuclear envelope as well as in t-tubules that spread near
the nucleus of cardiomyocyte (Tadevosyan et al., 2012; Ibarra
et al., 2013). This allows for a rapid and local production
of InsP3 that diffuses and signals into the nucleus indepen-
dently from the cytosolic InsP3 concentration (Ibarra et al.,
2013). Finally, Luo et al. (2008) showed that neonatal rat car-
diac myocytes stimulated by a GqPCR agonist exhibit repetitive
InsP3R-mediated Ca2+ waves (or Ca2+ oscillations) that take place

in the nucleus autonomously from the cytosolic [Ca2+]. Interest-
ingly, frequency-dependent Ca2+ oscillations have been shown to
increase gene expression via the activation of the calcineurin/NF-
AT pathway (Dolmetsch et al., 1998). Altogether, these obser-
vations suggest that hypertrophic signals may be generated by
intra-nuclear Ca2+ oscillations independently (frequency, ampli-
tude, and duration) from the excitation–contraction coupling.
InsP3-dependent oscillations would be created through InsP3Rs
activation–inhibition cycles mediated by calcineurin dephospho-
rylation and CaMKIIδB phosphorylation of S150, respectively
(Figure 2, right panel).

InsP3R-2, CaMKII, and excitation–contraction coupling
In cardiac myocytes, the expression of InsP3R-2s is remark-
ably low compared to RyR2s (for an InsP3R-2:RyR2 ratio of
1:50 to 1:100 in ventricular myocytes). In addition, most of the
immunofluorescence studies that have observed partial localiza-
tion of InsP3R-2s in the sub-sarcolemmal space of atrial myocytes,
failed to detect InsP3R-2s in the surface sarcolemma or t-tubules
of ventricular myocytes (Bare et al., 2005; Escobar et al., 2011;
except Mohler et al., 2003). Activation of InsP3R-2s by a GqPCR
agonist produces, in the myocyte, a small and slow cytoso-
lic Ca2+ spark-like release dubbed “Ca2+ puffs” (Kockskämper
et al., 2008). Ca2+ puffs can activate the neighboring RyR2s
to increase the Ca2+ spark frequency and the Ca2+ transient
amplitude. In pathological conditions, InsP3R-2 mediated Ca2+
release can ultimately cause, in atrial cells, Ca2+ alternans and
increased susceptibility to arrhythmias (Mackenzie et al., 2002;
Zima and Blatter, 2004; Li et al., 2005). Moreover, although their
expression is not detected in t-tubules, some reports support a
similar role for InsP3R-mediated release in ventricular myocyte
(Domeier et al., 2008; Signore et al., 2013 but not Mackenzie
et al., 2002; Zima and Blatter, 2004; Li et al., 2005). All together,
these data suggest that InsP3R-2s are not directly involved in
excitation–contraction coupling but participate as modulators
that “prime” the RyR2s to increase their sensitivity to diastolic
[Ca2+] and LTCC current. In that context, the inhibition of
InsP3R-dependent Ca2+ release following CaMKIIδC phospho-
rylation of InsP3R-Ser150 would block RyR2 potentiation and
exert an anti-arrhythmic effect. However, in an extensive phospho-
proteome analysis that identified the vast majority of proteins
phosphorylated during β-adrenergic stimulation in mice, Hut-
tlin et al. (2010) failed to detect phosphorylation of the cardiac
InsP3R-2s, including S150, while InsP3R-1 and -3 were targeted
by PKA at Ser1588 and Ser934, respectively. This suggests that
the InsP3R-2 channels expressed in the SR are not located in
the vicinity of the CaMKIIδC/PKA microdomains, and there-
fore they may be excluded from the dyad containing the RyR2s
(Figure 2, central panel). In agreement with that result, Sig-
nore et al. (2013) described in mouse ventricular myocytes that
the InsP3R-2 effects are mediated through the activation of the
NCX and the increase of the action potential duration rather
than a direct effect on RyR2s. Overall, these observations sug-
gest an absence of a direct cross-talk between RyR2s and InsP3Rs
and advocate the hypothesis that InsP3Rs mediate their effects on
RyR2s by limited Ca2+ diffusion from the InsP3R release sites to
the RyR2 sites.
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Interestingly, Huttlin et al. (2010) also identified two cardiac-
specific epitopes on InsP3R-3 (Ser930 and Ser2189) for which the
targeting kinase(s) remain(s) undetermined. Noticeably, S2189 of
InsP3R-3 contains the CaMKII consensus sequence (Pinna and
Ruzzene, 1996) and is absent from InsP3R-1 or -2. More studies
will be necessary to determine whether this InsP3R-3 phosphory-
lation occurs in cardiac myocytes and the mechanisms by which it
affects cardiac function.

CONCLUDING REMARKS
CaMKII is a pleiotropic kinase that targets several ion channels
and transporters in the heart, and RyR2 and InsP3R channels
are among its principal substrates. Interestingly, despite the rel-
atively strong structural similarity between these two intracellular
Ca2+ release channels, the majority (but not all) of the stud-
ies indicate that CaMKII phosphorylation of RyR2s and InsP3Rs
leads to antithetical outcomes. On one hand, CaMKII phospho-
rylation is presumed to increase RyR2 activity and promote SR
Ca2+ leak that, when excessive, may trigger cardiac arrhyth-
mias. On the other hand, CaMKII phosphorylation of nuclear
InsP3Rs is presumed to inhibit InsP3Rs-mediated Ca2+ release
and to prevent intra-nuclear Ca2+ oscillations (although cytoso-
lic InsP3R-mediated Ca2+ release seems to promote arrhythmias,
too). The magnitude of the effect of phosphorylation on these
channels is also purportedly different since CaMKII modulates
RyR2 channel activity, only, while it appears to play an on/off
function on InsP3Rs. The bases of both of these differences are not
immediately apparent and in fact, there is no universal agreement
that such differences exist. As can be derived from the preceding
paragraphs, a unified scheme on the effect of phosphorylation on
both, RyR2 and InsP3Rs is yet to be forged. Nonetheless, inde-
pendent of its precise mechanism of action on these channels,
an emerging notion is that excessive CaMKII activity is detri-
mental for cardiac performance, and the potential salutary effect
of blocking its chronic effects appears worth pursuing since its
action on RyR2s and InsP3Rs might prevent both Ca2+-mediated
arrhythmias and Ca2+-dependent activation of hypertrophic gene
programs.
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