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Methicillin-resistant Staphylococcus aureus 
(MRSA) remains one of the leading causes of 
both nosocomial and community infections 

worldwide.1 Asian countries such as China, Japan, the 
Republic of Korea and Taiwan (China) have reported high 
prevalence rates of 70–80% for nosocomial MRSA.2,3 In 
the Philippines, the MRSA rates have increased steadily 
since 2004 and remained above 50% since 2010, while 
resistance rates to antibiotics other than β-lactams are 
low4,5 (Fig. 1A-B).

Several notable epidemic clones have spread across 
Asia, their multilocus sequence types (MLSTs) being 

ST30 (China, Hong Kong SAR [China], Japan, Kuwait, 
Malaysia, the Philippines, Singapore and Taiwan [China]), 
ST239 (China, India, the Philippines, the Republic of 
Korea, Taiwan [China], Thailand and Viet Nam), ST5 
(China, Hong Kong SAR [China], Japan, the Philippines, 
the Republic of Korea, Sri Lanka and Taiwan [China]), 
ST59 (China, Hong Kong SAR [China], Sri Lanka, Taiwan 
[China] and Viet Nam) and ST72 (Republic of Korea).3,6,7 
MRSA strains have emerged independently in the context 
of different epidemic clones8 by acquiring the staphylo-
coccal cassette chromosome mec (SCCmec) that carries 
the mecA or mecC gene, which confers resistance to 
methicillin and most β-lactam antibiotics. Importantly, 
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of the circulating clones, such as antibiotic resistance 
and virulence genes.1 Hence, good understanding of the 
genomic epidemiology of MRSA in the Philippines will aid 
in the control and management of MRSA infections.

METHODS

Bacterial isolates

Data on a total of 6211 S. aureus isolates were collected 
by the Antimicrobial Resistance Surveillance Program 
(ARSP) of the Philippines Department of Health during 
the period January 2013 to December 2014. Isolates 
found to be resistant to oxacillin (i.e. MRSA) were subse-
quently referred to the ARSP reference laboratory for con-
firmation. Of the 412 and 384 isolates referred in 2013 
and 2014, respectively, a total of 118 MRSA isolates 
from 17 sentinel sites were selected for whole-genome 
sequencing (WGS) on the basis of their resistance profile  
(Table 1), with the following criteria: i) referred to the 
ARSP reference laboratory in 2013–2014; ii) complete 
resistance profile (i.e. no missing susceptibility data); 
iii) overall prevalence of the resistance profile in the 
ARSP data (both referred and non-referred isolates); iv) 
geographical representation of different sentinel sites, 
with the number of isolates included from each site pro-
portional to their relative abundance and estimated from 
(n/N)*100 (rounded up), where n is the total number of 
isolates from one site and N is the grand total of isolates; 
and v) when both invasive and non-invasive isolates rep-
resenting a combination of resistance profile, sentinel site 
and year of collection were available, invasive isolates (i.e. 
from blood, or cerebrospinal, joint, pleural and pericardial 
fluids) were given priority. We used a proxy definition for 
“infection origin”, whereby the first isolates collected 
from patients in the community or on either of the first 
two days of hospitalization were categorized as isolates 
from community-acquired infections, while isolates col-
lected on day three in hospital or later were categorized 
as isolates from hospital-acquired infections.10

Antimicrobial susceptibility testing

All S. aureus isolates in this study were tested for sus-
ceptibility to 14 antibiotics in eight classes: penicillin, 
oxacillin, cefoxitin, chloramphenicol, sulfamethoxazole/
trimethoprim, gentamicin, erythromycin, clindamycin, 
tetracycline, ciprofloxacin, levofloxacin, rifampicin, lin-
ezolid and vancomycin. The susceptibility of the isolates 
was determined at the ARSP reference laboratory with 

some MRSA clones have also acquired resistance to 
vancomycin, the first-line antibiotic treatment for severe 
MRSA infections in hospitals,9 although vancomycin 
resistance has remained very low in the Philippines.5

Current infection control in the Philippines includes 
following patients with MRSA infection and laboratory-
based surveillance to determine the antimicrobial sus-
ceptibility pattern. The MRSA burden can, however, be 
attributed partially to pathogen-specific characteristics 

Fig. 1. Annual resistance rates of S. aureus isolates 
to nine antibiotics, 2005–2014 

Fig. 1A. PEN: penicillin; OXA: oxacillin; VAN: vancomycin. 

Fig. 1B. GEN: gentamicin; ERY: erythromycin; CLI: clindamycin.

Fig. 1C. TCY: tetracycline; CIP: ciprofloxacin; SXT: sulfamethoxazole/
trimethoprim.
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the Kirby-Bauer disc diffusion method and/or a Vitek 2 
Compact automated system (bioMérieux, Marcy-l’Étoile, 
France). The zone of inhibition and the minimum inhibitory 
concentration of antibiotics were interpreted according to 
the 26th edition of the Clinical and Laboratory Standard 
Institute guidelines.11

DNA extraction and whole-genome sequencing

A total of 118 MRSA isolates were shipped to the Well-
come Trust Sanger Institute for WGS. DNA was extracted 
from a single colony of each isolate with a QIAamp 96 
DNA QIAcube HT kit and QIAcube HT (Qiagen, Hilden, 
Germany). DNA extracts were multiplexed and sequenced 
on the Illumina HiSeq platform (Illumina, CA, USA) with 
100-bp paired-end reads. Raw sequence data were 
deposited in the European Nucleotide Archive under 
study accession No. PRJEB17615. Run accessions are 
provided on the Microreact projects.

Bioinformatics analysis

Genome quality was evaluated with metrics generated 
from raw read files, assembly files, annotation files and 
alignment of the isolates to the reference genome of S. au-
reus subsp. aureus strain TW20 (accession FN433596), 
as previously described.12 Annotated assemblies were 
produced as previously described.13 Briefly, sequence 
reads were assembled with VelvetOptimiser v2.2.5 and 
Velvet v1.2. Automated annotation was performed with 
PROKKA v1.5 and a genus-specific database from Ref-
Seq. A total of 116 high-quality S. aureus genomes were 
included in the study, characterized by assemblies of  
< 60 contigs and N50 > 144 000.

We derived the MLST, the spa type and SCCmec 
type of the isolates in silico from the whole-genome 
sequences. The sequence types (STs) were determined 
from assemblies with Pathogenwatch (https://pathogen.
watch/) or from sequence reads with ARIBA14 and the 
S. aureus database hosted at PubMLST.15 The spa type 
was inferred with spaTyper v1.0.16 The SCCmec type 
was derived from sequence reads with SRST217 and the 
database available at http://www.sccmec.org/joomla3/
index.php/en/.

Evolutionary relations among isolates were inferred 
from single nucleotide polymorphisms (SNPs) by map-
ping the paired-end reads to the reference genomes of 
S. aureus strain TW20 (FN433596) or ILRI_Eymole1/1 

Table 1. Numbers of S. aureus and MRSA isolates 
analysed by the ARSP and referred to the 
reference laboratory during 2013 and 2014, 
isolates submitted for WGS and high-quality 
MRSA genomes obtained, discriminated by 
sentinel site and AMR profile

a: BGH: Baguio General Hospital and Medical Center; BRH: Batangas Medical 
Center; CMC: Cotabato Regional and Medical Center; CVM: Cagayan Valley 
Medical Center; DMC: Southern Philippines Medical Center; EVR: Eastern 
Visayas Regional Medical Center; FEU: Far Eastern University - Nicanor Reyes 
Medical Foundation; GMH: Governor Celestino Gallares Memorial Hospital; 
JLM: Jose B. Lingad Memorial Regional Hospital; MAR: Mariano Marcos 
Memorial Hospital & Medical Center; MMH: Corazon Locsin Montelibano 
Memorial Regional Hospital; NKI: National Kidney and Transplant Institute; 
NMC: Northern Mindanao Medical Center; SLH: San Lazaro Hospital; STU: 
University of Santo Tomas Hospital; VSM: Vicente Sotto Memorial Medical 
Center; ZMC: Zamboanga City Medical Center.

b CIP: ciprofloxacin; CLI: clindamycin; ERY: erythromycin; GEN: gentamycin; 
PEN: penicillin; OXA: oxacillin; SXT: sulfamethoxazole/trimethoprim; TCY: 
tetracycline.

 

Number of isolates

 2013 2014 Total

Total ARSP

S. aureus 2682 3529 6211

MRSA 1421 (53%) 2128 (60%) 3549 (57%)

Referred to reference laboratory

S. aureus 412 384 796

MRSA 381 (92%) 354 (92%) 735 (92%)

MRSA submitted for 
WGS 57 61 118

MRSA high-quality 
genomes 55 61 116

By sentinel sitea

BGH 6 3 9

BRH 0 1 1

CMC 2 2 4

CVM 6 4 10

DMC 4 3 7

EVR 2 3 5

FEU 3 3 6

GMH 2 3 5

JLM 2 4 6

MAR 4 5 9

MMH 1 2 3

NKI 3 4 7

NMC 3 3 6

SLH 0 1 1

STU 5 5 10

VSM 12 13 25

ZMC 0 2 2

By AMR profile

PEN OXA 45 59 104

PEN OXA SXT 7 2 9

PEN OXA GEN ERY 
CLI TCY CIP 2 0 2

PEN OXA ERY 1 0 1

https://pathogen.watch/
https://pathogen.watch/
http://www.sccmec.org/joomla3/index.php/en/
http://www.sccmec.org/joomla3/index.php/en/
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All project data, including inferred phylogeny, AMR 
predictions and metadata, were made available through 
the web application Microreact (http://microreact.org).

Ethics statement

Ethical approval is not applicable. This study is based 
on archived bacterial samples processed by ARSP. No 
identifiable data were used in this study.

RESULTS

Demographics and characteristics of MRSA 
isolates

Of the 118 MRSA isolates submitted for WGS, 116 were 
confirmed as S. aureus in silico, while two isolates were 
identified as Staphylococcus argenteus and were not 
included in the downstream analyses. The age range of 
the patients was <1 to 90 years; 20% (n = 23) of the 
isolates were from patients aged <1 year (Table 2). Of 
the 116 isolates, 56% were recovered from male patients 
(n = 66) and 44% from females (n = 50). As invasive 
isolates were prioritized, the most common specimen 
source was blood (62%, n = 72), followed by wounds 
(19%, n = 22). The majority of the infections (68%,  
n = 79) were classified as community-associated MRSA.

Concordance between phenotypic and geno-
typic AMR

Isolates were tested for susceptibility to 14 antibiot-
ics in eight classes. All the isolates were susceptible 
to vancomycin and linezolid and resistant to penicillin, 
oxacillin and cefoxitin, consistent with the presence 
of the blaZ and mecA genes (Table 3). Nine isolates 
were resistant to cotrimoxazole, which was associated 
with the presence of the dfrG gene. Two isolates were 
multidrug-resistant and carried genes and mutations for 
resistance to penicillin (blaZ, mecA), oxacillin (mecA), 
cefoxitin (mecA), gentamicin (aacA-aphD), erythromycin 
(ermC, msrA), clindamycin (ermC), tetracycline (tetM, 
tetK), ciprofloxacin and levofloxacin (GyrA_S84L, GyrA_
G106D, and GrlA_S80F mutations), chloramphenicol 
(catA1) and rifampicin (rpoB_H481N). The IleS gene 

(NZ_LN626917) with the Burrows Wheeler aligner 
(BWA) v0.7.12, as described in detail previously.12 
Mobile genetic elements were masked in the alignment 
of pseudogenomes with a script available at https://
github.com/sanger-pathogens/remove_blocks_from_aln. 
For clonal complex (CC) 30 phylogeny, recombination 
regions detected with Gubbins18 were also removed. 
SNPs were extracted with snp_sites,19 and maximum 
likelihood phylogenetic trees were generated with 
RAxML20 and the generalized time-reversible model 
with the GAMMA method of correction for among-site 
rate variation and 100 bootstrap replications. The tree 
of 7821 global S. aureus genomes available at the Euro-
pean Nucleotide Archive with geolocation and isolation 
date was inferred by an approximately maximum likeli-
hood phylogenetic method with FastTree.21 The CC30 
genomes were contextualized with global genomes by 
using Pathogenwatch (https://pathogen.watch/), which 
infers trees based on genetic similarity and predicts 
genotypic AMR. Genome assemblies were generated 
from read files as described above or downloaded from 
the National Center for Biotechnology Information if raw 
Illumina data were not made available. The project and 
sample accessions are listed on the Pathogenwatch 
table (https://pathogen.watch/collection/vi3stmhtqnbs-
arsp-sau-cc30-2013-2014-global).

Known AMR determinants and the Panton-Valen-
tine leukocidin (PVL) lukF-PV and lukS-PV genes were 
identified from raw sequence reads with ARIBA14 and a 
curated database of known resistance genes and muta-
tions.22 Resistance was predicted from the presence 
of known AMR genes and mutations identified in the 
genome sequences. The genomic predictions of AMR 
(test) were compared with the phenotypic results (refer-
ence), and the concordance between the two methods 
was computed for each of eight antibiotics (928 total 
comparisons). Isolates with either a resistant or an in-
termediate phenotype were considered non-susceptible 
for comparison purposes. An isolate with the same 
outcome for both the test and reference (i.e. both 
susceptible or both non-susceptible) was counted as a 
concordant isolate. The concordance was the number 
of concordant isolates over the total number of isolates 
assessed (expressed as per cent).

http://microreact.org
https://github.com/sanger-pathogens/remove_blocks_from_aln
https://github.com/sanger-pathogens/remove_blocks_from_aln
https://pathogen.watch/
https://pathogen.watch/collection/vi3stmhtqnbs-arsp-sau-cc30-2013-2014-global
https://pathogen.watch/collection/vi3stmhtqnbs-arsp-sau-cc30-2013-2014-global
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that confers resistance to mupirocin and the sdrM gene 
conferring resistance to norfloxacin were identified in 
three and 23 isolates, respectively; however, mupirocin 
was not tested in the laboratory, and norfloxacin was 
tested only against isolates from urine specimens. 
Hence, these two antibiotics were not included in the 
concordance analysis.

Comparisons between phenotypic and geno-
typic data are presented for eight key antibiotics in seven 
classes (Table 3). The overall concordance for the 928 
comparisons was 99.68%, and the concordance for 
individual antibiotics was >98% in all cases (Table 3). 
The notable exceptions were two false-negative results 
for oxacillin resistance, i.e. isolates confirmed to be 
phenotypically resistant but without the mecA resistance 
gene. Conversely, one isolate was falsely predicted to be 
resistant to sulfamethoxazole/trimethoprim on the basis 
of the presence of the dfrG gene.

Genotypic findings

In silico genotyping

MLST, spa type and SCCmec type were predicted in 
silico from the WGS data for the 116 MRSA isolates. A 
total of 18 STs were identified; 74.1% (n = 86) of the 
isolates belonged to clonal complex (CC) 30, distributed 
between ST30 (n = 81), its single-locus variant ST1456 
(n = 2) and three ST30 genomes showing novel aroE  
(n = 2) and yqiL (n = 1) alleles. CC5 was represented 
by nine genomes and ST834 by six. The most prevalent 
of the 29 different spa types identified was t019 (62%), 
which coincided with genomes assigned to CC30. The 
spa types identified for the CC5 genomes were t002 
(n = 5), t105 (n = 3) and t067 (n = 1). Most of the 

Table 2. Demographics and clinical characteristics of 
116 MRSA isolates

Table 3. Comparison of genomic predictions of antibiotic resistance with laboratory susceptibility testing at the 
ARSP reference laboratory

Characteristic No. of isolates

Sex

Male 66

Female 50

Age (years)

<1 23

1–4 9

5–14 16

15–24 14

25–34 8

35–44 17

45–54 14

55–64 9

65–80 1

≥81 5

Patient type

Inpatient 104

Outpatient 12

Specimen origin 

Community-acquired 79

Hospital-acquired 37

Specimen type

Abdominal fluid* 1

Abscess 4

Aspirate 2

Blood* 72

Bone 1

Cerebrospinal fluid* 2

Pericardial fluid* 1

Tracheal aspirate 5

Urine 2

Wound 22

Others 1

Isolates considered to be invasive are those obtained from specimen types 
marked with an asterisk (*).

Antibiotic class Antibiotic Resistant isolates False-positive False-negative Concordance (%) Resistance genes/SNPs

Penicillin Penicillin 116 0 0 100 blaZ, mecA

Penicillin Oxacillin 116 0 2 98.28 mecA

Folate pathway 
antagonist

Sulfamethoxazole/ 
Trimethoprim

9 1 0 99.14 dfrG

Aminoglycoside Gentamicin 2 0 0 100.00 aacA_aphD

Lincosamide Clindamycin 2 0 0 100 ermC

Macrolide Erythromycin 3 0 0 100 ermC, msrA

Tetracycline Tetracycline 2 0 0 100 tetM, tetK

Fluoroquinolone Ciprofloxacin 2 0 0 100
GyrA_S84L, GyrA_G106D, 

GrlA_S80F
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(n = 1) and, interestingly, mainly from paediatric patients 
(6 of 7, 85.7% of pediatric patients, in comparison with 
46.6% of paediatric patients in the total data set).

MRSA in the Philippines in the global context

We placed the genomes from our retrospective collection 
in the global context of 7821 contemporary S. aureus 
public genomes available from sequence data archives 
with linked geographical and temporal information, 
collected between 2010 and 2017. This public collec-
tion of genomes represents 57 countries and 379 STs, 
but it is heavily biased towards genomes from Europe  
(n = 3556) and the United States of America 
(n = 3241) and the epidemic clones ST8 
(n = 2343), ST22 (n = 1526) and ST5  
(n = 720) prevalent in those regions (Fig. 3A). Health-
care-associated EMRSA-15 (ST22) was notably absent 
from our collection, as was livestock-associated CC398 
(Fig. 3A). The Philippine ST5 genomes did not form a 
monophyletic group within the CC5 clade, suggesting 
more than one origin. CC30-spa-t019-SCCmec-IV-PVL+ 
MRSA genomes from the Philippines formed a discrete 
cluster within ST30 with small numbers of genomes 
from the United States of America (n = 5), the United 
Kingdom of Great Britain and Northern Ireland (n = 3) 
and Germany (n = 1, Fig. 3B).

Several successful pandemic clones have emerged 
within CC30, such as the methicillin-sensitive phage 
type 80/81,24 the MRSA South-West Pacific clone,25 
the hospital-endemic epidemic MRSA-16 (ST3626) and 
epidemic MSSA-ST30.27 We investigated the relations 
between the Philippine MRSA genomes in this study 
and these clones with Pathogenwatch. The Philippine 
genomes were clustered into several clades related to but 
distinct from the South-West Pacific clone, representing a 
new diversification from this clone (Fig. 3B). In addition, 
the genomes from the Philippines clustered with genomes 
from Argentina, Germany, the United Kingdom and the 
USA (Fig. 3C), indicating that the epidemic diversification 
from the South-West Pacific clone was accompanied by 
global dissemination.

DISCUSSION

In this study, we combined WGS and laboratory-based 
surveillance to characterize MRSA circulating in the 
Philippines in 2013 and 2014. High levels of concord-

SCCmec cassettes identified in the genomes belonged 
to type IV (n = 108, 93.1%), followed by type III  
(n = 2, 1.7%). The SCCmec type could not be deter-
mined for four genomes. The numbers and most com-
mon ST and spa types found in each of the sentinel 
sites are shown in Table 4. Overall, the typing results 
for the genome sequences showed that CC30-spa-t019-
SCCmec-IV was the most prevalent MRSA clone in this 
retrospective collection (n = 67, 57.8%).

Population structure of MRSA in the Philippines

The phylogenetic tree shows that the population was 
composed of discrete clades that matched the ST 
distribution and were separated by long branches  
(Fig. 2A), in agreement with the clonal population 
previously described for S. aureus.23 The largest clade 
represented by CC30-spa-t019-SCCmec-IV was charac-
terized by broad geographical distribution across the 17 
sentinel sites in this data set (Table 4), as it was found 
in both community- and health-care-associated isolates 
obtained from at least 11 different specimen types. WGS 
revealed distinct major sublineages within the CC30 clade  
(Fig. 2B), none of which displayed a strong phylogeo-
graphical signal. Both genes lukS-PV and lukF-PV that 
encode the PVL were found in 75 of the 86 CC30 ge-
nomes (Fig. 2B), indicating that the majority (87.2%) are 
PVL-positive (Fig. 2B).

Two additional epidemic clones were identified, CC5 
and ST239 (CC8). Six of the nine CC5-SCCmec-typeIV 
(71%) were from paediatric patients (compared with 
20% of the entire data set) and were generally clustered 
according to their spa type; however, they displayed no 
clear phylogeographical distribution. Two isolates from 
different, distant locations carried both lukS-PV and 
lukF-PV genes (PVL-positive). The two ST239 isolates 
were from the same patient, spa type t030, SCCmec-
typeIII, PVL-negative and multidrug-resistant.

The nine isolates with resistance to sulfamethoxa-
zole/trimethoprim were from four locations (Cagayan Val-
ley Medical Center [CVM], Southern Philippines Medical 
Center [DMC], Vicente Sotto Memorial Medical Center 
[VSM] and Zamboanga City Medical Center [ZMC]) and 
belonged to four different clones (CC30, CC5, ST1649 
and ST834), which suggests that resistance to this 
antibiotic has emerged independently (Table 4). The iso-
lates were obtained from blood (n = 8) and an abscess  
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Table 4. Distribution of isolates, STs, spa types, resistance profiles and AMR genes and mutations at the 17 
sentinel sites

Laboratoryb No. of  
isolates

No. of STs
Prevalent 
ST (no. of 
isolates)

No. of 
spa types

Prevalent 
spa type (no. 
of isolates)

Resistance 
profilesa Resistance genes

BGH 9 4 30 (6) 5 t019 (5) PEN OXA (9) blaZ, mecA (6) blaZ, 
mecA, sdrM (2) blaZ, 
sdrM (1)

BRH 1 1 30 (1) 1 t019 (1) PEN OXA (1) blaZ, mecA (1)

CMC 4 1 30 (4) 2 t019 (3) PEN OXA (4) blaZ, mecA (4)

CVM 10 6 30 (4) 6 t019 (4) PEN OXA (9) PEN 
OXA SXT (1)

blaZ, mecA (5) blaZ, 
mecA, sdrM (3) mecA (1) 
blaZ, mecA, dfrG, sdrM (1)

DMC 7 4 30 (4) 3 t019 (5) PEN OXA (3) PEN 
OXA SXT (4)

blaZ, mecA (3) blaZ, 
mecA, dfrG (3) blaZ, 
mecA, dfrG, sdrM (1)

EVR 5 3 30 (3) 3 t019 (3) PEN OXA (5) blaZ, mecA (4) blaZ, 
mecA, dfrG, sdrM (1)

FEU 6 1 30 (6) 3 t019 (3) PEN OXA (6) blaZ, mecA (6)

GMH 5 1 30 (5) 1 t019 (5) PEN OXA (5) blaZ, mecA (5)

JLM 6 3 5 (3) 3 t002 (3) PEN OXA (6) blaZ, mecA (5) blaZ, 
mecA, sdrM (1)

MAR 9 3 30 (6) 2 t019 (7) PEN OXA (7) PEN 
OXA GEN ERY CLI 
TCY CIP (2)

blaZ, mecA (7) blaZ, 
mecA, aacA_aphD, ermC, 
tetM, tetK, GyrA_S84L, 
GyrA_G106D, GrlA_S80F, 
catA1, sdrM, ileS_2 (2)

MMH 3 1 30 (3) 3 t019 (1), 
t3800 (1), 
t975 (1)

PEN OXA (3) blaZ, mecA (3)

NKI 7 4 30 (4) 4 t019 (4) PEN OXA (7) blaZ, mecA (6) blaZ, sdrM 
(1)

NMC 6 1 30 (6) 1 t019 (6) PEN OXA (6) blaZ, mecA (6)

SLH 1 1 30 (1) 1 t019 (1) PEN OXA (1) blaZ, mecA (1)

STU 10 3 30 (8) 2 t019 (9) PEN OXA (10) blaZ, mecA (9) blaZ, 
mecA, sdrM (1)

VSM 25 6 30 (17) 14 t019 (12) PEN OXA (21) 
PEN OXA SXT (3) 
PEN OXA ERY (1)

blaZ, mecA (16) mecA, 
sdrM (1) blaZ, mecA, sdrM 
(3) blaZ, mecA, sdrM, 
ileS_2 (1) blaZ, mecA, 
dfrG (1) blaZ, mecA, dfrG, 
sdrM (2) blaZ, mecA, 
msrA, sdrM (1)

ZMC 2 2 30 (1), 5 (1) 2 t019 (1), 
t105 (1)

PEN OXA (1) PEN 
OXA SXT (1)

blaZ, mecA (1) blaZ, 
mecA, dfrG, sdrM (1)

a PEN: penicillin; OXA: oxacillin; GEN: gentamicin; ERY: erythromycin; CLI: clindamycin; TCY: tetracycline; CIP: ciprofloxacin; SXT: sulfamethoxazole/trimethoprim.
b BGH: Baguio General Hospital and Medical Center; BRH: Batangas Medical Center; CMC: Cotabato Regional and Medical Center; CVM: Cagayan Valley Medical 
Center; DMC: Southern Philippines Medical Center; EVR: Eastern Visayas Regional Medical Center;  FEU: Far Eastern University - Nicanor Reyes Medical Founda-
tion; GMH: Governor Celestino Gallares Memorial Hospital; JLM: Jose B. Lingad Memorial Regional Hospital; MAR: Mariano Marcos Memorial Hospital & Medical 
Center; MMH: Corazon Locsin Montelibano Memorial Regional Hospital; NKI: National Kidney and Transplant Institute;  NMC: Northern Mindanao Medical Center; 
SLH: San Lazaro Hospital, STU: University of Santo Tomas Hospital; VSM: Vicente Sotto Memorial Medical Center; ZMC: Zamboanga City Medical Center.

ance between phenotypic and genotypic resistance were 
observed for all the antibiotics tested. This was previ-
ously reported for S. aureus collections in Europe and the 
United Kingdom,27,28 but our results, the first from the 
Philippines, show no significant gaps in the epidemiology 
of known resistance mechanisms in this country. The 
integration of laboratory and WGS data showed inde-
pendent acquisition of resistance to sufamethoxazole/

trimethoprim mainly in paediatric patients with invasive 
infections. This is probably due to the selective pressure 
of antibiotic use, as co-trimoxazole was recommended by 
the Department of Health in the Philippines as one of the 
first-line antibiotics for paediatric patients with pneumo-
nia in the 1990s and is currently the first-line antibiotic 
for skin and soft tissue MRSA infections in paediatric pa-
tients recommended in the Philippines National Antibiotic 
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Laboratoryb No. of  
isolates

No. of STs
Prevalent 
ST (no. of 
isolates)

No. of 
spa types

Prevalent 
spa type (no. 
of isolates)

Resistance 
profilesa Resistance genes

BGH 9 4 30 (6) 5 t019 (5) PEN OXA (9) blaZ, mecA (6) blaZ, 
mecA, sdrM (2) blaZ, 
sdrM (1)

BRH 1 1 30 (1) 1 t019 (1) PEN OXA (1) blaZ, mecA (1)

CMC 4 1 30 (4) 2 t019 (3) PEN OXA (4) blaZ, mecA (4)

CVM 10 6 30 (4) 6 t019 (4) PEN OXA (9) PEN 
OXA SXT (1)

blaZ, mecA (5) blaZ, 
mecA, sdrM (3) mecA (1) 
blaZ, mecA, dfrG, sdrM (1)

DMC 7 4 30 (4) 3 t019 (5) PEN OXA (3) PEN 
OXA SXT (4)

blaZ, mecA (3) blaZ, 
mecA, dfrG (3) blaZ, 
mecA, dfrG, sdrM (1)

EVR 5 3 30 (3) 3 t019 (3) PEN OXA (5) blaZ, mecA (4) blaZ, 
mecA, dfrG, sdrM (1)

FEU 6 1 30 (6) 3 t019 (3) PEN OXA (6) blaZ, mecA (6)

GMH 5 1 30 (5) 1 t019 (5) PEN OXA (5) blaZ, mecA (5)

JLM 6 3 5 (3) 3 t002 (3) PEN OXA (6) blaZ, mecA (5) blaZ, 
mecA, sdrM (1)

MAR 9 3 30 (6) 2 t019 (7) PEN OXA (7) PEN 
OXA GEN ERY CLI 
TCY CIP (2)

blaZ, mecA (7) blaZ, 
mecA, aacA_aphD, ermC, 
tetM, tetK, GyrA_S84L, 
GyrA_G106D, GrlA_S80F, 
catA1, sdrM, ileS_2 (2)

MMH 3 1 30 (3) 3 t019 (1), 
t3800 (1), 
t975 (1)

PEN OXA (3) blaZ, mecA (3)

NKI 7 4 30 (4) 4 t019 (4) PEN OXA (7) blaZ, mecA (6) blaZ, sdrM 
(1)

NMC 6 1 30 (6) 1 t019 (6) PEN OXA (6) blaZ, mecA (6)

SLH 1 1 30 (1) 1 t019 (1) PEN OXA (1) blaZ, mecA (1)

STU 10 3 30 (8) 2 t019 (9) PEN OXA (10) blaZ, mecA (9) blaZ, 
mecA, sdrM (1)

VSM 25 6 30 (17) 14 t019 (12) PEN OXA (21) 
PEN OXA SXT (3) 
PEN OXA ERY (1)

blaZ, mecA (16) mecA, 
sdrM (1) blaZ, mecA, sdrM 
(3) blaZ, mecA, sdrM, 
ileS_2 (1) blaZ, mecA, 
dfrG (1) blaZ, mecA, dfrG, 
sdrM (2) blaZ, mecA, 
msrA, sdrM (1)

ZMC 2 2 30 (1), 5 (1) 2 t019 (1), 
t105 (1)

PEN OXA (1) PEN 
OXA SXT (1)

blaZ, mecA (1) blaZ, 
mecA, dfrG, sdrM (1)

Fig. 2. Genomic surveillance of S. aureus from the Philippines, 2013–2014
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Fig. 2A. Phylogenetic tree of 116 MRSA isolates from the Philippines, inferred with RAxML from 96 514 single nucleotide polymorphism (SNP) sites. Inner ring: 
Sequence type. Outer ring: spa type. The data are available at https://microreact.org/project/ARSP_SAU_2013-2014.

Fig. 2B. Phylogenetic tree of 86 CC30 isolates inferred with RAxML from 4780 core SNPs obtained after mapping the genomes to the complete genome of strain 
Eymole1 (ST30) and masking mobile genetic elements and recombination regions from the alignment. The data are available at https://microreact.org/project/
ARSP_SAU_CC30_2013-2014. 

The tree leaves are coloured by sentinel site. The scale bars represent the number of SNPs per variable site. The major tree branches are annotated with 
bootstrap values.
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Fig. 3A. Phylogenetic tree of 7821 S. aureus isolates from the Philippines (n = 116, this study) and from 57 other countries inferred with FastTree from 485 031 
SNP positions. The magenta tree nodes indicate the genomes from this study. The major lineages (CCs and STs) are labelled in black if represented by genomes 
of this study or in grey if they are not. The scale bar represents the number of SNPs per variable site. The data are available at https://microreact.org/project/
Global_SAU.

Fig. 3B. Pathogenwatch tree of 176 CC30 genomes comprising 86 genomes from this study and 90 global genomes. Red nodes denote MRSA genomes and 
white nodes methicillin-sensitive genomes. The tree is annotated with previously described CC30 clones (black) and their representative reference genomes 
(grey). The genomes from this study are found within the group of genomes encircled with a dotted line, which is displayed in detail with geographical locations in 
panel C. The collection is available at https://pathogen.watch/collection/qtfy5h5q34a7-arsp-sau-cc30-2013-2014-global.

CC: clonal context; MRSA: methicillin-resistant Staphylococcus aureus; SNP: single nucleotide polymorphism; ST: sequence type.

Fig. 3. S. aureus from the Philippines in the global context
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risk epidemic clones such as ST239 may cause local 
outbreaks. Our results represent the first comprehensive 
genomic survey of S. aureus in the Philippines, bridging 
the gap in genomic data from the Western Pacific Region, 
and provides the genetic background for contextualizing 
prospective surveillance for infection control.
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