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Mitochondria are cellular energy powerhouses that play important roles in regulating

cellular processes. Mitochondrial quality control (mQC), including mitochondrial

biogenesis, mitophagy, mitochondrial fusion and fission, maintains physiological

demand and adapts to changed conditions. mQC has been widely investigated in

neurodegeneration, cardiovascular disease and cancer because of the high demand for

ATP in these diseases. Although placental implantation and fetal growth similarly require

a large amount of energy, the investigation of mQC in placental-originated preeclampsia

(PE) is limited.We elucidatemitochondrial morphology and function in different pregnancy

stages, outline the role of mQC in cellular homeostasis and PE and summarize the current

findings of mQC-related PE studies. This review also provides suggestions on the future

investigation of mQC in PE, which will lead to the development of new prevention and

therapy strategies for PE.
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PREECLAMPSIA

Preeclampsia (PE) is a leading cause of neonatal and maternal morbidity and mortality, affecting
2–8% of pregnant women worldwide (1, 2). Preeclampsia is diagnosed by new-onset hypertension
(systolic>140 mmHg and diastolic>90 mmHg) after 20 weeks of gestation accompanied by one
or more other features: proteinuria, other maternal organ dysfunction (including liver, kidney
and neurological), hematological involvement, and/or uteroplacental dysfunction, such as fetal
growth restriction and/or abnormal Doppler ultrasound findings of utero-placental blood flow
(3). Pre-term delivery is often the only definite treatment for PE, which is associated with adverse
short- and long-term health outcomes in offspring, including a high prevalence of subsequent
endocrine and metabolic diseases in children (4). Other effective treatment options are limited.

PE is a placental interface-originated disease affecting multiple organ systems (5). Abundant
evidence suggests that defective implantation of placentation is the core risk factor for PE,
characterized by abnormal trophoblast invasion and remodeling of the spiral arteries (6). Under
normal conditions, the blastocyst is encapsulated by a shell of cytotrophoblast (CT) cells, which
adhere to the uterus, penetrate into the decidua and continue to proliferate and differentiate in
the first trimester. CT is an undifferentiated and proliferative trophoblast that either fuses into
multinucleated syncytiotrophoblast (ST) on the surface of the shell or differentiates into extravillous
cytotrophoblast (EVT) through a partial epithelial-mesenchymal transition at the interface between
the outer surface of the shell and the tips of anchoring villi. ST cells facilitate the uptake of
nutrients and oxygen from maternal blood and produce large quantities of placental hormones

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/journals/cardiovascular-medicine#editorial-board
https://www.frontiersin.org/journals/cardiovascular-medicine#editorial-board
https://www.frontiersin.org/journals/cardiovascular-medicine#editorial-board
https://www.frontiersin.org/journals/cardiovascular-medicine#editorial-board
https://doi.org/10.3389/fcvm.2022.836111
http://crossmark.crossref.org/dialog/?doi=10.3389/fcvm.2022.836111&domain=pdf&date_stamp=2022-02-28
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles
https://creativecommons.org/licenses/by/4.0/
mailto:caoyunxia5972@ahmu.edu.cn
mailto:pengxq92@163.com
https://doi.org/10.3389/fcvm.2022.836111
https://www.frontiersin.org/articles/10.3389/fcvm.2022.836111/full


Peng et al. Mitochondrial Quality Control in Preeclampsia

(including progesterone and hCG) to maintain pregnancy.
There are two types of EVT. Interstitial EVT migrates into
the lumen of the maternal decidua via the invasion of the
endometrium, while endovascular EVT invades the myometrial
spiral arteries involving the remodeling spiral arteries (Figure 1)
(7). The myometrial spiral arteries are remodeled from high-
resistance, coiled vessels to dilated low-resistance vessels because
of the intervillous space at the terminal portion entered by
endovascular EVT. Remodeling of the myometrial spiral arteries
adapts to the increased cardiac output during pregnancy and
slows the blood flow into the intervillous space of placenta,
meeting the oxygen and nutrition requirements of the developing
fetus (8).

Shallow placental implantation and defective spiral artery

remodeling lead to placental ischemia, releasing angiogenic
markers such as soluble fms-like tyrosine kinase 1 (sFlt-1) and

soluble endoglin (sEng) (9). Impaired placental implantation

could be triggered by the abnormalities of CT fusion into
ST or abnormalities of ST differentiation into EVT (10). Flt-

1 is a receptor of vascular endothelial growth factor (VEGF)
and placental growth factor (PIGF), which are mediators of
the transformation from epithelial to endothelial phenotype to
regulate the endothelial cell function. sFlt-1, a splice variant
of Flt1 lacking the trans-membrane and cytoplasmic domains,
performs as an antagonist of VEGF and PIGF resulting in
endothelial dysfunction (11). Similarly, sEng is the shed Eng
from the endothelial cell surface into maternal circulation, which
binds to transforming growth factor beta 1 in circulation. Thus,
free transforming growth factor beta 1 is decreased, and the

FIGURE 1 | Different types of trophoblast in placental implantation.

migration and proliferation of endothelial cells are inhibited (9).
Elevated sFlt-1 and sEng have been found in PE in dozens of
human studies (9) and thus have been recognized as predictive
or diagnostic biomarkers of PE (12, 13). These antiangiogenic
factors lead to the following vasoconstrictive state, oxidative
stress and microemboli that contribute to the clinical features of
PE (9). Moreover, the administration of sEng or sFlt-1 has been
shown to induce severe PE signs or adverse birth outcomes in
pregnant rats (11, 14).

MITOCHONDRIAL MORPHOLOGY AND
FUNCTION DURING PREGNANCY

Mitochondria are the main resource of energy production
for placental implantation and development. Adenosine
triphosphate (ATP) synthesis requires five subunit protein
complexes (i.e., complexes I-V) of the electron transport chain
through oxidative phosphorylation in the inner membrane of
the mitochondrion (IMM). Nicotinamide adenine dinucleotide
(NADH) and flavin adenine dinucleotide 2 (FADH2) produced
from the tricarboxylic acid cycle expedite electrons to the
electron transport chain at complex I (NADH dehydrogenase)
and complex III (ubiquinone cytochrome c reductase),
respectively. The electrons flow to Complex IV, reducing
O2 to H2O. Meanwhile, protons (H+) are transferred from the
mitochondrial matrix to the intermembrane space at complexes
I, III, and IV, leading to the proton gradient and transmembrane
electrical potential. The energy stored at proton gradient is used
to synthesize ATP (15).
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The mitochondrion is a double-membrane organelle with
an ion-permeable IMM and an outer mitochondrial membrane
(OMM) (16). Mitochondrial morphology and function vary
in different trimesters of pregnancy. In the first trimester,
CT differentiation into ST leads to a shift from the classical
morphology of mitochondria (0.2–0.8µm) with lamellar cristae
into small (<0.1µm), irregular shapes with no defined
cristae and low-density matrix, and this adaptation meets the
increased requirement of energy production in mitochondria
for embryo development (17). The smaller mitochondria
in ST might facilitate the transport of cholesterol and
steroidogenesis, which requires cytochrome P450scc and 3 s-
hydroxysteroiddehydrogenase-14−5 isomerase type I located
in the IMM, to transform cholesterol into pregnenolone and
then convert into progesterone (18). Sufficient steroid hormone
progesterone synthesized in human placental mitochondria is
essential for the maintenance of pregnancy (19). With the
development of the placenta, themitochondrial content is greater
in the third trimester than in the first trimester (20). However, the
respiratory rate in the third trimester is similar to that in the first
trimester. Thus, the efficiency of mitochondrial respiration using
oxygen is lower in the later trimester after normalization to the
mitochondrial content (20).

Mitochondria consume 90% cellular O2 to synthesize ATP and
are thus sensitive to oxygen tension. In the early first trimester
(6–10 weeks), the spiral arteries are plugged by endovascular
EVT so that oxygen tension is lower around the placenta, ∼20
mmHg in the placenta and ∼60 mmHg in the decidua (21).
Relative hypoxia limits ATP synthesis by mitochondria, but the
endometrial glands consume D-glucose to supply a large amount
of ATP (22). Low O2 pressure promotes trophoblast proliferation
and angiogenesis in the placenta (23, 24). With embryo growth,
the spiral arteries become unblocked at the end of the first
trimester, and the oxygen tension rises to ∼60mm Hg at the
placenta and ∼70mm Hg at the decidua through the villous
tress to meet the increased metabolic requirement (21). High O2

pressure promotes CT fusion into the ST and further invasion in
the placenta (23, 25).

Hypoxic condition increases the secretion of sFlt-1 that related
to the pathogenesis of PE (26). Hypoxia has been shown to reduce
mitochondrial content, mitochondrial oxidative capacity and the
expression of key molecules involved in the electron transport
chain (27, 28). However, the dynamic alteration of mitochondrial
morphology and function in PE has never been observed,
which should be investigated in the future to comprehensively
understand the role of mitochondria in the pathology of PE.

REACTIVE FREE RADICALS AND PE

Reactive free radicals (ROS) are byproducts of oxidative
phosphorylation, including superoxide (O−

2 ), hydrogen peroxide
(H2O2), hydroxyl radical (OH) and peroxynitrite (ONOO−).
Most ROS are produced when electrons leak from complexes
I/III: the leaked electrons reduce O2 to generate O−

2 , of those
generated at complex I are delivered into the matrix and of those
generated at complex III are released into both the matrix and

the intermembrane space, and then the dismutation of O−

2 to
H2O2 is induced by superoxide dismutase 2 (SOD2) in thematrix
and SOD1 in the intermembrane space. Glutathione peroxidases
and peroxiredoxins are antioxidant enzymes that decompose
H2O2 to O−

2 . The balance between ROS and antioxidant defense
maintains cellular physical function. During pregnancy, a low
level of ROS upregulates transcription factor E26 transformation-
specific oncogene homolog 1 and VEGF to promote angiogenesis
(29) and increases mitogen-activated protein kinase (MAPK)
signaling to facilitate trophoblast differentiation and placental
development (30).

Excessive ROS overwhelm antioxidant defense, leading to
detrimental effects on cell physiologies such as lipids, proteins
and DNAs. Excessive ROS production and an impaired
enzymatic antioxidant system are detected in PE (31). Both the
direct measurement of O−

2 /H2O2 and the indirect measurement
of oxidative phosphorylation capacity (complex I-IV, cytochrome
c oxidase) are reduced in PE (32, 33). Moreover, alterations in
various proteins involved in oxidative phosphorylation have been
found (34, 35). On the other hand, the expression and activity
of antioxidant enzymes, including SODs, GPXs, thioredoxin
reductases and catalase, are suppressed in PE placentas and
trophoblasts (36). The decreased expression and activity of
antioxidant enzymes result in the low efficiency of ATP synthesis,
leading to electronic leakage and subsequent high production
of ROS (37). ROS accumulation then triggers increased lipid
peroxidation, including malondialdehyde (MDA), thiobarbituric
acid reactive substances (i.e., a production of MDA) and 4-
hydroxynonenal-modified proteins (38, 39).

Several well-known antioxidant nutrient supplementations
have been found to prevent PE in small randomized trials,
but a meta-analysis of randomized controlled trials revealed
that vitamin C and E, selenium, L-arginine, allicin, lycopene
or coenzyme Q10 did not effectively prevent PE (40). This
could be because that antioxidants increase the concentration
of circulating antioxidants but cannot repair the imbalance
between ROS and antioxidants (41). Moreover, a recent study
(42) found that potent antioxidant MitoQ administration during
late gestation alleviated PE, but treatment during early gestation
exacerbated reduced uterine perfusion pressure (RUPP)-induced
PE in mice. Mild ROS has been shown to improve the
proliferation, invasion andmigration of CT-characterizedHTR8-
S/Veno cells for early placental implantation, and this could be
blunted by antioxidants (42). Because mitochondrion is the main
source of ROS, the lack of an effect of antioxidant therapy on
PE brings out the consideration whether that mitochondrial-
targeted interventions would be effective in preventing PE (40).

MITOCHONDRIAL QUALITY CONTROL
AND PE

Mitochondria cannot be synthesized de novo but contain
their own self-replicating genome. Coordination between
mitochondrial autophagy (mitophagy) and biogenesis to
deal with irreparably damaged mitochondria is essential for
maintaining the mitochondrial volumes and determining the
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FIGURE 2 | Schematic representation of mitochondrial quality control. PINK, PTEN-induced putative kinase 1; LC3, microtubule-associated protein 1 light chain 3;

ER, endoplasmic reticulum; DRP1, dynamin-related protein 1; FIS1, fission 1; MFF, mitochondrial fission factor; MID49, mitochondrial dynamics protein of 49 kDa; and

MID51, mitochondrial dynamics protein of 51 kDa.

rate of mitochondrial turnover. Damagedmitochondrial proteins
or parts of mitochondrial organelles are removed by mitophagy,
and damaged components are renewed by adding proteins
and lipids through biogenesis. Both mitochondrial biogenesis
and mitophagy require mitochondrial dynamics fusion and
fission. Mitochondrial dynamics, including mitochondrial
fission and fusion nested in the tube-like mitochondrial network,
continuously occur in response to metabolic or environmental
stresses such as caloric restriction and low temperature. The
integration of fusion, fission, mitophagy and mitochondrial
biogenesis is referred to as mitochondrial quality control (mQC,
Figure 2). The following text will introduce the process of
mQC processes and the related predominant proteins. To our
knowledge, 10 articles reported the expression of mQC-related
genes in PE (Table 1), and this will also be overviewed.

Mitochondria Biogenesis
Mitochondrial biogenesis produces new mitochondria based
on pre-existing mitochondria to respond to internal and
external stresses such as oxidative stress, inflammation and
mitochondrial drug toxicity. Mitochondrial biogenesis involves
synthesis of IMM and OMM and mitochondrial encoded
proteins; replication of mitochondrial DNA (mtDNA); and
synthesis and import of nuclear encoded mitochondrial proteins.
The vast majority of mitochondrial proteins are encoded
by the nuclear genome, and thus mitochondrial biogenesis
requires exquisite coordination of both mitochondrial and
nuclear genomes, such as target, importation and correction

of mRNA from nuclear to mitochondria (43). Peroxisome
proliferator-activated receptor gamma coactivator 1-alpha (PGC-
1α) is the master regulator of mitochondrial biogenesis, which
is activated by either phosphorylation or deacetylation in
the cytoplasm and then translocates to the nucleus (44, 45).
Activated c-1α in the nucleus stimulates the expression of two
key transcription factors, nuclear respiratory factor 1 (NRF1)
and NRF2, and further interacts with NFR1/2 to increase
their transcriptional activity, leading to the increased activity
of mitochondrial transcription factor A (TFAM) to replicate
mtDNA and encode mitochondrial proteins (46). Moreover,
NRF1/2 are essential for nuclear-mitochondrial crosstalk to adapt
to mitochondrial biomass and oxidative metabolism, especially
in the developmental stage. NRF1-null mice exhibit lethality at
early embryos due to the dramatic lack of mtDNA content and
mitochondrial membrane potential in blastocysts (47). Embryos
homozygous for the null NRF2 allele die prior to implantation,
which highlights the critical mitochondrial roles of NRF2 during
cleavage events of the embryo (48). PGC-1α also interacts with
other nuclear transcription factors, such as estrogen-related
receptors, thyroid hormone, peroxisome proliferator-activated
receptors, and glucocorticoids, to regulate mitochondrial energy
metabolism, respiration, and biogenesis (43).

Mitochondrial biogenesis can be regulated by several
cell signaling pathways (49). AMP-activated kinase (AMPK)
activated by exercise and starvation directly phosphorylates
PGC-1a or indirectly deacetylates PGC-1a to stimulate biogenesis
(50). The human Sirtuin isoforms SIRT1-2 have been shown to
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TABLE 1 | Summary of current studies in humans related to mitochondrial quality control molecules.

Articles Groups (n and gestation weeks) Parts Sites Alteration Non-alteration

Wangkheimayum

et al. (41)

13 30.5 ± 2.9 wks eoPE,

11 37.8 ± 1.0 wks loPE,

14 39.2 ± 0.9 wks Ctrl

Placenta 1.5–2 cm next to the

umbilical

cord insertion, 1 cm in

depth

mRNA and protein of OPA1

in eoPE

mRNA of MFN1, MFN2, NRF

among three groups;

mRNA and protein of OPA1 in

eoPE;

mRNA of TFAM in loPE; Protein

of DRP1 among three groups.

mRNA of TFAM in lope

protein of TRAM in eoPE

Yang et al. (42) 16 36.4 ± 2.26 wks PE,

16 36.7 ± 1.96 wks Ctrl

Villous tissues NA mRNA of MFN2

Ventura-Clapier

et al. (43)

10 33.7 ± 1.2 wks eoPE,

10 30.2 ± 1.1 wks loPE,

10 32.7±1.4 wks Ctrl

Myometrial

biopsy (0.5 ×

0.5 × 0.5 cm)

the upper edge of

lower segment

uterine incision

Protein of TFAM, PGC-1α in

lope;

mRNA of OPA in eoPE;

Protein of L-OPA1:S-OPA1

in eoPE.

mRNA of NRF1 and NRF2

among three groups;

Protein of MFN1, MFN2, DRP1,

PINK1 and BNIP3 among three

groups

Protein of s-OPA in both PE

Brenmoehl and

Hoeflich (44)

11 30.0 ± 3.9 wks sPE,

11 31.0 ± 4.3 wks Ctrl,

Placenta the maternal

side of the placental

villous tissue

Protein of MFN1, MFN2,

OPA1, BNIP3, and PGC-1α

Protein of DRP1 and FIS1

Ryan and

Hoogenraad (45)

33 29.3 ± 3.0 wks PE,

30 29.7 ± 2.3 wks Ctrl

Placenta NA Protein of DRP;

protein of p-DRP1 in MIs

NA

Protein of OPA1

Virbasius and

Scarpulla (46)

14 37.88 ± 2.10 wks term PE,

20 38.75 ± 0.84 wks term Ctrl,

8 29.73 ± 3.21 wks pre-term PE,

10 29.29 ± 3.83 wks pre-term Ctrl

Placenta NA Protein of l-OPA1:s-OPA1 in

term PE vs. term Ctrl;

Protein of MFN1 in term PE

vs. term Ctrl.

Protein of DRP1 in placenta and

placental MIs between two term

groups and between two

pre-term groups;

Protein of MFN2 between two

term groups and between two

pre-term groups.

Protein of FIS1 in term PE

vs. term Ctrl;

Matsubara et al.

(32)

20 32.45 ± 1.81 wks eoPE,

20 38.29±1.60 wks Ctrl,

Placenta NA Protein of BNIP and MFN2 NA

Huo and

Scarpulla (47)

19 <34 wks pre-term PE,

20 <34 wks pre-term Ctrl

Placenta NA mRNA and protein of

PGC1α

NA

Ristevski et al.

(48)

12 33 ± 3 wks PE,

11 39 ± 1 wks Ctrl

Placenta (<1

cm2 )

the paracentral region

of the placenta at the

maternal side

Protein of NRF1, BNIP3,

BCL2, BNIP3L;

mRNA and protein of

DNM1.

mRNA of PGC1α, NRF2α,

FUNDC1, FIS1, MFN1, MFN2

and OPA1;

Protein of TFAM, FUNDC1,

PINK1, PARK2.

Protein of PGC1α;

mRNA of NRF1, TFAM,

BNIP3, BCL2, BNIP3L,

PINK1, and PARK2

Li et al. (49) 10 PE, 10 Ctrl Placenta NA Ubiquitination level of

FUNDC1

wks, weeks; eoPE, early-onset PE; loPE, late-onset PE; Ctrl, normotensive controls; MIs, mitochondrial isolates; the listed molecules with highlight in gray refers increase in those

molecules, and the listed molecule highlighted in gray refers decrease in those molecules; the mRNA or protein were in default extracted from placentas unless specified to MIs; and,

the alteration was in default compared with controls unless specified otherwise.

deacetylate PGC-1a and then increase the activity of PGC-1a
(51, 52); SIRT3 has been shown to increase the expression of
PGC-1a through AMPK (Figure 3) (44). Recently, a decreasing
trend of SIRT1 and activated AMPK/PGC-1a protein have been
found in PE placentas (53), and inhibited SIRT1 and PGC-1a
have been found in a group of patients with both intrauterine
growth restriction and PE (54). Moreover, downregulated
proteins of both SIRT3 and PGC1a were found in severe PE (55).

Numerous regulators, including calcium/calmodulin-dependent
protein kinase IV, Akt, AMP-dependent protein kinase (PKA),
NO, and PPARa, also activate mitochondrial biogenesis (56).

Recent studies have shown decreased protein levels of PGC-
1α in PE patients compared with controls (53, 55, 57), and the
transcriptional level of PGC-1α was reduced in pre-term PE and
pre-term controls (53) but was not altered between pre-term
PE relative to term counterparts (57). All the current studies
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FIGURE 3 | Mitochondrial biogenesis. EERs, estrogen-related receptors; PPARs, peroxisome proliferator-activated receptors; TFAM, mitochondrial transcription factor

A; PGC1α, peroxisome proliferator-activated receptor gamma coactivator 1-alpha; NFR, nuclear respiratory factor; SIRT, Sirtuin; AMPK, AMP-activated kinase; IMM,

inner membrane of the mitochondrion; OMM, outer membrane of the mitochondrion.

only assessed the mRNA or protein level of PGC-1α; however,
activated PGC-1α (i.e., phosphorylated or deacetylated PGC-1α)
has never been reported, and the expression of PGC-1α was not
specified in the cytoplasm or mitochondrion. The protein level
of NRF1 in pre-term PE patients has been shown to be higher
than that in term controls, while the mRNA level of NRF1 was
lower (57). Another study reported no difference in either the
protein or mRNA expression of NRF1 between pre-term PE and
pre-term counterparts (58). The number of cases of each group
in the above three studies was relatively similar (i.e., 10–20),
and the inconsistent results might result from the unmatched
gestational age at delivery and unspecified subcellular organelles
(e.g., nucleus or cytoplasm) from which PGC-1α was extracted.
NFR2 has only been found to be decreased in hypoxia-induced
BeWo cells (27). TFAM was 1.8-fold lower in late-onset PE
placentas but not altered in early-onset PE placentas compared
with control placentas (59).

Mitophagy
Mitophagy is the selective autophagic degradation of damaged
mitochondria by autophagosomes and lysosomes. The best
studied mitophagic process is the PTEN-induced putative
kinase 1 (PINK1)-Parkin mitophagy pathway. PINK1 is a

serine/thereonine kinase mainly localized to the OMM (60).
Under normal conditions, PINK1 located at the OMM is
imported into the IMM through the translocase of the inner
and outer membrane complex and then cleaved and degraded
by proteases, including mitochondrial-processing protease and
inner membrane presenilin-associated rhomboid-like protease
(PARL) (61–63). In contrast, damaged mitochondria with an
indication of depolarized membrane potential are unable to
import and degrade PINK1, resulting in the accumulation of
PINK1 on the OMM (61). The accumulated PINK1 on the OMM
is activated by autophosphorylation, which phosphorylates the
E3 ubiquitin ligase Parkin by phosphorylating Thr175 and
Thr217 on Parkin’s linker region and translocates Parkin from
the cytosol to mitochondria (61). Activated Parkin binds to
phosphorylated ubiquitin tethering to the OMM, leading to
the conjugation of ubiquitin to various substrates and the
formation of polyubiquitin (poly-Ub) chains (64). The poly-
Ub chain provokes the recruitment of Ub-binding autophagy
receptors, including p62/sequestosome 1, nuclear dot protein 52
and optineurin, to connect withmicrotubule-associated protein 1
light chain 3 (LC3) and further facilitates the selective engulfment
of ubiquitinated mitochondria by the autophagosome (Figure 4).
A recent study has revealed that ubiquitination of the mitofusion
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FIGURE 4 | Mitophagy. PARL, presenilin-associated rhomboid-like protease; MMP, mitochondrial-processing protease; PINK, PTEN-induced putative kinase 1;

NDP52, nuclear dot protein 52; OPTN, optineurin; LC3, microtubule-associated protein 1 light chain 3; BNIP3, Bcl2/adenovirus E1B 19 kDa protein-interacting protein

3; BNIP3L, Bcl2/adenovirus E1B 19 kDa protein-interacting protein 3-like; FUNDC1, fun14 domain containing 1; AMBRA1, autophagy and beclin 1 regulator 1;

SMURF1, SMAD specific E3 ubiquitin protein ligase 1.

2 (MFN2) is one of the very first step of mitophagy that
occurs prior to autophagosomal engulfment of the organelle
(65). PINK1 can explicitly facilitate Parkin-dependent mitophagy
and be activated in other manners. This is evidenced by
Parkin mutants having more severe phenotypes than PINK-null
flies (66), while Parkin overexpression rescued mitochondrial
morphology (67) and arrested mitochondrial motility (68).
Parkin also simulates mitochondrial biogenesis, presumably to
replace damaged mitochondria with healthy and functional
organelles by degrading transcriptional repression (i.e., parkin-
interacting substrate) on the depolarized mitochondrion (69).

Mounting evidence suggests that there are Parkin-
independent mitophagic mechanisms. Several Parkin-
independent proteins localize to mitochondria to recruit
autophagosomes by interacting with LC3, including
Bcl2/adenovirus E1B 19 kDa protein-interacting protein 3
(BNIP3), BNIP3-like (BNIP3L) and Fun14 domain containing
1 (FUNDC1) (70). BNIP3 and BNIP3L bonding to Bcl-2
separates the complex of Bcl-2 with Beclin-2, resulting in the
initiation of autophagosomes (71). BNIP3 and BNIP3L have
been shown to be complementary to mitophagy (71) and protect
against excessive ROS (72). FUNDC1 localized on the OMM
can be dephosphorylated under hypoxia to interact with LC3

on autophagosome membranes (73, 74). In addition, SMAD-
specific E3 ubiquitin protein ligase 1 and autophagy and beclin 1
regulator 1 also induce LC3 dependence in a Parkin-independent
mitophagic manner (75, 76). Cardiolipin, a membrane lipid in
IMM, is also an LC3 receptor. Cardiolipin translates from the
IMM to the OMM with external adverse stimulation and then
interacts with the N-terminal helices of LC3 (77), indicating
that cardiolipin also participates in mitophagy. Studies have
found that mitochondria-derived vesicles stimulated by ROS
instead of mitochondrial depolarization induced a faster rate of
mitochondrial turnover with the requirement of Pink1/Parkin
by delivering the mitochondrial content to the lysosome, where
degradation of the mitochondrial content occurs (78, 79).

Compared with Parkin-dependent mitophagy, Parkin-
independent mitophagy tends to play a more crucial role in PE.
One study found that PINK163kDa/53kDa ratio was increased
in line with the increase in Parkin in the placentas of PE (80).
PINK1 is 63 kDa under normal conditions, and cleaved PINK1
is 53 kDa. Mitophagy, as indicated by the PINK1 and Parkin
proteins, was exhibited in the placentas of PE mice (81). In
contrast, BNIP3-mediated mitophagy has been found to be
involved in PE, evidenced by the higher protein expression of
BNIPB and BNIP3L and higher mRNA expression of FUNDC1
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in pre-term PE placentas compared to term controls (57). BNIP3
was inhibited in term severe PE placentas compared with term
controls (55), while BNIP3 was upregulated in the pre-term
early-onset PE placentas compared with the term controls
(34). The ubiquitination level of FUNDC1 was low in hypoxic
HTR8-S/Veno cells and the placenta of pregnant women with
PE (82).

Mitochondrial Fusion
Mitochondrial fusion helps to mitigate metabolic or
environmental stresses by distributing the mitochondrial
contents between partially damaged mitochondria and healthy
mitochondria (83). The fused mitochondria can be prevented
from mitophagy (84). Mitochondrial fusion includes the fusion
of both OMM and IMM and a mixture of mitochondrial
contents. Mitochondrial fusion in mammalian cells is regulated
by the fusion proteins MFN1/2 on the OMM and optic atrophy
1 (OPA1) on the IMM, which all belong to the dynamin-related
family of large nucleotide guanosine triphosphates (GTPases).
The GTPase domain of MFN1/2 hydrolyses GTP, which
promotes homo- and hetero-oligomerization of MFN to dock
on two OMMs and initiates OMM fusion (85–87) (Figure 5).
Although the GTPase activity of MFN1 was ∼eightfold higher
than that of MFN2, the affinity for GTP of MFN2 was more than
100-fold higher than that of MFN1 (85). This could be because
that the internal interaction between the first and second heptad
repeat domains of MFN2 resulted in the closed conformation of
MFN2 and sequent fusion-deficiency. The closed conformation
is activated by the phosphorylation at MFN2 Ser 378 (88).
Replacing Ser 378 with Asp that cannot be phosphorylated
has normal MFN2-mediated fusion features (88). Moreover,
genetic mutations of MFN2 in murine embryonic fibroblasts
interrupt mitochondrial fusion and produce large mitochondrial
fragments (89). Interestingly, mutation in human MFN2 but
not MFN1 results in Charcot–Marie–Tooth disease type 2A,
a neurodegenerative disorder disease (90, 91). However, in
MFN1-deficient Hela cells, mitochondrion failed to bind to each
other and resulted in fragmentation of mitochondrion (92).
Loss of either MFN1 or MFN2 causes lethality in mice, and the
extracted cells from these mice display obviously fragmented
mitochondria (87). These evidences suggest that MFN1/2 are
dispensable for mitochondrial fusion.

OPA1 typically has two isoforms: long/membrane-bound (l-
OPA1) and short/soluble OPA1 (s-OPA1). l-OPA1 is located in
the IMM, and s-OPA1 is integral in the intermembrane space.
l-OPA1 can be further cleaved to s-OPA1, while overexpression
of s-OPA1 leads to mitochondrial fragmentation, which might be
the result of mitochondrial fission (93). The interaction between
l-OPA1 on one IMM and cardiolipin on another IMM has
been shown to be essential to mitochondrial fusion in vitro,
with evidence that the absence of cardiolipin caused the loss
of membrane fusion activity (94). Whether s-OPA1 is required
for IMM fusion is still controversial. Ishihara et al. (95) and
Tondera et al. (96) found that l-OPA1 is sufficient to facilitate
IMM fusion, while other studies showed that both s-OPA1 and l-
OPA1 are required for efficient and fast fusion (97, 98). Moreover,
the l-OPA1:s-OPA1 ratio is thought to mediate the balance

FIGURE 5 | Mitochondrial fusion. ER, endoplasmic reticulum; MFN, mitofusin;

l-OPA1, long-optic atrophy 1; s-OPA1, short-optic atrophy 1.

between fission and fusion (97). OPA1 has also been discovered
to be involved in mitochondrial crista remodeling with inner
membrane organization (99).

Decreased mRNA levels of MFN2 have been found in term
PE placentas (100). However, a proteomics analysis found the
upregulated expression of MFN2 in pre-term early-onset PE
placentas compared with pre-term controls (34). The gene
expression of OPA increased 2.5-fold in pre-term early-onset
PE placentas compared with term controls, but there was no
difference between term early-onset PE and term late-onset PE
placentas (59). In contrast, the protein expression of the l-
OPA1/s-OPA1 ratio and OPA1 significantly increased in placenta
from term PE patients compared with term controls, but the
difference was not observed between pre-term PE placenta and
pre-term normal placenta (101). Another study found decreased
protein expression of OPA1 in pre-term PE placentas compared
with pre-term controls (80). Neither MFN1/2 nor OPA1 was
altered in term PE placentas compared with controls (27), but
OPA1 was upregulated in the myometrium of pre-term early-
onset PE compared to pre-term controls (58). OPA1 andMFN1/2
were downregulated in severe PE placentas (55). Although the
findings of mitochondrial fusion-related genes in PE patients
are inconsistent, the results in PE-like trophoblast cells are
coincident. Decreased mRNA and protein levels of MFN2 have
been confirmed in hypoxia-induced TEV-1 cells (100), and
decreased transcript levels of MFN1 and MFN2 have been found
in hypoxia-induced BeWo cells (27).

Mitochondrial Fission
Fission segregates and uncouples damaged mitochondrial
sub-organelles by dividing mitochondria from mitochondrial
networks to maintain adequate numbers of mitochondria.
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FIGURE 6 | Mitochondrial fission. ER, endoplasmic reticulum; DRP1, dynamin-related protein 1; FIS1, fission 1; MFF, mitochondrial fission factor; MID49,

mitochondrial dynamics protein of 49 kDa; MID51, mitochondrial dynamics protein of 51 kDa. Blue dots on the ER refer to formin 2, purple dots between the

mitochondria and endoplasmic reticulum refer to actin filaments.

Mitochondrial fission is primarily carried out by dynamin-
related protein 1 (DRP1), a large GTPase. The translocation
of DRP1 from the cytosol to mitochondria interacts with four
receptor proteins in the OMM: fission 1 (FIS1), mitochondrial
fission factor (MFF), mitochondrial dynamics protein of 49
kDa (MID49) and MID51, which initiate fission by constricting
mitochondria (102). The translocation of DRP1 requires the
phosphorylation-dephosphorylation at Ser of DRP1: Ser585 is
phosphorylated by Cdk1/Cyclin B leading to the increased
DRP1 GTPase activity at the onset of mitosis (103); the
Ser656 phosphatased by PKA inhibits mitochondrial scission
(104); and, dephosphorylation at Ser637 by the mitochondrial
phosphatase phosphoglycerate mutase family member 5 recruits
DRP1 to mitochondria to drive scission (105–107). However,
DRP1 recruitment at the reticulum–mitochondria contact site
has been found to occur prior to recruitment at the mitochondria
constrict site, where the mitochondrion starts to segregate
(108). The endoplasmic reticulum tubules first wrap around the
constricted parts of mitochondria in the form of rings (108).
Actin filaments then accumulate between mitochondrial and

inverted formin 2-enriched endoplasmic reticulum membranes
at the constriction sites, which initially recruits DRP1 to drive
mitochondrial fission (109) (Figure 6). DRP1, FIS1 and MFF
have been found to localize to peroxisomal membranes involved
in peroxisomal fission (110).

A recent study found two distinct types of fission on
African green monkey Cos-7 cells and mouse cardiomyocytes
(111). Fission at the mitochondrial periphery (<25% from
a tip) divides damaged mitochondria into smaller daughter
mitochondria for sequent mitophagy, whereas division at
the mid-zone of mitochondria (within the central 50%)
leads to mitochondrial biogenesis (111). Compared with
mid-zone fission, mitochondrial fission occurring at the
periphery tends to have the following characteristics: reduced
mitochondrial membrane potential, matrix pH, elevated ROS
and increased Ca+. Although both types are regulated by
DRP1, mitochondrial-endoplasmic reticulum contact, actin
preconstruction and MFF play crucial roles in mid-zone
fission, whereas mitochondrial-lysosomal contact and FIS1
play essential roles in peripheral fission. Divided mitochondrial
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fragmentation has two fates. Daughter mitochondria with higher
membrane potential (presumably good quality mitochondria)
proceed to fusion, while depolarized daughter mitochondria
(presumably bad quality mitochondria) are degraded by
mitophagy (112).

PE placentas show increased numbers of mitochondria
in CTs, but with reduced size (80, 113), which is suggestive
of increased mitochondrial fission. Although the mRNA
transcript level of FIS-1 was not changed (55, 57), the
fission-related dynamin-1-like protein (DNM1L) protein
and mRNA transcript levels were increased in placentas
complicated with PE (57). The protein expression of FIS1
was decreased in term PE relative to term controls (101).
Increases in DRP1 expression, activation and phosphorylation
have been found in pre-term PE placentas compared with
pre-term controls (80). However, there was no difference in
DRP1 expression levels in either pre-term PE or term PE
compared with corresponding controls (55, 59). Neither FIS-
1 nor DNM1L was unaltered in hypoxia-induced placental
explants, but both were increased in hypoxia-induced BeWo
cells (27).

The Interaction Between Mitochondrial
Dynamics and Biogenesis/Mitophagy
Many studies have found that mitochondrial biogenesis,
mitophagy, fusion or fission could be simultaneously affected
by external stimuli, but the interaction between mitochondrial
dynamics and biogenesis/mitophagy has rarely been confirmed
by intervention one molecule to observe the effect on another
mQC molecule. Mitochondrial biogenesis has been found to
be mediated by fusion- and fission-related proteins (114),
but this lacks further confirmation. Mitochondrial dynamics
are closely related to mitophagy. MFN2 phosphorylated by
PINK1 regulates the recruitment of Parkin to depolarize
mitochondria and facilitates Parkin-mediated ubiquitination
(115). Chen and Dorn (115). found that the absence of
MFN2 in mouse cardiac myocytes prevented the translocation
of Parkin to depolarized mitochondria and then inhibited
mitophagy OPA1 has also been shown to interact with
lysine 70 of FUNDC1, which facilitates OPA1-mediated fusion,
moreover, mutants of lysine 70 inhibit the interaction and thus
promote FUNDC1-regulated mitophagy (116). Overexpressing
OPA1 reduces the majority of mitophagy (117). Fission is
required for mitophagy, as evidenced by mitophagy being
prevented with a dominant-negative mutant of DRP1 (117,
118). Inhibition of mitochondrial fission by lowering the
expression of FIS1 also reduces mitochondrial mitophagy (117,
118). Fusion and fission have been shown to be paired
consecutive events, and fission quickly follows fusion (117).
Furthermore, DRP1 interacts with MFN to increase elongated
mitochondria by promoting fusion and inhibiting fission (119).
However, the interaction between mitochondrial dynamics and
biogenesis/mitophagy in PE has not been investigated, and this
requires further studies to be helpful to explore the mQC-
targeted treatment.

SUMMARY OF CURRENT STUDIES IN
HUMANS AND FUTURE DIRECTIONS

Ten human studies have reported the alteration of mQC-related
molecules in PE since 2015, while there are several limitations:
(1) The numbers of clinical cases were small, ranging from
10 to 33. (2) 60% of these studies did not elucidate where
the examined tissues were collected (e.g., at the maternal side
or the fetal side). (3) In 30% of these studies, the gestational
week at delivery between control and PE groups was not
comparable. The expression of mQC-related molecules varies
on the different gestational weeks, and thus the gestational
week should be equivalent for comparison. (4) Only two studies
isolated mitochondrial mRNA and protein from total mRNA
and protein. The subcellular organelle where the mRNA or
protein extracted is critical for molecular examination because
several mQC-related molecules widely distribute in the cytosol,
nucleus and mitochondrion, but the research scope of the above
studies limit to the mitochondria. (5) The assessment of mQC-
related molecules in humans should be verified in trophoblast
cells or RUPP rats to reduce the bias of species differences
and large fluctuation of human individuals. Therefore, future
studies should be performed with larger sample size, comparable
gestational weeks, clear distinction of the site where tissues were
collected and the subcellular organelle where the molecules were
assessed, and verification of results in other species. The future
comprehensive human mQC-related PE studies will help to
provide the clinical basis for mQC-targeted treatment of PE.

CONCLUSION

mQC has been emerged as the treatment target of several
diseases, including neurodegeneration, cardiovascular
disease and cancer. Current studies have revealed that
mQC-related molecules are associated with PE, although
there are several drawbacks of these studies. These findings
suggest that mQC plays an important role in the progression
of PE, but further investigations for deeper elucidation
are required. The future investigation of mQC in PE may
provide a new insight on prevention and therapy strategies
for PE.
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