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Smoking, DNA Methylation, and Lung Function:
a Mendelian Randomization Analysis
to Investigate Causal Pathways

Emily Jamieson,1,2 Roxanna Korologou-Linden,1,2 Robyn E. Wootton,1,3,4 Anna L. Guyatt,5

Thomas Battram,1,2 Kimberley Burrows,1,2 Tom R. Gaunt,1,2,4 Martin D. Tobin,5 Marcus Munafò,1,3,4

George Davey Smith,1,2,4 Kate Tilling,1,2 Caroline Relton,1,2 Tom G. Richardson,1,2

and Rebecca C. Richmond1,2,*

Whether smoking-associated DNA methylation has a causal effect on lung function has not been thoroughly evaluated. We first inves-

tigated the causal effects of 474 smoking-associated CpGs on forced expiratory volume in 1 s (FEV1) in UK Biobank (n ¼ 321,047) by

using two-sampleMendelian randomization (MR) and then replicated this investigation in the SpiroMeta Consortium (n¼ 79,055). Sec-

ond, we used two-step MR to investigate whether DNA methylation mediates the effect of smoking on FEV1. Lastly, we evaluated the

presence of horizontal pleiotropy and assessed whether there is any evidence for shared causal genetic variants between lung function,

DNA methylation, and gene expression by using a multiple-trait colocalization (‘‘moloc’’) framework. We found evidence of a possible

causal effect for DNA methylation on FEV1 at 18 CpGs (p < 1.2 3 10�4). Replication analysis supported a causal effect at three CpGs

(cg21201401 [LIME1 and ZGPAT], cg19758448 [PGAP3], and cg12616487 [EML3 and AHNAK] [p < 0.0028]). DNA methylation did

not clearly mediate the effect of smoking on FEV1, although DNA methylation at some sites might influence lung function via effects

on smoking. By using ‘‘moloc’’, we found evidence of shared causal variants between lung function, gene expression, and DNAmethyl-

ation. These findings highlight potential therapeutic targets for improving lung function and possibly smoking cessation, although

larger, tissue-specific datasets are required to confirm these results.
Introduction

Cigarette smoking is a major risk factor for lung disease,

which is often preceded by a rapid decline in lung func-

tion.1 Studies have shown a strong causal role of smoking

in relation to lung-function decline, which can be

measured by forced expiratory volume in 1 s (FEV1).
2

Exploring the mechanistic pathways leading to decreased

lung function in smokers could highlight targets for thera-

peutic intervention.

One mechanism that might mediate the association be-

tween smoking and decreased lung function is altered

DNAmethylation patterns. Smoking is associatedwith sub-

stantial changes to methylation levels at many loci across

the genome.3 For example, hypomethylation at the CpG

site cg05575921 in intron 3 of the aryl hydrocarbon recep-

tor repressor (AHRR) gene is strongly associated with both

the current and past smoking behavior of an individual,3,4

and it has recently been suggested to mediate a proportion

of the effect of smoking on decreased lung function.5 How-

ever, it is not clear that this association represents a true

causal pathway.6 Furthermore, DNA methylation at other

CpG sites related to lung function might also serve as a po-

tential mediator on the pathway from smoking.7,8

Mendelian randomization (MR) is a method that re-

searchers can use to assess the causality of a modifiable
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exposure on an outcome9 by using genetic variants

robustly associated with the exposure as proxies. Because

genetic variants are effectively randomized at conception,

they are unlikely to be influenced by confounding factors

that might otherwise bias associations in observational

analysis. In the context of methylation, MR is facilitated

by genetic variants, known as mQTLs (methylation quan-

titative trait loci), that are found to be strongly associated

with DNA methylation.10

Among the many extensions of the basic MR principle11

is the two-step method, which aims to assess whether an

intermediate factor has a causal role in the mediating

pathway between the exposure and the outcome.12 A

further extension is the two-sample framework, which al-

lows the exposure and outcome data to come from two in-

dependent datasets so that the effect of the genetic variant

on the exposure and outcome can be estimated sepa-

rately.13 Both approaches are particularly advantageous

for epigenetic studies: two-step MR can be used so that

DNA methylation might serve as an intermediate between

a particular exposure and outcome, and two-sample MR

can be used because DNAmethylation datasets are unlikely

to include the relevant exposure and/or outcome data of

interest. Researchers can use these methods to evaluate

the causal role of DNA methylation at a large number of

CpG sites; they can also use these methods within a
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mediation framework to determine whether DNA methyl-

ation mediates the effect of an exposure and outcome.12,14

A key violation of the MR approach is horizontal pleiot-

ropy, whereby a genetic variant used to proxy a modifiable

exposure is associated with the outcome through pathways

not involving the exposure.Various sensitivity analyses exist

for investigating horizontal pleiotropy in MR analysis,15

which can also be applied to assessing the validity ofmQTLs

as genetic proxies for DNAmethylation and can be comple-

mented by colocalization approaches16 that help to evaluate

whether the mQTL is responsible for effects on both DNA

methylation and theoutcome.17 Furthermore,multiple-trait

colocalization (‘‘moloc’’) can also be used for determining

whether variation in DNA methylation levels at putatively

causal CpG sites might influence traits via changes in the

expression of nearby genes.18 Such approaches can be inte-

grated into an analytical pipeline that can be used for high-

lighting and prioritizing molecular pathways for further

intervention.19

We first aimed to search for a causal effect of methylation

at smoking-associated CpG sites on FEV1 in the UK Bio-

bank by using two-sample MR, and we replicated this

search in the SpiroMeta Consortium.20 Second, we investi-

gated whether DNA methylation mediates the effect of

smoking on FEV1. Lastly, we evaluated the presence of hor-

izontal pleiotropy and also assessed whether there is any

evidence for shared causal genetic variants between lung

function, DNA methylation, and gene expression by using

a ‘‘moloc’’ framework.
Material and Methods

mQTL Identification: The Accessible Resource for

Integrated Epigenomic Studies in the Avon Longitudinal

Study of Parents and Children
The Avon Longitudinal Study of Parents and Children (ALSPAC) is

a large, prospective cohort study based in the southwest of En-

gland. A total of 14,541 pregnant women who were residing in

Avon, UK, and had expected dates of delivery from April 1, 1991

to December 31, 1992 were recruited, and detailed information

has been collected on these women and their offspring at regular

intervals.21,22 The study website contains details of all the data

that are available through a fully searchable data dictionary. Writ-

ten informed consent has been obtained for all ALSPAC partici-

pants. Ethical approval for the study was obtained from the

ALSPAC Ethics and Law Committee and the local research ethics

committees.

As part of the Accessible Resource for Integrated Epigenomics

Studies (ARIES) project,10,23 the Illumina Infinium HumanMethy-

lation450 (HM450) BeadChip was used for generating epigenetic

data on cord blood and peripheral blood samples from 1,018

mother-offspring pairs in the ALSPAC cohort at five time points

(birth, childhood, adolescence, the antenatal period, and middle

age). The ARIES participants were previously genotyped as part

of the larger ALSPAC study, and quality control, cleaning,

and imputation were performed at the cohort level as described

previously.10
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Matrix eQTL software24 was used for preliminary association

analysis of SNPs with CpG sites in the HM450 array; further multi-

variable linear regression analysis was run in PLINK1.07,25 and

genome-wide complex trait analysis (GCTA) was performed26 as

previously described10 so that conditionally independent mQTLs

could be determined. Associations with p< 13 10�7 were selected

for this analysis via a publicly available online catalog.10 For this

analysis, we only considered those mQTLs identified in the mid-

dle-age time point among women in ARIES.
Genome-wide Association of Forced Expiratory Volume

and Lifetime Smoking Behavior: UK Biobank
We used genetic association data from individuals in the UK Bio-

bank. The UK Biobank study is a large population-based cohort of

502,682 individuals who were recruited at ages 37–73 years across

theUKbetween 2006 and 2010; the study includes extensive health

and lifestylequestionnairedata (including smokingbehavior),phys-

ical measures (including spirometry), and DNA samples. The study

protocol is available online, and more details have been published

elsewhere.27 The UK Biobank study was approved by the North

West Multi-Centre Research Ethics Committee (reference number

06/MRE08/65), and at recruitment, all participants gave informed

consent to participate in the UK Biobank and be followed-up with.

Participants were genotyped with either the Affymetrix UK

BiLEVE Axiom Array or the Affymetrix UK Biobank Axiom Array.

Details of how the genotype data were cleaned, imputed, and

released to the scientific community are detailed elsewhere.28

Summary-level genetic association statistics for FEV1 were ob-

tained from a recent genome-wide association study (GWAS) of

FEV1 (covariate adjusted and inverse-normal rank transformed)

in the UK Biobank (n ¼ 321,047)20 and, for lifetime smoking

behavior, from a GWAS of a comprehensive smoking index metric

derived from data on smoking duration, heaviness, and cessation

in UK Biobank participants (n ¼ 462,690)29.
Two-Sample MR: ARIES and UK Biobank
To assess the causal effect of DNA methylation at smoking-related

CpG sites on lung function, we conducted two-sample MR.13 In

this approach, information on the SNP-exposure (here, DNA

methylation) and SNP-outcome (here, lung function [FEV1]) effects

are derived from genome-wide association analysis conducted in

separate studies with the ‘‘TwoSampleMR’’ package in R15.

For the smoking-related CpG sites that could be proxied by

mQTLs, we looked up the identified mQTLs in the lung function

GWAS summary data from the UK Biobank. We extracted the

following summary data for each SNP: the effect estimate, along

with its standard error (SE), for lung function per copy of the

effect allele, the reference allele, and the effect allele along with

its frequency. We combined information on the SNP-lung func-

tion associations from the UK Biobank with information on the

SNP-methylation associations from ARIES in order to perform

the Mendelian randomization analysis described below.

For each SNP, we calculated the change in FEV1 per standard de-

viation (SD) increase in methylation by the formula bGD/bGP

(also known as a Wald ratio), where bGD is the SD change in vol-

ume of air exhaled in 1 s per copy of the effect allele and where

bGP is the SD increase in methylation per copy of the effect allele.

SEs of the Wald ratios were approximated by the delta method.30

Where multiple conditionally independent mQTLs were available

for the same CpG site, we combined these in a fixed effects

meta-analysis after weighting each ratio estimate by the inverse
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variance of their associations with the outcome (inverse-variance

weighted [IVW] approach). For all downstream analyses, we pro-

ceeded with those CpG sites where the effect of DNA methylation

on FEV1 surpassed Bonferroni correction in this main analysis.

Replication: SpiroMeta
We attempted to replicate the findings regarding the causal effect

of DNA methylation by using an independent second sample for

the two-sample MR approach. For this, we used data available on

genetic variants and lung function (FEV1) in 79,055 individuals

of European ancestry from 22 studies, combined in a meta-anal-

ysis by the SpiroMeta Consortium.20

Stratification: UK BiLEVE
To investigate the extent to which the genetically predicted effects

of DNA methylation on lung function are modified by smoking

status, we conducted an MR analysis stratified by smoking status.

For this, GWAS of FEV1 has been undertaken in 48,931 individuals

from the UK BiLEVE study, involving a subset of UK Biobank par-

ticipants who were selected from the extremes of the lung-func-

tion distribution (extremely low, near average, and extremely

high) and by smoking status (never versus heavy smokers [mean

of 35 pack-years of smoking, where 1 pack-year is equal to smoking

20 cigarettes (1 pack) per day for 1 year]).31,32 Genotyping was un-

dertaken with the Affymetrix Axiom UK BiLEVE array for 24,457

smokers and 24,474 non-smokers in the UK BiLEVE study.

Causal Effects of DNA Methylation on Other Lung-

Function-Related Traits
We assessed consistency of the causal effects observed for FEV1 in

relation to a number of other lung-function-related traits by using

summary statistics from a UK Biobank GWAS20 of forced vital ca-

pacity (FVC) (n ¼ 321,047) and FEV1/FVC ratio (n ¼ 321,047), as

well as from other UK Biobank GWAS33 of self-reported asthma

(n ¼ 53,598 cases, 409,335 controls), self-reported chronic

obstructive pulmonary disease (COPD) (n ¼ 1,605 cases, 461,328

controls), and COPD derived from ICD-10 codes (n ¼ 3,871 cases,

459,139 controls).

DNA Methylation and Lung Function: Direction of

Causality
Where there was evidence that DNA methylation might have a

causal effect on lung function, we evaluated the possibility of

reverse causation, whereby a SNP used as a proxy for DNAmethyl-

ation has its primary effect through lung function rather than

through DNA methylation. For this, we performed the MR Steiger

test,34 implemented in the ‘‘TwoSampleMR’’ package15 with the

previously outlined summary GWAS data from ARIES and the

UK Biobank, to determine the likely direction of effect.

Furthermore, we conducted the reciprocal MR at these CpG sites

to appraise the causal effect of lung function (FEV1) on DNA

methylation. For this, we assessed associations between 221

SNPs with p < 5 3 10�8 from the UK Biobank GWAS of FEV1

and DNA methylation at the CpG sites of interest identified in

the middle-age time point among women in ARIES. Because

only associations with p < 1 3 10�7 were available in the publicly

available online catalog, we used PLINK1.0710 to perform exact

linear regression of methylation beta-values at each CpG site on

SNP genotypes and also adjusted the model for age, sex, top ten

ancestry principal components, bisulphite conversion batch,

and estimated white blood cell counts.
The Ameri
Smoking Behavior and DNA Methylation: Direction of

Causality
We also performed bidirectional MR to evaluate the direction of ef-

fect between lifetime smoking behavior and DNA methylation at

the identified CpG sites. For lifetime smoking behavior, we ob-

tained summary statistics for 126 independent SNPs identified in

a GWAS of comprehensive smoking index,29 with p < 5 3 10�8.

We looked up these SNPs in a GWAS of DNA methylation at the

CpG sites of interest, as described above. We then conducted MR

to appraise the causal effect of lifetime smoking behavior on

DNA methylation. We also looked up mQTLs that proxied for

DNA methylation at the CpG sites of interest in the summary

data from the GWAS of lifetime smoking behavior and conducted

another two-sample MR analysis to appraise the causal effect of

DNA methylation on lifetime smoking behavior.

Negative Control
We also assessed the association between the mQTL and DNA

methylation at the CpG sites of interest by using data from

the childhood time point of ALSPAC and exact linear regression

as described above. This can be viewed as a negative-control

analysis assessing the specificity of the mQTL effect on DNA

methylation because the association should not be present in

this group of non-smoking individuals if it is driven by smoking

behavior.

Mediation Analysis
For those CpG sites where there was consistent evidence that

methylation had a causal effect on lung function and where life-

time smoking was also causally implicated, we used a two-step

MR approach12 to investigate mediation. Prior to this, we per-

formed anMR analysis to estimate the total causal effect of lifetime

smoking behavior on lung function by looking up the SNPs asso-

ciated with lifetime smoking behavior in the GWAS summary data

for FEV1.

For those CpGs where there was evidence that smoking influ-

enced DNA methylation, which in turn influenced lung function,

we used the ‘‘product of coefficients’’ method35 to obtain an esti-

mate for the indirect effect of smoking on lung function via

DNA methylation. For those CpGs where there was evidence

that, conversely, DNA methylation influenced smoking, which

in turn influenced lung function, we used the ‘‘product of coeffi-

cients’’ method to obtain an estimate for the indirect effect of

DNA methylation on lung function via smoking. This approach

is outlined in Figure 1. Standard errors for the indirect effect

were derived by using the delta method.

Another MR approach that can be used for assesingmediation is

multivariable MR (MVMR).36,37 This approach can help re-

searchers to determine the direct effect of an exposure on an

outcome, which can be subtracted from the total effect to obtain

an estimate for the indirect effect (‘‘difference in coefficients

method’’).35 We used MVMR to estimate the direct effects of life-

time smoking and the identified CpG sites on lung function by

including the genetic proxies for smoking and each CpG site in

turn in the multivariable models. SEs for the indirect effect were

derived with the delta method.

Evaluating Horizontal Pleiotropy
Although various sensitivity analyses for investigating horizontal

pleiotropy in MR analysis exist,15 these approaches typically rely

upon the existence of multiple genetic proxies associated with
can Journal of Human Genetics 106, 315–326, March 5, 2020 317
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Figure 1. Outline of the Steps of the Mediation Analysis
(A) Assessment of the mediating role of DNA methylation in the
effect of smoking behavior on lung function (FEV1).
(B) Assessment of the mediating role of smoking behavior in the
effect of DNA methylation on lung function (FEV1). q1 ¼ step 1;
q2¼ step 2; indirect effect¼ q13 q2 (product of coefficients); direct
effect ¼ q3; total causal effect ¼ q3 þ q1 x q2.
each exposure. Because only a small number of independent

mQTLs are usually associated with individual CpG sites, it is often

difficult to evaluate horizontal pleiotropy. To overcome this, we

used an approach whereby we could examine multiple mQTLs

in linkage disequilibrium (r2 < 0.8) as instruments for a given

CpG site and incorporated the correlation of the mQTLs as

weights in a weighted generalized linear regression.38 This was per-

formed with summary statistics fromMatrix eQTL,10 as well as the

‘‘LDlink’’ and ‘‘MendelianRandomization’’ packages in R (version

3.5.1). Further to this, we assessed overall horizontal pleiotropy

by (1) quantifying the heterogeneity of the genetic variants based

on the Q statistic by using modified weights for the IVW

approach,39 as well as theMR-PRESSO global test,40 and (2) testing

the intercept in the MR-Egger test.41 To account for horizontal

pleiotropy, we performed two additional MR analyses that make

different assumptions about this: (1) MR Egger regression41 and

(2) the weighted median approach.42 The following R packages

were used for these analyses: ‘‘Mendelian Randomization,’’ ‘‘Radi-

alMR,’’ and ‘‘MR-PRESSO.’’

Multiple-Trait Colocalization Analysis
For those CpG sites where there was evidence of a causal effect on

lung function, we applied (‘‘moloc’’)18 to investigate whether the

variant responsible for influencing methylation at each CpG site

was the same variant influencing changes to both nearby gene

expression and lung function.17,43 We applied ‘‘moloc’’ by using

data derived from three different sources: mQTL data from the

middle-age time point (mean age 47.5 years) in ARIES, GWAS sum-

mary data for FEV1 from the UK Biobank,20 and expression quan-

titative-trait loci (eQTL) data derived from whole blood from the

eQTLGen Consortium (n ¼ 31,684).44 We ran ‘‘moloc’’ multiple

times to investigate colocalization with the expression of all genes

within 1 Mb of the CpG site of interest. Analyses were only under-

taken if there were at least 50 variants (minor-allele frequency

[MAF] R 5%) in common between all three datasets. As recom-

mended by the developers of ‘‘moloc’’, a posterior probability of

association (PPA) of 80% or higher was considered evidence of co-

localization. This approach therefore suggests that loci with evi-

dence of genetic colocalization harbor a single causal variant

that is responsible for variation in DNAmethylation, gene expres-

sion, and lung function. When there was evidence at the same
318 The American Journal of Human Genetics 106, 315–326, March
locus with multiple genes, we reported the association with the

highest PPA. All analyses were undertaken with R (version 3.5.1).
Results

Analysis Pipeline

A summary of the analysis pipeline used to investigate the

causal effect of DNA methylation on lung function is

shown in Figure 2.
Discovery Analysis

We first identified mQTLs that could serve as proxies for

2,622 smoking-related CpG sites identified in a large epige-

nome-wide association study (EWAS) meta-analysis con-

ducted by the CHARGE Consortium (Table S1).3 For this,

we used a catalog of SNPs associated with CpG sites in the

ARIES study10 to identify conditionally independentmQTLs

(from genome-wide complex-trait analysis) from the mid-

dle-age time point (mean age 47.5 years, n ¼ 846).10 We

were able to proxy 474 unique CpG sites associated with

smoking (p < 1 3 10�7) by using at least one mQTL (96%

in cis, 4% in trans). 406 of the 474 CpGs (86%) were proxied

by a single SNP, of which 16 (4%)were in trans (Table S2). Of

these, 415 were present in a FEV1 GWAS (n¼ 321,047) con-

ducted as part of the UKBiobank study. Theminimum r2 for

anmQTLwas 2.9%, and theminimumF-statistic was 10.29,

and the mean r2 was 9.9% and mean F-statistic was 109.4,

thus indicating adequate strength of the genetic variants

for MR analysis (Table S2).

To assess the causal effect of DNA methylation at smok-

ing-related CpG sites on lung function, we looked up the

identified mQTLs in the lung-function GWAS summary

data from the UK Biobank and conducted two-sample

MR. We observed 18 CpG-FEV1 effect estimates that sur-

vived multiple-testing correction (Bonferroni p < 1.2 3

10�4) (Table 1, Table S3), and we found evidence for

more causal effects than would be expected on the basis

of chance (Figure S1).

Given previous findings of a mediating role of AHRR

(cg05575921) methylation in the relationship between

smoking and lung function, we specifically tested the

causal effect of methylation at cg05575921 on FEV1 in

an MR framework. Because no mQTLs were found to be

robustly associated with this CpG site in the middle age

time point of ARIES, we identified two mQTLs from the

ARIES childhood time point and carried these forward to

the MR analysis (Table S4). This revealed no strong evi-

dence for a causal effect of AHRR (cg05575921) methyl-

ation on FEV1 (Table S5).
Replication Analysis

We attempted to replicate effect estimates for the top 18

CpG sites identified in the UK Biobank by using data

from the SpiroMeta GWAS meta-analysis of FEV1

(n ¼ 79,055) (Figure 3). Three CpGs (cg21201401

[LIME1/ZGPAT], cg19758448 [PGAP3], and cg12616487
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Figure 2. Flowchart of the Analysis Pipe-
line, Outlining the Different Analyses Per-
formed at Each Stage of the Study
Cohorts and sample sizes used for each anal-
ysis are detailed in the flowchart.
[EML3/AHNAK]) were replicated beyond a stringent Bon-

ferroni threshold (p < 0.0028) (Table S6), and there was

consistency (83%) in the direction of effect at 15 of the

CpG sites.

Stratified Analysis

The sample used in the discovery analysis included

current, former, and never smokers in the UK Biobank,

and so we performed a stratified analysis by using never-

and heavy-smoking subsets of the UK Biobank study in

the UK BiLEVE dataset. This stratified analysis had less sta-

tistical power than the discovery analysis as a result of a

10-fold drop in sample size (smokers, n ¼ 24,457; non-

smokers, n ¼ 24,474). The results from the stratified anal-

ysis are compared to the discovery analysis in Figure S2,

and Table S7 shows the results for the top CpGs. Effect es-

timates were generally similar between the mixed, smok-

ing-only, and non-smoking-only groups. For some sites

(cg09099830, cg09206294, cg15951188, cg24033122,

and cg10672416), an effect was present in smokers but

not in non-smokers, whereas at others (cg10255761,

cg0632664, cg21201401, and cg04337534), there was a

larger effect in non-smokers than in smokers.

Causal Effects of DNA Methylation on Other Lung-

Function-Related Traits

Of the CpG sites where DNAmethylation was identified as

having a putative causal role on FEV1, there was similar ev-

idence for a causal effect of DNA methylation on FVC at

15 CpG sites beyond a stringent Bonferroni threshold

(p < 0.0028) and on the FEV1/FVC ratio at eight CpG sites

(Figure S3, Table S8). Evidence for a causal effect on

lung diseases (i.e., asthma and COPD) at these sites

was not as strong, although this analysis was less well

powered (Figure S4, Table S8). Nonetheless, four CpG

sites (cg09447622, cg10672416, cg19758448, and

cg21201401) surpassed the Bonferroni threshold in rela-

tion to asthma, and the effects observed for both asthma

and COPDwere typically in the opposite direction of those

for the lung-function measures, as expected.
The American Journal of Human
DNA Methylation and Lung

Function: Direction of Causality

We performed directionality tests by

using the MR Steiger method34 to pro-

vide evidence that the causal pathway

was in the direction fromDNAmethyl-

ation to FEV1, rather than vice versa.

This was suggested to be the case for

all CpG sites in the main analysis

(Table S9) because the mQTLs ex-
plained substantially more variation in DNA methyl-

ation (between 3.3% for cg09447622 and 31.3% for

cg24033122) than in FEV1 (r2 < 0.04%). When testing

the impact of FEV1 on DNA methylation, we used 175

out of 221 SNPs identified in the UK Biobank GWAS20 as

genetic proxies and found little evidence to suggest that

lung function had a causal effect on DNA methylation at

any of the 18 CpG sites (Table S10).

Smoking Behavior and DNA Methylation: Direction of

Causality

We also evaluated the direction of causality between life-

time smoking behavior and DNA methylation at the

identified CpG sites by using 119 out of 126 SNPs identi-

fied from a GWAS of a comprehensive smoking-index

metric29 as genetic proxies. There was limited evidence

that lifetime smoking behavior had a causal effect on

DNA methylation at the 18 CpG sites of interest, and the

effect estimate from MR analysis was consistent with the

original smoking EWAS at only 12 of the 18 CpG sites in

terms of the direction of methylation (Table S11). This

finding is in contrast to MR analysis for the majority of

the smoking-related CpG sites, where the MR estimates

were more in line with those from the smoking EWAS

(Figure S5).

Conversely, there was evidence for a causal effect of DNA

methylation on lifetime smoking at several of the CpG

sites when we performed the reciprocal MR analysis (Table

S12). We also performed directionality tests by using the

MR Steiger method, which provided evidence that the

causal pathway was in the direction from DNA methyl-

ation to smoking, rather than vice versa (Table S13).

Negative Control

Given the differences in sample sizes between the DNA

methylation and lifetime smoking datasets that may bias

the directionality tests,34 we also carried out further anal-

ysis using mQTL data from the childhood time point

(mean age 7.5 years, n ¼ 885) as a negative control. We

showed that the mQTLs were strongly associated with
Genetics 106, 315–326, March 5, 2020 319



Table 1. Results of Two-Sample MR Analysis of the Effects on Lung Function (FEV1) of DNA Methylation at Smoking-Related CpG Sites.

CpG Chromosome Position Nearest Gene(s) Method N SNPs b SE p Value

cg12616487 11 62379063 EML3/AHNAK Wald ratio 1 �0.101 0.010 3.34 3 10�24

cg09447622 6 35108605 TCP11 Wald ratio 1 0.063 0.009 4.77 3 10�12

cg21201401 20 62367884 LIME1/ZGPAT Wald ratio 1 0.076 0.013 1.54 3 10�9

cg19758448 17 37828296 PGAP3 Wald ratio 1 0.029 0.005 6.98 3 10�9

cg06382664 11 73098877 RELT Wald ratio 1 �0.045 0.008 1.16 3 10�8

cg24033122 16 30485383 ITGAL Wald ratio 1 0.019 0.004 2.31 3 10�7

cg09099830 16 30485485 ITGAL Wald ratio 1 0.042 0.008 2.57 3 10�7

cg21356710 2 24234017 MFSD2B Wald ratio 1 0.030 0.006 5.19 3 10�7

cg10672416 12 123718706 C12orf65 Wald ratio 1 0.043 0.009 8.97 3 10�7

cg15059804 1 33766318 ZNF362 Wald ratio 1 �0.023 0.005 2.02 3 10�6

cg10255761 3 49210029 KLHDC8B Wald ratio 1 0.042 0.009 2.48 3 10�6

cg23771366 11 86510998 PRSS23 Wald ratio 1 0.039 0.008 2.59 3 10�6

cg09206294 15 42072687 MAPKBP1 Wald ratio 1 �0.049 0.011 2.95 3 10�6

cg15233611 12 122244660 SETD1B Wald ratio 1 0.051 0.011 3.09 3 10�6

cg19717773 7 2847554 GNA12 Inverse-variance weighted 2 �0.032 0.007 6.94 3 10�6

cg04337534 11 65816809 GAL3ST3 Wald ratio 1 0.052 0.012 1.16 3 10�5

cg15951188 17 7832680 KCNAB3 Wald ratio 1 �0.023 0.005 3.27 3 10�5

cg11660018 11 86510915 PRSS23 Wald ratio 1 0.036 0.009 5.54 3 10�5

Two-sampleMR analysis involving SNP-methylation estimates from ARIES (sample 1, Table S2) and SNP-FEV1 estimates from the UK Biobank (sample 2). The effect
size (b), standard error (SE), and p value for each CpG reaching significance after Bonferroni correction is reported, along with the chromosome and position of the
CpG, the nearest gene(s), the MR method used for analyzing the effect on lung function, and the number of SNPs used.
DNA methylation in ARIES at the childhood time point

(i.e., in non-smoking individuals) and thereby ruled out

the possibility that the mQTLs were having their primary

effect via smoking (Table S14).

Mediation Analysis

Given the limited evidence suggesting that smoking has a

causal effect on DNAmethylation at the 18 CpG sites of in-

terest, we conducted mediation analysis to investigate the

mediating pathway from DNA methylation to lung func-

tion via lifetime smoking behavior at the seven CpG sites

where there was evidence for a causal effect of DNA

methylation on lung function, as well as smoking behavior

beyond a Bonferroni threshold (p < 0.0028) (Table S12).

We accomplished this by performing two-step MR anal-

ysis12 (Figure 1) and using the ‘‘product of coefficients’’

method35 to estimate the indirect effect of DNA methyl-

ation on lung function via lifetime smoking. For all seven

CpG sites, there was evidence of an indirect effect of

DNA methylation on lung function via lifetime smoking

(p% 0.006). Between 7.85% and 19.33% of the total effect

was found to be mediated by each of the CpG sites (Table

S15). This indirect effect was replicated for five CpG sites

when we used FEV1 GWAS summary data from SpiroMeta

(p % 0.008) (Table S16).

We also estimated the direct effect of methylation on

lung function by using an MVMR approach,36,37 and we
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used the ‘‘difference of coefficients’’ method35 to deter-

mine the indirect effect of DNAmethylation on lung func-

tion via lifetime smoking (Tables S17 and S18). Although

independent strength of the genetic variants for lifetime

smoking and the 18 CpG sites was deemed to be strong

(Q-statistics R 64.5), the indirect effect was estimated

with lower precision than the two-step MR analysis. In

addition, there was some evidence for heterogeneity in

the causal-effect estimates from the MVMR, which could

indicate the presence of invalid genetic variants (e.g., as a

result of horizontal pleiotropy)37 (Table S18). Nonetheless,

there was supportive evidence for an indirect effect of

methylation at two sites (cg10255761 and cg15951188)

on FEV1 via smoking in MVMR (Tables S17 and S18).

Evaluating Horizontal Pleiotropy

For the 18 CpG sites of interest, we assessed the robustness

of the causal effects to horizontal pleiotropy by using

multiple mQTLs in linkage disequilibrium (r2 < 0.8) as

proxies for each CpG site, and we incorporated the correla-

tion of the mQTLs as weights in a weighted generalized

linear-regression analysis.38 Given the presence of more

than one mQTL, we were able to perform IVW and

compared the results with those obtained from the main

analysis involving only independent mQTLs (Figure S6,

Table S19). Evidence for horizontal pleiotropy was evident

for two of the CpG sites (cg10255761 and cg21201401) on
5, 2020



Figure 3. Results of MR Analysis of the Effect of Smoking-Asso-
ciated DNA Methylation on Lung Function (FEV1) in the UK Bio-
bank (Discovery) and SpiroMeta (Replication) Datasets
Effect sizes and 95% confidence intervals (CI) of the 18 significant
CpG sites from the discovery analysis are shown in blue, and the
effect sizes and CI of the same CpG sites in the replication analysis
in SpiroMeta are shown in red.
the basis of heterogeneity assessment and for five CpGs

(cg10672416, cg19758448, cg21201401, cg23771366,

and cg24033122) on the basis of the MR Egger intercept

value at a Bonferroni threshold of p < 0.0028 (Figure S7,

Table S20). After we accounted for horizontal pleiotropy,

effects at cg10672416, cg23771366, and cg24033122

were attenuated in the MR Egger regression, whereas at

cg21201401, evidence suggested a causal effect of DNA

methylation on FEV1 in the opposite direction to that esti-

mated in the other analyses (Figure S8). Effect estimates

based on the weighted median approach were largely

consistent with those from IVW.

Multiple-Trait Colocalization Analysis

For those CpG sites where there was evidence of a causal

effect on lung function, we applied a genetic colocalization

approach to determine whether the variant responsible for

influencing methylation at each CpG site was the same

variant influencing changes in lung function. Further-

more, it is likely that any true association between a CpG

site and lung function is mediated by changes to the
The Ameri
expression of nearby genes. To assess this, we applied ‘‘mo-

loc’’18 to investigate whether the variant responsible for

influencing methylation at each CpG site was the same

variant influencing changes to both nearby gene expres-

sion and lung function.17,43

There was strong evidence (based on PPA R 80%) at five

CpG sites that variation in DNAmethylation, gene expres-

sion, and FEV1 were all attributed to the same underlying

genetic variant. This included associations at cg21201401

(with ZGPAT expression [PPA ¼ 84.2%]) and cg12616487

(with AHNAK expression [PPA ¼ 88.9%]), which were

two of the CpGs where the effects on FEV1 were most

strongly replicated in SpiroMeta. This suggests that the

relationship between DNA methylation at these smok-

ing-associated CpG sites and lung function might also

involve the transcription of nearby genes, and such tran-

scription is a mechanism of effect consistent with causal-

ity. There was also strong evidence of colocalization at

four further CpG sites, although only between DNA

methylation and FEV1 (but not nearby gene expression).

Colocalization results are shown in Table S19. We note,

however, that plotting genetic effects at each of these

loci highlighted that many of them were in regions of

high linkage disequilibrium (Figure S9).
Discussion

We investigated CpG sites previously associated with

smoking for their potential causal impact on lung function

by using a two-step MR framework. A discovery MR anal-

ysis involving mQTLs associated with 474 smoking-associ-

ated CpGs identified 18 CpGs with a possible causal effect

on lung function in the UK Biobank. These sites were an-

notated to genes involved in diverse biological pathways,

including neurological development (AHNAK, PGAP3),

lymphocytic function (ITGAL), apoptosis (RELT), tumor

suppression (ZGPAT), and endothelial-to-mesenchymal

transition (PRSS23). Genetic variation in ZNF362 has also

been recently implicated in relation to risk-taking propen-

sity.45 Replication in SpiroMeta provided supportive evi-

dence for a causal effect of methylation on FEV1 at three

CpG sites, although the sample size of this replication

analysis was much smaller than that performed with UK

Biobank data (79,055 versus 321,047), and there was con-

sistency in the direction of effect at 83% of the CpG sites.

A further analysis using the UK BiLEVE dataset stratified by

smoking status highlighted heterogeneity in effects among

heavy smokers compared with non-smokers at some of the

sites. 15 of the CpG sites identified in relation to FEV1 also

showed evidence for a causal effect on FVC, and eight

showed an effect on the FEV1/FVC ratio. There was also

suggestive evidence for causality on lung diseases (i.e.,

asthma and COPD).

We found little evidence to suggest that lung function in

turn influenced DNA methylation at the 18 CpG sites.

Interestingly, MR analyses also provided limited evidence
can Journal of Human Genetics 106, 315–326, March 5, 2020 321



that smoking had a causal effect on DNA methylation at

these smoking-related sites. Instead, we observed that at

several of the CpG sites DNA methylation had a causal ef-

fect on smoking. We conducted mediation analysis by us-

ing both two-step and multivariable MR to estimate the

extent to which smokingmediates the association between

DNA methylation and lung function at these sites. In two-

step MR, we found evidence of mediation for seven CpG

sites when we used FEV1 GWAS summary data from the

UK Biobank and for five CpG sites when we used Spiro-

Meta. Indirect effects were estimated with less precision

in the MVMR approach. We also performed additional

MR analyses to investigate horizontal pleiotropy, and we

integrated evidence from gene expression in ‘‘moloc’’ to

provide further evidence for causality.

Comparison with Other Studies

We searched both the EWAS Catalog and the EWAS Atlas46

to assess whether any of the 18 CpG sites had been previ-

ously identified in other EWASs of lung function or COPD.

The CpG sites cg15059804 (ZNF362) and cg11660018

(PRSS23) were found to be associated with asthma in an

EWAS conducted in lung cells;47 cg11660018 (PRSS23)

and cg23771366 (PRSS23) were suggested to have a causal

effect on lung function in another EWAS conducted in

blood; this study was followed up by a two-sample MR

analysis.7 The direction of causal effect for these two

CpGs in this MR analysis was consistent with our results.

cg21201401 (LIME1/ZGPAT) was found to be inversely

associated with COPD in an EWAS conducted in lung tis-

sue (114 subjects with COPD and 46 controls who were

all former smokers).48 This effect is consistent with our

observation of a causal effect on increased FEV1.

As mentioned in the Introduction, one previous study

indicated that hypomethylation at cg05575921 (AHRR)

might mediate the association between smoking and lung

function.7 However, we found in MR analysis that there

was no strong evidence for a causal effect of AHRR methyl-

ation on FEV1, indicating that it is unlikely to be mediating

the effect of smoking on lung function. Similar conflicting

findings have been observed between conventional media-

tion approaches and MR analysis aimed at determining

epigenetic mediation in the context of smoking and lung

cancer49,50 and of prenatal famine and later-life metabolic

profile.51,52 Traditional mediation approaches are more sus-

ceptible to measurement error and potential reverse causa-

tion than MR,53 meaning the proportion of the mediated

effect reported by these studies is likely to be overestimated.

However, several limitations of MR analysis have also been

raised previously and might explain discrepancies,

including tissue specificity, pleiotropy, and low power, in

these results.54 These limitations arediscussed in turnbelow.

Limitations

Sample Considerations

A possible explanation for why this MR analysis did not

detect a causal effect of smoking on DNA methylation is
322 The American Journal of Human Genetics 106, 315–326, March
low power resulting from the small sample size for the

DNA methylation sample (n ¼ 846). Three of the 18 sites

identified as having a causal effect on lung function in

our analysis were also previously implicated in an EWAS

of maternal smoking in pregnancy,55 although the direc-

tion of effect was not always consistent with our results.

These were cg12616487 (EML3/AHNAK), cg23771366

(PRSS23), and cg21201401 (LIME1/ZGPAT). Because DNA

methylation is unlikely to directly influence maternal

smoking in this instance, this indicates that smoke expo-

sure (whether this be through one’s own smoking or

smoke exposure in-utero) might have a causal effect on

DNA methylation but that this effect might have been un-

detected in our MR analysis. Furthermore, the intergenera-

tional effect that maternal smoking had at these CpG sites

might have biased the negative-control analysis in that the

mQTL effect seen in childhood could have been

confounded by parental smoking and inherited mQTLs.

Furthermore, although both the GWASs for lifetime

smoking and lung function were conducted in samples

that included both males and females, the mQTL effects

used in the main analysis were obtained in females only

in ARIES. Nonetheless, we have shown consistency in

the mQTL effects in a mixed sample of males and females

from the ARIES childhood time point.

An additional sample consideration relates to the use of

both the UK Biobank and the UKBiLEVE subset, both of

which represent selected groups that could bias effect esti-

mates in the MR analysis.56 Nonetheless, we have also per-

formed independent replication by using data from 22

studies from the SpiroMeta Consortium, and these pro-

vided confirmatory causal estimates at the majority of

the identified CpG sites.

Horizontal Pleiotropy

We observed heterogeneity of causal effects for some of the

CpG sites between smokers and non-smokers. For

example, at cg10255761 (KLHDC8B) and cg21201401

(LIME1/ZGPAT), although DNA methylation was shown

to have a causal effect on smoking and lung function in

the mediation analysis, there was also evidence for a causal

effect on lung function among non-smokers. Caution over

these results is warranted, since this stratified analysis

effectively conditions on a collider (i.e., smoking status)

that might induce bias.57 However, another potential

explanation for these findings is the horizontal pleiotropy

in the MR analysis. We performed additional MR analyses

to detect and correct for this bias, and we demonstrated

that at some CpG sites, including cg21201401 (LIME1/

ZGPAT), there was evidence to suggest horizontal

pleiotropy.

Multiple-Trait Colocalization

We also performed a colocalization analysis on our top hits

to investigate the relationship between methylation of

these sites, expression of nearby genes, and variation in

lung function. If all three of these traits were to share a

common causal variant, it would suggest that associations

are more likely to be due to an underlying causal
5, 2020



relationship as opposed to genetic confounding (i.e., high

linkage disequilibrium between an mQTL and a variant

that influences lung function).

Our colocalization analysis revealed that genetic varia-

tion associated with DNA methylation colocalizes with

both variation in lung function and gene expression at

several sites. For example, methylation at cg21201401 was

shown to colocalize with ZGPAT expression and lung func-

tion, and methylation at cg12616487 was shown to coloc-

alize with AHNAK expression and lung function. Although

findings related to cg21201401 and ZGPAT expression

should be interpreted with caution, given the presence of

horizontal pleiotropy in theMR analysis, AHNAK is a strong

candidate for being responsible for the association of this

locus with variation in lung function. In particular, AHNAK

is responsible for a neuroblast differentiation-associated

protein that has previously been reported to confer risk of

COPD as the result of missense variants in its coding re-

gion.58 However, it should be noted that several of the

mQTLs investigated in the colocalization analysis were in

regions of high linkage disequilibrium. As such, although

the findings might be useful in prioritizingloci where epige-

netic factors putatively influence variation in lung func-

tion, functional studies will need to robustly demonstrate

this. Furthermore, evidence for a causal effect of DNA

methylation at cg12616487 (EML3/AHNAK) was replicated

in an MR analysis with data from the SpiroMeta Con-

sortium. This further supports evidence indicating that it

represents a promising candidate for being a potential mo-

lecular mediator along the causal pathway from smoking to

variation in lung function

We detected evidence of colocalization between DNA

methylation and lung function at various CpG sites, but

gene expression did not also colocalize with these. For

example, the functional gene that might be responsible

for the association at cg21356710 could be UBXN2A

because, although it is not the closest gene to the CpG

site, it has been previously implicated in nicotine meta-

bolism.59 However, strong evidence from future research

would need to support this.

Tissue Specificity

A recent study that investigated the colocalization of

mQTLs with genetic risk variants for COPD identified

several lung-tissue mQTLs that might be involved in

COPD pathogenesis.60 These findings did not overlap

with the findings of this study, perhaps because of differ-

ences in tissue type.However, because someof theCpGsites

that were causally implicated in our MR analysis might be

exerting their effect on lung functionvia smokingbehavior,

lung tissue might not always be the most relevant for

appraising causal effects. Future work should evaluate and

integrate mQTL and eQTL effects from multiple tissues to

elucidate causal effects in themost biologically relevant tis-

sues. For example, one could use lung-derived tissue to

perform an investigation similar to that undertaken in our

study in order to further evaluate the molecular mecha-

nisms that influence lung function.
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Measurement Imprecision

One of the main limitations of mediation analysis is the

assumption of no measurement error. MR attempts to

overcome this limitation with the use of genetic variants,

which are typically measured with high accuracy. How-

ever, differential measurement precision of the pheno-

types being investigated in an MR approach can lead to

spurious findings in certain instances.

One explanation for the finding that DNA methylation

has a causal effect on smoking at several of the CpG sites

is that the SNPs used to proxy for DNA methylation have

their primary effect through smoking. We assessed this

by using the Steiger test, which indicated that this alter-

native explanation was not likely for those CpG sites

where DNA methylation had a causal effect on smoking.

However, this test is liable to return inaccurate causal di-

rections if there are large differences in sample size be-

tween the two samples or if the phenotypes have differ-

ences in measurement precision,34 which is likely to be

the case in this context. To assess this further, we

compared the magnitude of the mQTL effects in a non-

smoking subset of ARIES (children at age 7 years) and

found similar effects.
Strengths

Despite these limitations, this study has several strengths,

which include the systematic evaluation of the causal ef-

fect of a large number of smoking-related CpG sites on

lung function; the replication of findings in different

smoking strata and in an independent dataset; the integra-

tion of several large-scale datasets in the evaluation of the

causal relationship between smoking, DNA methylation,

and lung function; the application of a formal two-step

MR approach in the evaluation of mediation; and the use

of a colocalization approach that integrated gene expres-

sion data.
Conclusions

Using an MR approach, we identified several CpG sites

where DNA methylation might have a causal effect on

lung function, as assessed by FEV1. At some sites, there

was evidence to suggest that DNA methylation influ-

enced smoking, which in turn influenced lung function,

rather than that smoking influenced DNA methylation,

which then influenced lung function, as in the originally

proposed mechanism. The findings presented here high-

light potential therapeutic targets for improving lung

function and possibly smoking cessation, although

further studies with larger-scale and tissue-specific DNA

methylation and expression data will need to confirm

these results.
Supplemental Data

Supplemental Data can be found online at https://doi.org/10.
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causal effects of lifetime smoking on risk for depression and

schizophrenia: a Mendelian randomisation study. Psychol.

Med., 1–9.

30. Thomas, D.C., Lawlor, D.A., and Thompson, J.R. (2007). Re:

Estimation of bias in nongenetic observational studies using

‘‘Mendelian triangulation’’ by Bautista et al. Ann. Epidemiol.

17, 511–513.

31. Wain, L.V., Shrine, N., Artigas, M.S., Erzurumluoglu, A.M.,

Noyvert, B., Bossini-Castillo, L., Obeidat, M., Henry, A.P., Por-

telli, M.A., Hall, R.J., et al.; Understanding Society Scientific
The Ameri
Group; and Geisinger-Regeneron DiscovEHR Collaboration

(2017). Genome-wide association analyses for lung function

and chronic obstructive pulmonary disease identify new loci

and potential druggable targets. Nat. Genet. 49, 416–425.

32. Wain, L.V., Shrine, N., Miller, S., Jackson, V.E., Ntalla, I., Soler

Artigas, M., Billington, C.K., Kheirallah, A.K., Allen, R., Cook,

J.P., et al.; UK Brain Expression Consortium (UKBEC); and

OxGSK Consortium (2015). Novel insights into the genetics

of smoking behaviour, lung function, and chronic obstructive

pulmonary disease (UK BiLEVE): a genetic association study in

UK Biobank. Lancet Respir. Med. 3, 769–781.

33. Elsworth, B.,Mitchell, R., Raistrick,C., Paternoster, L.,Hemani,

G., andGaunt, T. (2019).MRC IEUUKBiobankGWASpipeline

version 2 (University of Bristol). https://research-information.

bris.ac.uk/en/datasets/mrc-ieu-uk-biobank-gwas-pipeline-

version-2(533d7172-cd33-4f9a-802e-0b612291b26a).html.

34. Hemani, G., Tilling, K., andDavey Smith, G. (2017). Orienting

the causal relationship between imprecisely measured traits

using GWAS summary data. PLoS Genet. 13, e1007081.

35. VanderWeele, T.J. (2016). Mediation Analysis: A Practitioner’s

Guide. Annu. Rev. Public Health 37, 17–32.

36. Burgess, S., and Thompson, S.G. (2015). Multivariable Mende-

lian randomization: the use of pleiotropic genetic variants to

estimate causal effects. Am. J. Epidemiol. 181, 251–260.

37. Sanderson, E., Davey Smith, G., Windmeijer, F., and Bowden,

J. (2019). An examination of multivariable Mendelian

randomization in the single-sample and two-sample summary

data settings. Int. J. Epidemiol. 48, 713–727.

38. Burgess, S., Dudbridge, F., and Thompson, S.G. (2016).

Combining information on multiple instrumental variables

in Mendelian randomization: comparison of allele score and

summarized data methods. Stat. Med. 35, 1880–1906.

39. Bowden, J., Del Greco M, F., Minelli, C., Zhao, Q., Lawlor,

D.A., Sheehan, N.A., Thompson, J., and Davey Smith, G.

(2019). Improving the accuracy of two-sample summary-

data Mendelian randomization: moving beyond the NOME

assumption. Int. J. Epidemiol. 48, 728–742.

40. Verbanck, M., Chen, C.Y., Neale, B., and Do, R. (2018). Detec-

tion of widespread horizontal pleiotropy in causal relation-

ships inferred from Mendelian randomization between

complex traits and diseases. Nat. Genet. 50, 693–698.

41. Bowden, J., Davey Smith, G., and Burgess, S. (2015).

Mendelian randomization with invalid instruments: effect

estimation and bias detection through Egger regression. Int.

J. Epidemiol. 44, 512–525.

42. Bowden, J., Davey Smith, G., Haycock, P.C., and Burgess, S.

(2016). Consistent Estimation in Mendelian Randomization

with Some Invalid Instruments Using aWeightedMedian Esti-

mator. Genet. Epidemiol. 40, 304–314.

43. Richardson, T.G., Zheng, J., Davey Smith, G., Timpson, N.J.,

Gaunt, T.R., Relton, C.L., and Hemani, G. (2017). Mendelian

Randomization Analysis Identifies CpG Sites as PutativeMedi-

ators for Genetic Influences on Cardiovascular Disease Risk.

Am. J. Hum. Genet. 101, 590–602.
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