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Abstract. Thrombospondin-1 (TSP1) has potent biolog- 
ical effects on vasculature smooth muscle cells (SMCs) 
and endothelial cells. The regulation of extracellular ac- 
cumulation of TSP1 is mediated by a previously ob- 
scure process of endocytosis which leads to its lyso- 
somal degradation. Since members of the low density 
lipoprotein receptor (LDLR) family have been found 
to mediate endocytosis which leads to degradation of a 
diverse array of ligands, we evaluated their possible 
role in the uptake and degradation of TSP1 by vascular 
SMCs, endothelial cells and fibroblasts. 125I-TSP1 was 
found to be internalized and degraded lysosomally by 
all these cell types. Both the internalization and degra- 
dation of 125I-TSP1 could be inhibited by a specific 
antagonist of the LDLR family, the 39-kD receptor- 
associated protein (RAP). Antibodies to the LDLR- 
related protein (LRP) completely blocked the uptake 
and degradation of 125I-TSP1 in SMCs and fibroblasts 

but not endothelial cells. Solid-phase binding assays 
confirmed that LRP bound to TSP1 and that the inter- 
action was of high affinity (Kd = 5 nM). Neither RAP 
nor LRP antibodies inhibited the binding of 125I-TSP1 
to surfaces of SMCs. However, cell surface binding, as 
well as, endocytosis and degradation could be blocked 
by heparin or by pre-treatment of the cells with either 
heparitinase, chondroitinase or 13-D-xyloside. The data 
indicates that cell surface proteoglycans are involved in 
the LRP-mediated clearance of TSP1. A model for the 
clearance of TSP1 by these cells is that TSP1 bound to 
proteoglycans is presented to LRP for endocytosis. In 
endothelial cells, however, the internalization of TSP1 
was not mediated by LRP but since RAP inhibited 
TSP1 uptake and degradation, we postulate that an- 
other member of the LDLR family is likely to be in- 
volved. 

T HROMaOSPONOIN-1 (TSP1) 1 is a 450-kD trimeric, multi- 
functional glycoprotein present in platelet a-granules 
and expressed by a variety of cells and incorporated 

into their extracellular matrix (ECM) (for review see Lawler, 
1986; Frazier, 1987; Asch and Nachman, 1989; Mosher, 1990; 
Bornstein, 1992). TSP1 is the prototypic member of a family 
that is currently composed of five proteins (Bornstein et al., 
1991; LaBell et al., 1992; Laherty et al., 1992; Vos et al., 1992; 
Lawler et al., 1993). These proteins are structurally related 
and have similar arrangements of repeated modules such as 
EGF-like elements and calmodulin-like calcium-binding re- 
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1. Abbreviat ions used in this paper. TSP1, thrombospondin-1; LDLR, low 
density lipoprotein receptor; LRP, low density lipoprotein receptor- 
related protein; VLDLR, very low density lipoprotein receptor; gp330, 
glycoprotein 330; RAP, receptor-associated protein; TGF-I3, transform- 
ing growth factor-[3; VN, vitronectin; FN, fibronectin; SMC, smooth mus- 
cle cells. 

peats as well as highly similar COOH-terminal domains. Al- 
though the function of TSP proteins are poorly defined, 
members of this family are believed to regulate a variety of 
processes that relate to vascular physiology including platelet 
aggregation, angiogenesis, and vascular cell growth (Frazier, 
1987; Majack, 1988; Bouck et al., 1989; Iruela-Arispe et al., 
1991; Dameron et al., 1994; Nicosia and Tuszynski, 1994). 

Evidence for the regulation of cell growth by TSP1 has 
been found in endothelial cells, fibroblasts and smooth 
muscle cells (SMCs) (Majack, 1988; Phan et al., 1989; 
Taraboletti et al., 1990; Castle et al., 1993; Nicosia and 
Tuszynski, 1994). TSP1 inhibits the proliferation of endo- 
thelial cells, possibly by activation of latent transforming 
growth factor-13 (TGF-B) (Taraboletti et al., 1990; Mur- 
phy-Ullrich et al., 1992; Schultz-Cherry and Murphy-Ull- 
rich, 1993). In addition, TSP1 and fragments of TSP1 are 
able to directly inhibit tube formation by endothelial cells 
in vitro and neovascularization in vivo (Iruela-Arispe et 
al., 1991; Tolsma et al., 1993). In contrast, TSP1 is able to 
stimulate the migration and proliferation of SMCs and fi- 
broblasts (Majack, 1988; Phan et al., 1989; Yabkowitz et 
al., 1993; Nicosia and Tuszynski, 1994). In vivo studies us- 
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ing a rat balloon-catheter injury model indicate that in- 
creased expression of TSP by SMCs is an early response 
to injury and closely correlated with SMC proliferation 
(Raugi et al., 1990). Additionally, elevated levels of TSP 
have been detected in human and porcine atherosclerotic 
lesions that correlated with the presence of phenotypicaUy 
modulated SMCs (Wight et al., 1985; Liau et al., 1993). 
These findings implicate TSP1 in the dynamic processes of 
tissue remodeling associated with the response to vascular 
injury. 

Because of the potent biological activities of TSP1, it is 
reasonable to speculate that a mechanism to tightly regu- 
late its expression at the level of synthesis as well as its ex- 
tracellular half-life is required. In general, catabolism of 
ECM proteins occurs through a process of extracellular 
proteolysis (Tryggvason et al., 1987). For example, elastin 
and collagens are degraded by secreted proteases such as 
neutrophil elastase and type IV collagenase. Extracellular 
levels of proteins such as TSP1 and vitronectin (VN), how- 
ever, have been found to be regulated by a cell-mediated 
process of endocytosis leading to lysosomal degradation 
(McKeown-Longo et al., 1984; Murphy-Ullrich and Mosher, 
1987; Pannetti and McKeown-Longo, 1993a,b). The mech- 
anism underlying the cell-mediated turnover of these pro- 
teins is poorly understood. In this manuscript we report 
findings of experiments that focused on characterizing the 
mechanism by which vascular cells (e.g., endothelial and 
SMCs) endocytose and degrade TSP1. 

Materials and Methods 

Ce//s 

Human saphenous vein smooth muscle cells were provided by Dr. Peter 
Libby (Brigham and Women's Hospital, Harvard Medical School, Boston, 
MA) and grown in M199 medium, 10% fetal calf serum (Intergen, Pur- 
chase, NY), 100 U/ml penicillin, 100 ~g/ml streptomycin (GIBCO BRL, 
Gaithersburg, MD). Human WI38 lung fibroblasts (ATCC CCL 75) 
(American Type Culture Collection, Rockville, MD) were grown in DME 
(Mediatech, Washington, D.C.) supplemented with 10% iron-enriched 
bovine calf serum (Hyclone, Logan, UT), peniciUin/streptomycin, and 1 
mM sodium pyruvate. Human umbilical vein endothelial cells were ob- 
tained from Dr. Thomas Maciag (American Red Cross, Rockville, MD) 
and were grown on fibronectin-coated surfaces according to Maciag et al. 
(1981). 

Prote/ns 

TSP1 was purified from human platelets by adsorption to barium citrate 
followed by heparin-agarose chromatography according to Alexander 
and Detwiler (1984). Human VN (conformationally altered form) was 
provided by Dr. Panla McKeown-Longo (Albany Medical College, Al- 
bany, NY). Human FN was purified from plasma according to Miekka et 
al. (1982). LRP was isolated from human placenta by ¢t2-macroglobulin/ 
methylamine-Sepharose affinity chromatography as previously described 
(Ashcom et al., 1990). Gp330 from porcine kidney brush border mem- 
brane extracts was isolated by RAP-Sepharose affinity chromatography 
as previously described (Kounnas et al., 1992b; Kounnas, et al., 1993). 
Human RAP, expressed as a glutathione S-transferase fusion protein in 
bacteria, was prepared (free of glutathione S-transferase) as outlined by 
Williams et al. (1992). Pro-urokinase (pro-uPA) was provided by Dr. Jack 
Henkin (Abbott Laboratories, Abbott Park, IL). BSA fraction V, hep- 
aritinase III, and chondroitinase ABC were purchased from Sigma Chem- 
ical Co. (St. Louis, MO). The synthetic peptides GRGDSP and GRGESP 
were made on a Milligen peptide synthesizer (model 9050) and purified 
by reverse phase HPLC using a C-18 Delta Pak column (Millipore, Bed- 
ford, MA). 

Antibodies 
IgG was isolated from rabbit polyclonal anti-LRP serum (rb777) (Koun- 
has et al., 1992a) by affinity chromatography on protein G-Sepharose 
(Pharmacia) followed by absorption on RAP-Sepharose and then affinity 
selection on LRP-Sepharose (1-2 mg protein/ml resin). IgG from the rab- 
bit polyclonai antiserum raised against a synthetic peptide corresponding 
to the last 11 residues of the LRP cytoplasmic domain (rb704) (Kounnas 
et al., 1992a) was isolated by protein G-Sepharose chromatography. The 
mouse monoclonal antibody to rat gp330 designated 1H2 was provided by 
Dr. Robert McCluskey (Harvard/Massachusetts General Hospital, Boston, 
MA). The mouse monoclonal antibody to the 515-kD heavy chain of hu- 
man LRP designated 8G1 has been described previously (Strickland et al., 
1991). IgG was purified on protein G-Sepharose from each of the mouse 
ascitic fluids. 

Solid-phase Binding Assays 
Homologous ligand displacement assays were conducted according to 
methods previously outlined by Williams et al. (1992). Briefly, microtiter 
wells were coated with LRP, gp330 or BSA (3 Ixg/ml) in TBS, pH 8.0, 5 
mM CaCI2 for 4 h at 37°C, non-specific sites were blocked with 3% BSA, 5 
mM CaCI2 in TBS, pH 8.0. The wells were then incubated with radiola- 
beled TSP1 (5 nM) in the same buffer plus 0.05% Tween-20 and varying 
concentrations of unlabeled competitor for 18 h at 4°C. The binding data 
was analyzed and dissociation constants (Ko) were determined by using 
the computer program LIGAND (Munson and Rodbard, 1980). 

Cell-mediated Ligand Binding, Internalization, and 
Degradation Assays 
Cell assays were carried out according to procedures previously described 
(Kounnas et al., 1993) using subconfluent monolayers of cells grown in 
24-well plates (1.9 cm 2) (Coming, Coming, NY). Prior to addition of ra- 
dioactive ligands the cells were washed and incubated in either M199 or 
DME containing 10 mM Hepes, Nutridoma serum substitute (Boehringer 
Mannheirn Biochemicals), penicillin/streptomycin, and 0.2% BSA (assay 
medium) for 0.5 h at 37*C. Radioiodination of ligands was performed us- 
ing Iodogen (Pierce Chemical Co., Rockford, IL) and specific activities 
ranging from 2-5 p, Cihxg protein were typically achieved. For cell surface 
binding assays, the cells were washed with ice cold assay medium and then 
incubated on ice for 15 rain in a cold room. Radiolabeled TSP1 (2 nM) in 
assay medium (4°C) was then added to the cell layers in the presence of 
1 mM concentrations of either TSP1, RAP, or pro-uPA. For RGD and 
RGE treatments, 2 mM doses of each peptide in assay medium was used 
as competitor. For heparin treatment, 10 mg/ml heparin (grade I; Sigma 
Chemical Co.) in assay medium (~660 nM) was used. For ligand internal- 
ization and degradation assays cells were preincubated for 0,5 h at 37°C, 
5% CO2, with the above mentioned doses of competitors, lzSI-TSP1 
(2 nM) was then added and incubated with the cells for 4 h at 37°C, 5% 
CO2. To inhibit lysosomal protease activity, the cells were treated with 0.1 
mM chloroquine (Sigma Chemical Co.) for 0.5 h at 37°C, 5% CO2 and 
throughout the duration of the uptake and degradation assays. Radioac- 
tivity in the cell medium that was soluble in 10% TCA was taken to repre- 
sent degraded ligand. Total ligand degradation was corrected for the 
amount of degradation that occurred in radioligand-containing medium 
lacking ceils. To determine the amount of 12SI-ligand that was internalized, 
the cells were washed three times with isotonic PBS and then treated with 
serum-free medium containing 0.5 mg/ml trypsin, 0.5 mg/ml proteinase K 
(Sigma Chemical Co.) and 0.5 mM EDTA for 2-4 min at ft. The cells were 
then centrifuged at 6,000 g for 4 rain and the amount of radioactivity in the 
cell pellet was measured. For VN uptake and degradation experiments, 
the concentration of 125I-VN added to the cells was 8 nM and the concen- 
tration of VN used as competitor was 1.3 mM. 

Heparan sulfate and chondroitin sulfate were enzymatically removed 
from cell surfaces by treatment with heparinase III (heparitinase) or chon- 
droitinase ABC. To determine the optimal dose of each enzyme, cells 
were metabolically labeled with aSS-labeled NaSO4 (150 p, Ci/ml) for 18 h, 
washed with PBS, and incubated with different concentrations of enzyme 
(heparitinase, 0.25-10 U/ml or chondroitinase, 0.05-1 U/ml) for 1.5 h at 
37°C in 5% CO2. Both the amount of 125I-ligand-derived radioactivity re- 
leased into the medium and the amount of radioactivity remaining associ- 
ated with the cell layer (extractable with 0.2 N NaOH) were measured by 
liquid scintillation counting. 
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Figure 1. Kinetics of the internalization and degradation of 
12SI-TSP1 and 125I-FN by cultured human SMCs. 125I-TSP1 (A and 
B) and 125I-Fn (C and D) were incubated with cultured SMCs for 
various time periods at which the amount of each ligand internal- 
ized and degraded were determined. RAP (1 ~M) or heparin 
(660 nM) were coincubated with the radiolabeled ligands through- 
out the course of the experiment. The plotted data is corrected 
for non-specific binding. 

To inhibit the synthesis of proteoglycans, cultured cells were treated 
with p-nitrophenyl-13-D-xylopyranoside which competes with xylose- 
substituted core proteins as a substrate for galactosyltransferases 
(Schwartz, 1977). Cultured cells were grown for 3 d in complete medium 

containing 1 mM p-nitrophenyl-13--D-xylopyranoside (Sigma Chemical 
Co.) and then used for radioligand internalization and degradation assays. 

Results 

Smooth Muscle Cells Internalize and Degrade TSP1 

Fibroblasts and endothelial cells have been previously dem- 
onstrated to internalize and degrade TSP1 (McKeown- 
Longo et al., 1984; Murphy-Ullrich and Mosher, 1987). 
However, evidence for the catabolism of TSP1 by the 
other major vascular cell type, SMCs has not been estab- 
lished. Given that TSP has potent biological effects on 
both SMCs as well as endothelial cells, we were interested 
in determining whether vascular SMCs were also capable 
of mediating TSP1 clearance. As shown in Fig. 1 A, 125I- 
TSP1 was rapidly internalized by cultured SMCs, reaching 
a maximum level within 1 h. Fig. 1 B demonstrates the 
time course for SMC degradation of 125I-TSP1 as mea- 
sured by the appearance of TCA soluble radioactivity in 
the medium. The degradation of TSP1 was shown to be in- 
hibitable by chloroquine (Fig. 2 C), a drug that blocks ly- 
sosomal protease activity through its ability to increase the 
pH of endocytic vesicles. The chloroquine affect suggested 
that TSP1 was delivered to lysosomes following its en- 
docytosis. Both the internalization and degradation of 125I- 
TSP1 by SMCs were completely inhibited by treatment 
with heparin which has been shown to block these pro- 
cesses in fibroblasts and endothelial cells (McKeown- 
Longo et al., 1984; Murphy-Ullrich and Mosher, 1987). 
The results show that SMCs are capable of efficiently en- 
docytosing and then lysosomally degrading TSP1. 

The LDLR family of receptors are involved in the up- 
take and degradation of a variety of functionally diverse 
ligands (Kounnas et al., 1994; Williams et al., 1994). To 
evaluate the potential role of members of the LDLR fam- 
ily in the catabolism of TSP1, RAP, an antagonist of ligand 
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Figure 2. 125I-TSP1 binding, 
internalization and degrada- 
tion by human vascular 
SMCs. 125I-TSP1 (2 nM) was 
incubated with SMCs at 4°C 
for 3 h. Competition of bind- 
ing was done by co-incubat- 
ing radiolabeled TSP1 with 1 
~M concentrations of either 
TSP1, RAP, and prouroki- 
nase (pro-uPA). For anti- 
body treatment, 100 txg/ml 
of blocking anti-LRP IgG 
(rb777) or control IgG 
(rb704) were used. For hep- 
arin treatment, a concentra- 
tion of 660 nM was used. For 
cell internalization and deg- 
radation experiments SMCs 
were pre-incubated for 0.5 h 
at 37°C, 5% CO2 with the 
above mentioned doses of 
competitors. 125I-TSP1 (2 nM) 

was then added and incubated with cells for 4 h at 37°C, 5% CO2, To inhibit lysosomal protease activity, SMCs were treated with 0.1 
mM chloroquine for 30 rain at 37°C, 5% CO2 prior to the addition of radiolabeled ligand and the drug was present throughout the dura- 
tion of the internalization and degradation assays. 
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binding to members of the LDLR family, was used in the 
12SI-TSPI uptake and degradation assays. As shown in Fig. 
1,125I-TSP1 uptake and degradation were both blocked by 
RAP. In comparison with TSP1, the catabolism of another 
extracellular matrix protein, FN was also evaluated. As 
shown in Fig. 1, C and D, little if any ~25I-FN was internal- 
ized and degraded by SMCs and neither heparin nor RAP 
were inhibitory. The results indicate that TSP1 but not FN 
is internalized and degraded by SMCs and that a member 
of the LDLR family is likely to be involved in this cata- 
bolic process. 

LRP Mediates Internalization and Degradation 
of  TSP1 

We next examined SMCs for the presence of LDLR fam- 
ily members that might mediate TSP1 uptake. Immuno- 
blotting of SMC extracts showed that LRP was present, 
however, gp330 was not detectable (Fig. 3 A). Polyclonal 
LRP antibodies that have been shown to block the func- 
tion of LRP in other cell types (Kounnas et al., 1993; 
Chappell et al., 1993) were then used in an attempt to per- 
turb 125I-TSP1 uptake and degradation in SMCs. As shown 
in Fig. 2, B and C, the LRP antibodies inhibited the inter- 
nalization and degradation of 125I-TSP1. As a negative 
control for these experiments, polyclonal antibodies elic- 
ited against the cytoplasmic domain of LRP (indicated as 
control IgG in Fig. 2) showed no effect. The LRP ligand 
pro-uPA, also effectively competed for the internalization 
and degradation of 125I-TSP1 by SMCs. The results indi- 
cate that LRP is expressed by SMCs and mediates endocy- 
tosis of TSP1. However, since neither LRP antibodies, 
RAP or pro-uPA inhibited cell layer-binding of TSP1 (Fig. 

Figure 3. Immunological detection of LRP and gp330 in cell ex- 
tracts. Detergent extracts of F9 teratocarcinoma cells (grown in 
retinoic acid and dibutylcyclic AMP containing medium) (lane 1), 
WI38 lung fibroblasts (lane 2), human umbilical vein endothelial 
cells (lane 3), and human saphenous vein smooth muscle cells 
(lane 4) were electrophoresed on 4-12% polyacrylamide gels in 
the presence of SDS, transferred to nitrocellulose membranes, 
and immunologically stained using polyclonal LRP antibody (af- 
finity selected on LRP-Sepharose) (A) or gp330 antibody (mono- 
clonal antibody 1H2) (B). The migration positions of molecular 
mass standards are indicated on the right in kD. 
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Figure 4. 125I-TSP1 internalization and degradation by human 
saphenous vein endothelial cells. For cell internalization and deg- 
radation experiments, endothelial cells were pre-incubated for 
0.5 h at 37°C, 5% CO2 with 1 p~M concentrations of either TSP1, 
RAP or 660 nM of heparin. For antibody treatment, 100 p,g/ml of 
blocking anti-LRP IgG (rb777) or control IgG (rb704) were used. 
125I-TSP1 (2 nM) was then added and incubated with cells for 4 h 
and the amount of TSP1 internalized or degraded was subse- 
quently measured. 

2 A), LRP is apparently not the initial or the predominant 
binding moiety on the cell surface. 

The uptake and degradation of 125I-TSP1 by fibroblasts 
and endothelial ceils were also investigated. Fibroblasts ef- 
ficiently internalized and degraded 125I-TSP1 with kinetics 
similar to those observed in SMCs (data not shown). In ad- 
dition, heparin, RAP and antibodies to LRP blocked both 
the internalization and degradation of 125I-TSP1 by fibro- 
blasts. In contrast, endothelial ceils internalized N10-fold 
lower levels of 125I-TSP1 as compared to fibroblasts or 
SMCs and antibodies to LRP had no effect (Fig. 4). The 
latter results were consistent with the immunoblotting 
data (Fig. 3 A) indicating that LRP was not detected in 
extracts of endothelial cells. However, the finding that 
RAP inhibited 125I-TSP1 internalization and degradation 
in endothelial cells (Fig. 4) suggests that some LDLR fam- 
ily member  might be involved. Since neither LRP nor 
gp330 seem to be expressed by endothelial cells (Fig. 3, A 
and B) the remaining members of the family, VLDLR and 
LDLR, must be considered as potential mediators of the 
process. 

LRP and gp330 Bind to TSP1 in Solid-phase 
Binding Assays 

Purified LRP and gp330, two members of the LDLR fam- 
ily, were evaluated for their ability to bind TSP1 in solid- 
phase binding assays. 125I-TSP was found to bind to micro- 
titer wells coated with LRP or gp330 but not BSA (Fig. 5). 
The binding was competitively inhibited by increasing 
concentrations of unlabeled TSP1. A dissociation constant 
(Kd) of 12 nM (n = 2) was derived for the binding of TSP1 
to LRP from the best-fit of the data to a single class of 
sites. Similarly, a Kd of 5 nM (n = 2) was determined for 
the binding of TSP1 to gp330. In addition, the LRP and 
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Figure 5. TSP binds to LRP and gp330 in solid phase assay. 
125I-TSP1 (2 nM) was incubated in the presence of the indicated 
concentrations of unlabeled TSP1 (@), RAP (&), pro-uPA ( I ) ,  
or heparin (©) with microtiter wells coated with LRP (A and C) 
or gp330 (B and D). The binding of 125I-TSP1 in the presence of 
increasing concentration of unlabeled TSP to wells coated with 
BSA is shown as a control (A). The data are expressed as the 
quotient of the amount of radioactivity bound over the total ra- 
dioactivity added per well and averaged from duplicate determi- 
nations. The curves represent the best-fit of the data to a single 
class of sites. The Kd value measured for the binding of TSP1 to 
LRP was 12 nM. The Ki values measured for the inhibition of 
TSP1 binding to LRP by RAP and pro-uPA were 7 and 49 nM, 
respectively. 

endocytosis and degradation. As shown in Table I, neither 
the RGD peptide nor the Arg-Gly-Glu (RGE) peptide in- 
hibited 125I-TSP1 internalization or degradation in SMCs. 
Similarly, the uptake and degradation of 125I-TSP1 by lung 
fibroblasts was not affected by the RGD peptide (Table 
I.). To verify the functionality of the RGD peptide, it was 
used to perturb the cellular internalization and degrada- 
tion of 125I -VN.  VN has been previously shown to be inter- 
nalized and degraded by lung fibroblasts and both pro- 
cesses could be blocked by RGD-containing peptides as 
well as by heparin (Panetti and McKeown-Longo, 1993). 
As shown in Table II, the internalization and degradation 
o f  1 2 5 I - V N  by lung fibroblasts were inhibited by RGD but 
not by the control RGE-containing peptide. These results 
demonstrate the efficacy of the RGD peptides that failed 
to inhibit I:5I-TSP1 catabolism by SMCs. The findings in- 
dicate that TSP1 internalization and degradation by SMCs 
and fibroblasts is not dependent on an RGD interaction as 
is the case for the internalization and degradation of VN. 

Proteoglycans Have a Role in Binding, Internalization, 
and Degradation of  TSPI 

Heparin has been previously reported to inhibit the bind- 
ing and degradation of 125I-TSP1 by fibroblasts (McKe- 
own-Longo et al., 1984) and endothelial cells (Murphy- 
Ullrich and Mosher, 1987). In our experiments, heparin 
also inhibited cell-binding, internalization and degradation 
of I:SI-TSP1 by SMCs (Figs. 1 and 2, and Table I). Similar 
results were observed in lung fibroblasts and saphenous 
vein endothelial cells (Table I and Fig. 4). The inhibitory 
effects of heparin have been postulated to indicate that a 
heparin-like molecule (e.g., proteoglycan) might mediate 
cell-binding of TSP1 which leads to its endocytosis and 
degradation (Murphy-Ullrich and Mosher, 1987; Murphy- 

Table I. Effects of Competitors on the Internalization 
and Degradation of ;2SI-TSP by Human Lung Fibroblasts 
and Smooth Muscle Cells gp330 ligands, RAP and pro-uPA (Kounnas et al., 1992, 

1993), were found to both compete for binding of 125I-TSP 
to LRP or gp330 (Fig. 5). Inhibition constants (Ki) of 7 and 
2 nM were determined for the inhibition of 125I-TSP bind- 
ing to LRP or gp330 by RAP, respectively. For the inhibi- Control 38 -+ 0.1 140 __ 16 28 _+ 1.6 160 -+ 30 

t i o n  o f  125I-TSP1 binding t o  L R P  a n d  gp330 by pro-uPA, TSP 6 _+ 1 7 -+ 1 11 _+ 2 17 4- 2 

the K i s  w e r e  49 and 72 nM, respectively. Given that hep- (83%) (95%) (60%) (90%) 
arin blocked TSP1 cell surface binding, uptake and degra- RAP 8 - 1 36 _ 2 7 + 0.4 45 ± 4 
dation, we evaluated its effects on the binding of 12SI-TSP1 (79%) (75%) (75%) (72%) 
to LRP and gp330 in solid phase assay. As shown in Fig. 5, Heparin 1 _+ 0.1 1 ± 2 1 -+ 0.1 2 + 1 

(96%) (99%) (96%) (98%) 
C and D, heparin had a partial inhibitory effect a s  c o m -  RGD 33 --- 0.2 122 ± 3 24 ± 0.7 153 ± 14 

pared to RAP and excess unlabeled TSP1. The findings in- (11%) (13%) (14%) (5%) 
dicate that the receptors LRP and gp330 can bind to TSP1 RGE 32 --_ 3 132 _ 15 28 ± 0.7 165 _ 5 

with high affinity and that RAP can completely block (14%) (6%) (*) (*) 
ligand binding whereas heparin is a poor inhibitor. Ant i -LRPIgG 16 - 3 52 ± 8 14 ___ 0.1 55 - 7 

(57%) (63%) (50%) (65%) 
Control lgG 27 _+ 0.6 137 ± 7 25 ± 0.1 152 ± 5 

(28%) (3%) (10%) (5%) 
VN 18 ± 0.2 78 - 0.1 17 ± 2 100 ± 9 

(52%) (44%) (40%) (37%) 

RGD Peptide Does Not Inhibit TSP1 Uptake and 
Degradation by SMCs or Fibroblasts 

Given that the vitronectin receptor av[~3 has been impli- 
cated as a receptor for TSP1 (Lawler et-al., 1988; Adams 
and Lawler, 1993), we examined the effect of an antago- 
nist of its ligand binding activity, an Arg-Gly-Asp (RGD) 
containing synthetic peptide, on the processes of 125I-TSP1 

Lung fibroblasts Smooth muscle cells 

Internalized Degraded Internalized Degraded 

Values represent means "- SD of the amount of fmol of 125I-TSP internalized or de- 
graded/105 cells/4 h incubation in the absence (control) or presence of the indicated 
competitors. Values in parentheses represent inhibition as compared to results ob- 
tained from cells without added competitor. An asterisk indicates a negative percent 
inhibition value. 
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Table H. Effects of Competitors on the Internalization 
and Degradation of l25I-VN by Human Lung Fibroblasts 
and Smooth Muscle Cells 

Lung fibroblasts Smooth muscle cells 

Internalized Degraded Internalized Degraded 

Control 279 --- 1 1088 - 52 54 ± 8 412 ± 65 
VN 15 +-- 0.1 101 --- 0.1 9 - 1 22 ___ 6 

(95%) (90%) (83%) (95%) 
RAP 295 --- 5 1264 ± 42 42 - 0.8 368 ± 11 

(*) (*) (22%) (11%) 
Heparin 73 + 2 236 -+ 5 18 +_ 1 40 ___ 0.2 

(74%) (78%) (66%) (90%) 
RGD 18 - 1 180 ± 5 42 _ 2 230 + 2 

(94%) (61%) (22%) (44%) 
RGE 265 - 5 958 +-- 51 55 ±. 2 514 ___ 54 

(*) (2%) (*) (*) 
Ant i -LRPIgG 270 -- 3 1065 _+ 26 53 ± 1.6 430 + 19 

(4%) (3%) (2%) (*) 
Control lgG 269 + 4 983 --- 33 51 + 2.3 390 ___ 27 

(4%) (10%) (5%) (5%) 
TSP1 99 -+ 5 189 + 25 29 ± 1.6 36 ± 2 

(64%) (82%) (46%) (91%) 

Values represent means +- SD of the amount of fmol of 125I~VN internalized or de- 
graded/los cells/7 h in the absence (control) or presence of the indicated competitors. 
Values in parentheses represent percent inhibition as compared to results obtained 
from cells without added competitor. An asterisk indicates a negative percent inhibi- 
tion value. 

Ullrich et al., 1988). In our study, heparitinase or chon- 
droitinase treatment of SMCs resulted in reduced binding, 
intemalization and degradation of 125I-TSP1 (Table III). 
However, the magnitude of inhibition of binding and in- 
ternalization achieved with each enzyme treatment alone 
was not as great as that obtained with heparin treatment. 
In control experiments, the doses of heparitinase and 
chondroitinase used were shown to be optimal (data not 
shown). Thus incomplete digestion can be ruled out for 
the difference in inhibitory activity between the enzyme 
and heparin treatment. The data suggests that both chon- 
droitin sulfate and heparin sulfate proteoglycans can con- 
tribute to the clearance process. As further evidence for 
the involvement of proteoglycans in the uptake and degra- 
dation of 125I-TSP1, cells treated with [3-xyloside to inhibit 

Table IlL Effect of Heparitinase and Chondroitinase 
Treatment on the Binding, Internalization, and Degradation 
of l25l-TSP1 by SMC 

Heparitinase Chondroitinase Heparin 
Control treated treated treated 

Surface bound* 111 +- 1 80 - 1 80 +- 10 0 
(30%) (30%) (100%) 

Internalized 48 ± 3 28 - 4 25 + 1 0 
(42%) (48%) (100%) 

Degraded 143 ± 21 13 --- 3 38 ± 10 0 
(91%) (74%) (100%) 

Values represent means --. SD of triplicate determinations of the amount of fmol of 
125I-TSP1 bound, internalized or degraded/10 s cells. (*) For 12SI-TSP1 cell surface 
binding experiments, 12SI-TSP1 was incubated with the ceils for 3 h at 4°C. For inter- 
nalization and degradation experiments 12SI-TSP1 was incubated with the cells for 4 h 
at 37°C in 5% CO2. All values have been corrected for non-specific binding. Cells 
were treated with either enzyme for 2 h at 37°C in 5% CO2 prior to the addition of the 
radioligand. Values in parentheses represent percent inhibition as compared to results 
obtained from untreated control ceils. 

Table IV. Effects of fl-D-Xylopyranoside on the Internalization 
and Degradation o f  25I-TSP by Human Lung Fibroblasts and 
Smooth Muscle Cells 

Lung fibroblasts Smooth muscle ceils 

Internalized Degraded Internalized Degraded 

Control 51 - 0.3 131 ___ 0.7 36 _ 0.8 150 - 27 
TSP 6 ± 0.1 26 _~ 1 12 ___ 2 37 - 2 

(89%) (80%) (66%) (75%) 
RAP 11 + 0.7 38 ± 6 12 +__ 0.7 34 + 3 

(78%) (71%) (66%) (77%) 
Heparin 8 -+ 1 33 --_ 4 7 _ 1 15 --- 2 

(84%) (75%) (80%) (90%) 
13-Xyloside 13 --- 1 44 _ 3 20 _ 0.6 13 --- 6 

(75%) (66%) (44%) (91%) 

Values represent means - SD of triplicate determinations of the amount of fmol of 
~25I-TSP internalized or degraded/los cells/4 h in the absence (control) or presence of 
competitors or in B-D-xyloside treated cells. Values in parentheses represent percent 
inhibition as compared to results obtained from cells without added competitor. 

proteoglycan synthesis did not internalize and degrade 
125I-TSP1 (Table IV). Taken together, the results suggest 
that an intermediate and possibly obligatory step in the ca- 
tabolism of TSP1 via LRP involves TSP1 interaction with 
proteoglycans. It has been shown that heparan sulfate pro- 
teoglycans are also involved with the catabolism of VN 
(Panetti and McKeown-Longo, 1993a,b). The ability of 
VN to inhibit the TSP1 uptake and degradation and vice 
versa (Tables I and II) may be the result of competition 
for binding to proteoglycans, a step that seems to precede 
the endocytosis of each ligand via distinct receptors. 

Discussion 

The goal of this research effort was to elucidate the mech- 
anism underlying the cell-mediated turnover of TSP1. The 
endocytosis and degradation of TSP1 by SMCs, endothe- 
lial cells and fibroblasts were studied and the data pre- 
sented herein indicate that members of the LDLR family 
(Kounnas et al., 1994; Williams et al., 1994) are responsi- 
ble for this process. Evidence for their participation was 
demonstrated by the ability of RAP, a specific antagonist 
of the ligand binding function of receptors belonging to 
the LDLR family, to inhibit TSP1 internalization in all the 
cell types examined. In SMCs and fibroblasts, LRP, a 
member of the LDLR family, mediates the endocytosis 
which leads to degradation of exogenously added TSP1. 
This conclusion was supported by the ability of antagonists 
of LRP function such as, LRP antibodies, RAP, and the 
LRP ligand, pro-uPA, to compete for TSP1 uptake and 
degradation. In addition, solid-phase binding assays con- 
firmed that LRP could bind to TSP1 with high affinity. In 
endothelial cells much lower levels of TSP1 were internal- 
ized and degraded as compared to SMCs or fibroblasts. 
Results from immunoblotting showed that LRP was not 
detectable in extracts of endothelial cells and LRP anti- 
bodies had no effect on TSP1 internalization and degrada- 
tion. These results suggest that endothelial cells endocy- 
tose and degrade TSP1 via some receptor other than LRP. 
However, given that RAP acts as an antagonist for TSP1 
uptake and degradation in endothelial cells, the endocytic 
receptor is likely to be a member of the LDLR family. 
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We have demonstrated that at least one other member 
of the LDLR family, gp330, is capable of binding to TSP1 
in solid-phase binding assays. Our preliminary evidence 
indicates that gp330 can mediate uptake of TSP1 in cul- 
tured F9 embryonal carcinoma cells (Argraves, Liau and 
Stefansson, unpublished observation). As of yet we do not 
know if or where gp330-mediated clearance of TSP1 is 
physiologically relevant. Gp330 expression in vivo is re- 
stricted to specialized absorptive epithelia such as in lung 
alveoli, kidney proximal tubules and brain ependyma 
(Kounnas et al., 1994; Zheng et al., 1994). It is not immu- 
nologically detectable in blood vessels or in cultured vas- 
cular cells, ruling out the likelihood that the observed 
clearance of TSP1 by endothelial cells is mediated by this 
receptor. Other candidates for the receptor responsible for 
mediating TSP1 clearance in endothelial cells are the 
LDLR and VLDLR. The ability of multiple members of 
the LDLR family to bind to a common ligand is a general 
functional property of members of this family. We have es- 
tablished that at least three members of the LDLR family 
are involved with TSP1 clearance, suggesting that this fam- 
ily is the principle means by which TSP1 is catabolized. 

A role for proteoglycans in TSP1 endocytosis had previ- 
ously been proposed based on the ability of heparin to in- 
hibit both TSP1 uptake and degradation by cultured cells 
(McKeown-Longo et al., 1984). Furthermore, heparitinase 
digestion of endothelial cells was shown to reduce TSP1 
binding (Murphy-Ullrich and Mosher, 1987) and, Chinese 
Hamster Ovary cells, deficient in glycosaminoglycan bio- 
synthesis, were shown to be unable to bind and degrade 
TSP1 (Murphy-Ullrich et al., 1988). In our experiments, 
heparin as well as heparitinase, chondroitinase or 13-D- 
xyloside treatment of cells reduced the uptake and degra- 
dation of 125I-TSP1. Additionally, heparin completely 
blocked cell surface binding of TSP1 yet had only a mod- 
est effect on TSP1 binding to LRP. We interpret the re- 
sults to indicate that the binding of TSP1 to glycosami- 
noglycan moieties of proteoglycans is a primary step in 
LRP-mediated internalization of TSP1. A similar model of 
endocytosis involving initial binding to proteoglycans and 
subsequent endocytosis via LRP has been proposed for 
three other LRP ligands, lipoprotein lipase (Chappell et 
al., 1993) and apolipoprotein E (Ji et al., 1993, 1994) and 
hepatic lipase (Kounnas et al., 1995). Additionally, the 
binding of basic fibroblast growth factor and TGF-13 to 
their respective signalling receptors (Andres et al., 1989; 
Yayon et al., 1991; Massague, 1991; Lopez-Casillias, 1993) 
also involves initial binding to cell surface proteoglycans. 
The fact that RAP completely blocks cellular uptake of 
TSP1 suggests that the TSPl-binding proteoglycans are 
themselves unable to mediate ligand internalization. It re- 
mains to be determined whether the proteoglycans are in- 
ternalized along with the LRP ligands or whether the two 
dissociate prior to LRP-mediated endocytosis. 

TSP1 is an example of a matrix protein present in transi- 
tional matrices such as wounds, clots and areas undergoing 
developmental morphogenesis (Wight et al., 1985; Raugi 
et al., 1987, 1990; O'Shea and Dixit, 1988; Reed et al., 
1993; Lahav, 1993). Our results suggest that a component 
of its dynamic expression is the control of its extracellular 
accumulation through the process of LRP-mediated clear- 
ance. The cellular clearance of proteins, like TSP1, that 

have potent biological activity is likely a general in vivo 
phenomenon. For example, VN, which regulates the activ- 
ity of thrombin and plasminogen activator and the termi- 
nal complement complex C5b-9 (Salonen et al., 1989; 
Tomasini and Mosher, 1990; Ciambrone and McKeown- 
Longo, 1992; Keijer et al., 1991) is endocytosed via se- 
quential receptor binding involving heparan sulfate pro- 
teoglycans and the integrin tXvl35 (Panetti and McKeown- 
Longo, 1993a,b). In agreement with the findings of Panetti 
and McKeown-Longo (1993b) we have shown that the in- 
ternalization of 125I-VN by fibroblasts is entirely mediated 
via an RGD-inhibitable pathway. On the other hand, in 
SMCs a component of the 125I-VN internalized and de- 
graded can be inhibited by RAP, suggesting a potential 
role for members of the LDLR family in its catabolism by 
SMCs. It remains to be established whether other transi- 
tional ECM proteins including other members of the TSP 
family are cleared via the action of LDLR family members. 
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