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Collective cell movement is a key component of many important biological

processes, including wound healing, the immune response and the spread

of cancers. To understand and influence these movements, we need to be

able to identify and quantify the contribution of their different underlying

mechanisms. Here, we define a set of six candidate models—formulated as

advection–diffusion–reaction partial differential equations—that incorporate

a range of cell movement drivers. We fitted these models to movement assay

data from two different cell types: Dictyostelium discoideum and human

melanoma. Model comparison using widely applicable information criterion

suggested that movement in both of our study systems was driven primarily

by a self-generated gradient in the concentration of a depletable chemical in

the cells’ environment. For melanoma, there was also evidence that overcrowd-

ing influenced movement. These applications of model inference to determine

the most likely drivers of cell movement indicate that such statistical tech-

niques have potential to support targeted experimental work in increasing

our understanding of collective cell movement in a range of systems.
1. Introduction
Collective movements are important in many cell systems, affecting processes of

considerable medical interest, including wound healing, the immune response

and the spread of cancers. Cell movements can have random (diffusive) and

directional components. Chemotaxis, the movement of cells up or down spatial

gradients in the concentrations of chemicals (chemoattractants or chemorepel-

lants), is the process underlying many of the directional cell movements that

we observe [1]. The chemical gradients to which cells respond can result from

chemicals diffusing from a local source, which is typically formed by either

the cells themselves or nearby cells of a different type releasing chemicals into

the environment. An example of local source gradient generation is the suggested

mechanism by which macrophages promote metastasis of breast tumours; the

tumour cells release an attractant for macrophages, which chemotax towards

the tumour and release an attractant for the tumour cells, encouraging their

migration away from the primary tumour [2]. Chemical gradients may also

result from local sinks, which are typically caused by cells depleting a chemical

from their environment. Recent studies have suggested that cell movements

caused by chemotactic gradients that cells self-generate by depletion may be

common to a wide range of cell types [3–7]. Cell movements resulting from diffu-

sion and chemotaxis may additionally be influenced by density-dependent

effects. If cells are in a tightly packed environment, then they may restrict each

other’s abilities to move in response to stimuli. The process of contact inhibition
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of locomotion (CIL), which occurs in many cell types and

forces cells to change direction when they contact one another

[8], also has a more pronounced effect at high density.

Identification of the drivers of movement in a particular

cell system is a crucial step in understanding how we might

influence that system through new medical interventions,

such as the use of chemical-releasing implants to disrupt

chemotactic gradients responsible for cancer cell migration

[9,10]. However, without any prior knowledge, identifying

movement drivers experimentally can be a long process.

Mathematical models offer a potential solution. By fitting

sets of candidate cell movement models to data from cell sys-

tems, and then carrying out model comparison to identify the

best model, we can get an indication of what mechanisms are

most likely to be driving movement in those systems. This

information could then be used to guide experimental

work, to confirm the existence of these mechanisms.

Since the development of the Keller–Segel model to

describe the aggregation of Dictyostelium discoideum cells in

1970 [11], a large body of work has emerged on the modelling

of cell movement mechanisms using partial differential

equations (PDEs); see Hillen & Painter [12] for a guide to

these models. However, we are unaware of any attempts to

formally fit these models to cell movement data and infer

movement drivers through model comparison. A possible

reason for this is computation. The PDEs involved are of

the advection–diffusion–reaction type, describing spatio-

temporal changes in the distribution of cells as a result of

random cell movements (diffusion), directional movements

through chemotaxis (advection) and changes in the numbers

of cells through cell division and death (reaction). PDEs with

the level of complexity and flexibility required to simulate rea-

listic cell movements typically have to be solved and optimized

numerically, which incurs high computational costs. Numeri-

cal solution of the models also introduces error, and when

advection is strong relative to diffusion, this error can manifest

as oscillations in the modelled cell density. When severe, these

instabilities can cause the model solver to fail, halting par-

ameter optimization prematurely [13]. Inference is further

complicated by the presence of local likelihood optima

that can trap optimization algorithms, and a lack of data on

variables such as chemical concentrations in space and time.

In this study, we describe six candidate models for cell

movement that incorporate various biological hypotheses,

including chemotaxis up self-generated gradients, repulsive

and attractive interactions between the cells, and interference

effects due to cell crowding. We then develop a methodology

for fitting these models to data that attempts to overcome

the associated challenges outlined above. This methodology

is tested on data from movement assays for cells of two dif-

ferent types: Dictyostelium discoideum and human melanoma.

Dictyostelium is an amoeba that is frequently used as a model

organism for eukaryotic cell movement [14] and is known

to chemotax in order to find bacteria when feeding and to

aggregate when starved [15]. Melanoma is a cancer that is

made particularly aggressive by the rapidity with which it

spreads, with the risk of metastasis increasing sharply with

the thickness of the tumour [16,17]. Given that metastasis is

the primary cause of human cancer deaths [18], understanding

why these cells move is important. Recent work has suggested

that migration of melanoma cells away from the primary

tumour is driven by the tumour becoming large enough to

create a local gradient in the chemoattractant lysophosphatidic
acid (LPA) through depletion [3]. Here, we attempt to draw

conclusions about the drivers of movement in these cell

types, under the conditions of the particular movement

assays studied, by applying our model fitting methodology to

data from these assays and carrying out model comparison.

Note that the major driver of movement in the two datasets, a

self-generated gradient in attractant, has already been deter-

mined experimentally [3,7], so that the ability to identify this

key mechanism provides a useful test for our inference

scheme. Self-generated gradients are important in driving

movement in a range of systems [3–7], and the development

of model selection methods that can detect this driver is, there-

fore, particularly desirable. Other processes that could be

playing a more minor role in producing the movement patterns

observed in our data, such as overcrowding or chemical inter-

actions between the cells, have been less exhaustively tested for,

and so we also test for these within our set of candidate models.
2. Data
Data on the collective movement of Dictyostelium cells

during an under-agarose assay [19] were collected by

Tweedy et al. [7]. The agarose under which the cells moved con-

tained folate, a chemoattractant that the cells can deplete from

their environment, at an initially homogeneous concentration

of 10 mM. Under these conditions, Dictyostelium cells create a

gradient in folate through depletion, and then collectively

move up this gradient [7].

A similar dataset on the collective movement of mela-

noma cells was collected by Muinonen-Martin et al. [3].

Here, the migration of the cells was observed between two

wells connected by a bridge in a direct visualization chamber

[20] that was homogeneously filled with 10% FBS (fetal

bovine serum). It was previously determined experimentally

that collective movement in this case is primarily driven by a

self-generated gradient in LPA, a component of FBS that can

be depleted by the melanoma cells [3].

Dictyostelium cells move more rapidly than melanoma cells,

so the Dictyostelium dataset covers both a larger spatial distance

(approx. 2500 mm compared to approx. 400 mm), and a shorter

time frame (5.5 h compared to 50 h) than the melanoma

dataset. We extracted the cell coordinates manually from

microscopy images at half-hour time intervals for Dictyostelium
and 10 h intervals for melanoma (see the electronic supplemen-

tary material, supplement A for an investigation of the error

involved in the extraction process). The cells were initialized

in a linear group along the y-axis in both assays. Therefore,

we were primarily interested in movement in the perpendicu-

lar direction, along the x-axis, and reduced the data to one

spatial dimension (x) for our analyses. One-dimensional logs-

pline density estimates [21–23] were used to visualize the

spread of the cells up the spatial axis for both Dictyostelium
(figure 1) and melanoma (figure 2).

Spatio-temporal variation in the concentration of the che-

moattractants, folate and LPA, was unmeasurable during the

assays. Therefore, we treated these concentrations as latent

variables during model fitting.
3. Models
All of the cell movement models considered in this study

involve one-dimensional advection–diffusion–reaction PDEs
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Figure 1. (a) Image taken 4 h into the Dictyostelium discoideum cell movement assay (see ( j ) for corresponding cell density estimate). (b – m) Cell distributions
obtained every half hour using logspline density estimation [21 – 23] in the x-dimension are shown by blue lines, with 95 percentile intervals obtained using 10 000
bootstrap samples of the data indicated by blue shaded areas. Cell distributions produced by the best model (the receptor saturation model, table 1) for this dataset,
using the optimized parameters from the bootstrap optimization that gave the highest value of the maximum weighted log-likelihood (equation (4.4)), are shown
by dashed red lines. The corresponding folate distributions predicted by this model are indicated by green dotted lines. Pink shaded areas show the 95 percentile
interval for the modelled cell density, based on 200 samples from the pseudo-posterior.
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Figure 2. (a) Image taken 40 h into the melanoma cell movement assay (see (e) for corresponding cell density estimate). (b – f ) Cell distributions obtained every
half hour using logspline density estimation [21 – 23] in the x dimension are shown by blue lines, with 95 percentile intervals obtained using 10 000 bootstrap
samples of the data indicated by blue shaded areas. Cell distributions produced by the best model (the overcrowding model, table 1) for this dataset, using the
optimized parameters from the bootstrap optimization that gave the highest value of the maximum weighted log-likelihood (equation (4.4)), are shown by dashed
red lines. The corresponding LPA distributions predicted by this model are indicated by green dotted lines. Pink shaded areas show the 95 percentile interval for the
modelled cell density, based on 200 samples from the pseudo-posterior.
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of the form

@Cðx, tÞ
@t

¼� @

@x
faðx, tÞCðx, tÞg|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

advection

þ @

@x
DCðtÞ

@Cðx, tÞ
@x

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

diffusion

þnCðx, tÞ|fflfflfflffl{zfflfflfflffl}
reaction

,

ð3:1Þ

where t is time, x is space and C(x, t) is cell density. A positive

or negative value of the advection coefficient a(x, t) leads to

directional movement towards higher or lower x, respectively.

The diffusion coefficient DCðtÞ � 0 describes the rate at which

cells spread out from high- to low-density areas via randomly

directed movements, and the reaction term describes expo-

nential growth of the cell population through cell division at

rate n� 0.

We investigated six different advection coefficients,

each representing a hypothesis for the drivers of cell

movement. Our diffusion model assumes that cell move-

ment is simply random, with no directional movement

component, i.e.

aðx, tÞ ¼ 0: ð3:2Þ

Directional movement up a spatial gradient in the concen-

tration of an attractant A(x, t) is described in the basic model:

aðx, tÞ ¼ aðtÞ @Aðx, tÞ
@x

: ð3:3Þ

Here, the rate of advective cell movement depends on both

the strength of the gradient in A(x, t) and the magnitude of

the parameter a � 0. The attractant concentration is modelled
through a second PDE:

@A(x, t)
@t

¼ �g(t)C(x, t)A(x, t)þDA
@2A(x, t)
@x2

: ð3:4Þ

This function allows the cells to create self-generated gradi-

ents in A(x, t) through local depletion in proportion with

their density and the remaining level of attractant, at a

rate determined by g � 0. The parameter DA describes the

constant rate at which attractant diffuses in the medium.

While our basic model (equation (3.3)) assumes that

the ability of the cells to chemotax up a gradient in

attractant is influenced only by the steepness of the gradient,

it has been shown that chemotaxis also depends on the

concentration of chemoattractant in a cell’s local environ-

ment [24]. This dependency is a result of receptor

saturation. Cells detect spatial gradients in chemicals through

the resulting gradients in the occupancy of their surface

receptors for those chemicals. When the background chemo-

attractant concentration is high, a cell’s receptors can become

saturated, so that an underlying chemotactic gradient fails to

produce a detectable gradient in receptor occupancy,

preventing accurate chemotaxis. In our receptor saturation
model, we replace the chemoattractant gradient of the basic

model (equation (3.3)) with a gradient in receptor occupancy,

calculated according to the single-site equilibrium dis-

sociation equation, where Kd is the dissociation constant,

as follows:

aðx, tÞ ¼ aðtÞ @
@x

Aðx, tÞ
Aðx, tÞ þ Kd

� �
: ð3:5Þ
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Cell movement may be influenced by attractive or repulsive

chemical interactions between the cells. In the interaction model,
we incorporate these behaviours by allowing the cells to move

directionally in response to gradients in their own density, in

addition to the gradient in receptor occupancy for A(x, t):

aðx, tÞ ¼ aðtÞ @
@x

Aðx, tÞ
Aðx, tÞ þ Kd

� �
þ hðtÞ

1þ lCðx, tÞ
@Cðx, tÞ
@x

: ð3:6Þ

Here, a negative h indicates repulsion between the cells and a

positive h indicates attraction. The strength of the interaction

is reduced at high cell densities through the parameter l � 0.

This feature is intended to mimic the effect of saturation of

the cell receptors for the chemical involved in the interaction;

at high cell density, we would expect higher concentrations of

the chemical released by the cells, leading to saturation effects

that reduce the ability of the cells to detect and migrate in

response to the conspecific density gradient. Keller & Segel

[11] previously proposed a method for modelling cell inter-

actions, in which the cells respond directly to the

interaction chemical, the production and decay of which is

modelled through an additional PDE. Our more indirect

approach, where the cells instead respond to their own den-

sity gradient, has the advantages that it requires fewer new

parameters, which simplifies model fitting, and it avoids

the need to make an assumption about the unknown initial

distribution of the interaction chemical.

It is expected that the ability of cells to move freely will be

reduced at high density, both because tight packing of cells

means that there is physically less space for them to move

into, and because more contact between cells occurs at high
density, meaning that the effects of CIL [8] will be more evi-

dent. We incorporate these effects into the receptor saturation

model (equation (3.5)) to produce the overcrowding model:

aðx, tÞ ¼ aðtÞ @
@x

Aðx, tÞ
Aðx, tÞ þ Kd

� �
1� Cðx,tÞ

Cmax

� �
: ð3:7Þ

The new term in the advection coefficient, which is derived

by Hillen & Painter [12], causes advection up the gradient

in receptor saturation to slow as cell density approaches its

maximum value Cmax.

Finally, our full model combines the effects of receptor sat-

uration, cell interactions and overcrowding effects, with the

advection coefficient:

aðx, tÞ ¼ aðtÞ @
@x

Aðx, tÞ
Aðx, tÞ þ Kd

� �
þ hðtÞ

1þ lCðx, tÞ
@Cðx, tÞ
@x

� �

� 1� Cðx, tÞ
Cmax

� �
:

ð3:8Þ

Note that all of our models are nested within the full model

as illustrated in the model relational graph of figure 3.

Four of our model parameters a, DC, g and h, which

relate to cell advection and diffusion rates, and the rate of

depletion of chemoattractant, are permitted to vary in time

to allow for changes in cell behaviour over the course of the

assays. These temporal dependencies were introduced by

modelling the parameters as polynomial functions of time,

which were exponentiated for those parameters that were

restricted to positive values (a, DC and g). The degrees of

the polynomial functions were selected as described in §5.
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4. Likelihood calculation
For a given dataset, model and set of parameters u, we

obtained spatio-temporally varying functions describing cell

density C(x, t) and attractant concentration A(x, t) by solving

the PDEs numerically using the method of lines [25,26]

(electronic supplementary material, Supplement B.1). For

melanoma, there were no cells in the observation region

at t ¼ 0, so we used initial conditions of C(x, 0) ¼ 0 and

A(x, 0) ¼ 1 (100% of the initial concentration of the attractant

(LPA) remaining in the serum). For Dictyostelium, where

some cells had already moved into the observation area at

t ¼ 0, the initial distribution of cells was obtained by apply-

ing logspline density estimation [21–23] to the cell location

data. We assumed a sigmoidal function for the unobserved

initial distribution of the attractant for Dictyostelium (folate),

the parameters of which were estimated along with the

model parameters. Increases in the total number of cells

due to cell division were relatively minor over the time

period of interest for Dictyostelium, so we set n (see equation

(3.1)) to zero. For melanoma, the value of n was estimated

from the data as described in the electronic supplementary

material, Supplement B.3. In both datasets, large numbers of

cells moved into the observation region via the left boundary,

and we captured these movements by introducing a cell flux

across this boundary, which was equal to the rate of change

in the number of cells observed in the region minus the rate

of change in cell numbers due to cell division. Full details on

our choices of boundary and initial conditions can be found

in the electronic supplementary material, Supplement B.

The models were fitted to the cell locations at the T time

points for each dataset. The raw observations ðy1, . . . ,ynÞ
were, thus, each referenced by both a spatial location and

time, i.e. yi ¼ ðxi, tiÞ. The total number of cells observed

over the T time points was given by

n ¼
XT

j¼1

nj, ð4:1Þ

where nj was the number of cells observed at time point

j [ ð1, . . . ,TÞ.
Following numerical integration of the model, the

likelihood of u can be calculated for each yi as

PðyijuÞ ¼
Cðxi, tiÞÐ l

0 Cðx, tiÞdx
, ð4:2Þ

where l is the length of the modelled region. By summing

over the yi, we could then obtain the total log-likelihood as

log L ¼
Xn

i¼1

logfPðyijuÞg: ð4:3Þ

However, because the number of cells observed increases

over time for both datasets, this standard log-likelihood

will be biased towards producing a good fit at the end of

the time period considered, potentially leading to a poorer

match between model and data at the beginning of the time

period. An alternative method that corrects for this bias is

to weight each logfPðyijuÞg according to the total number

of cells observed at the corresponding time point as follows:

log ~L ¼ n
T

XT

j¼1

1

nj

Xnj

i¼1

logfPðyijuÞg
" #

: ð4:4Þ
In this weighted log-likelihood calculation, the multipli-

cation by n/T returns the value to the scale of the standard

log-likelihood.
5. Model inference and comparison
For all models considered, it was necessary to infer both the

model parameters and, for Dictyostelium, also the parameters

of the sigmoidal distribution describing the unknown initial

distribution of folate (see the electronic supplementary

material, Supplement B.2). During inference, we used a lower

bound of zero for the diffusion coefficient DA of LPA in the

melanoma assay, while for Dictyostelium, we used the literature

values for the diffusion coefficient of folate [27,28] to introduce

more restrictive upper and lower bounds of 200 mm2 s21 and

150 mm2 s21, respectively, for DA. For both datasets, we set a

lower bound for Cmax that was equal to the maximum cell

density value observed in the logspline density estimates

obtained from the cell location data (blue lines in figures 1

and 2). We bounded the parameters Kd and l below by zero,

leaving them unbounded above. The parameters describing

the initial folate distribution were given upper and lower

bounds that prevented initial distributions known to be

unrealistic (see the electronic supplementary material,

Supplement B.2). The remaining parameters (a, g, h and DC)

were modelled as polynomial functions of time, which for a,

DC and g were exponentiated to bound the functions below

by zero. The coefficients of the polynomial functions were

unbounded during model inference.

It was necessary to select the degrees of the polynomial

functions used to describe our time-varying parameters. Ide-

ally, we would do this by carrying out inference for each

model on each dataset using a range of polynomial degrees

for each of the parameters, and then applying model compari-

son to select the best combination of polynomial degrees

for each model. However, inference for these models is com-

putationally expensive, making such an exhaustive model

comparison infeasible. We instead proceeded by fitting our

most complex model (the full model, equation (3.8)) to each

of our datasets by maximizing the weighted log-likelihood

(equation (4.4); see the electronic supplementary material, Sup-

plement C for details on the maximization procedure), and

gradually increasing the degree of the polynomials, always

keeping the degree the same for all time-varying parameters

in the model. We stopped increasing the polynomial degree

when we found no further improvement in the values of two

model comparison statistics: AICc (the Akaike information

criterion corrected for small sample sizes) [29,30] and BIC

(Bayesian information criterion) [31]. Once we had used this

maximum weighted log-likelihood approach to obtain the opti-

mal polynomial degree for the time variance of the parameters

for each dataset, we carried out inference for the full set of six

candidate models, using the more computationally costly, but

more reliable, pseudo-Bayesian approach described below,

always using the previously selected polynomial degree.

The use of a Bayesian approach to obtain a posterior distri-

bution of the parameters provides access to WAIC (widely

applicable information criterion) [32]; a recently developed

model comparison statistic that makes fewer assumptions

than those commonly calculated from maximum-likelihood

estimates (including AICc and BIC). The key improvement

offered by WAIC is that it allows for the fact that some



Table 1. WAIC (equation (5.1)) comparison of the six candidate models for
both datasets. Standard errors (in brackets) were calculated as described in
the electronic supplementary material, Supplement F.

model

WAIC

Dictyostelium melanoma

diffusion 88 367.1 (0.10) 5985.5 (0.03)

basic 87 970.7 (0.77) 5736.2 (7.70)

receptor saturation 87 631.2 (0.39)a 5719.9 (3.10)

interaction 87 636.8 (0.44) 5743.1 (2.08)

overcrowding 87 648.0 (0.44) 5712.2 (1.85)a

full 87 646.3 (0.47) 5739.6 (2.25)
aThe best model for each dataset (i.e. the model with the lowest WAIC value).
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parameters might be poorly determined by the data (for

details, see ch. 7 of Gelman et al. [33]). However, Markov

chain Monte Carlo (MCMC) algorithms, the standard

approach to obtaining a sample from the posterior, are intrinsi-

cally sequential, making them unable to exploit parallel

computer clusters. This sequential nature of MCMC presents

further problems for advection–diffusion models, as chains

can break down or become trapped in regions of parameter

space where unstable numerical solutions cause model solving

algorithms to fail [13]. We avoided these issues by using the fol-

lowing method to obtain a pseudo-posterior for each of our

models and datasets.

The cell location data were sampled with replacement for

each time point involved in the fitting process to obtain

many bootstrap datasets of the same size as the original ones.

A maximization of the weighted log-likelihood (equation

(4.4)) was then carried out for each model on each bootstrap

dataset using an optimization algorithm (we found that the

quasi-Newton BFGS algorithm performed well for the

Dictyostelium data, while the Nelder–Mead algorithm was

more effective at reaching high-likelihood parameter regions

for the melanoma data). By optimizing on many re-samples

of the data, we obtain many parameter sets that can be used

as a proxy for a sample from the posterior distribution of the

parameters, where there is an assumption of uniform prior dis-

tributions. The variance of this pseudo-posterior is driven by

the uncertainty in the data, which is introduced through the

bootstrapping procedure. Similar approaches to obtaining a

pseudo-posterior have previously been applied by other

authors; see, for example, Friedman et al. [34]. Note that this

approach to inference is computationally costly, owing to the

need to run many optimizations per model (we used 3000),

but has advantages in being easily automated and parallelized.

Additionally, any optimizations that fail due to numerical

instability can simply be discarded and reinitialized.

As a result of the optimizer becoming trapped on local

optima, we found that, for both datasets, the pseudo-posteriors

obtained by this method tended to be multi-modal. We

removed all but the highest likelihood peak in the pseudo-

posteriors, as described in the electronic supplementary

material, Supplement D, prior to using the pseudo-posteriors

to calculate WAIC as

WAIC¼�2
Xn

j¼1

log
1

m

Xm

i¼1

PðyjjuiÞ
( )

þ 2
Xn

j¼1

1

m

Xm

i¼1

½logfPðyjjuiÞg�2
 !

� 1

m

Xm

i¼1

logfPðyjjuiÞg
" #2

8<
:

9=
;,

ð5:1Þ

where m is the number of optimizations, y ¼ ðy1, . . . ,ynÞT are

the cell location data and ui are the optimized parameter sets.

To verify that WAIC approximated using a pseudo-posterior

obtained by bootstrap sampling gives comparable results to

the standard WAIC calculated by direct sampling from the

true posterior, we carried out a test study that used both

methods to select the order of a polynomial model fitted to

independent benchmark data (electronic supplementary

material, Supplement E). There was very close agreement

between the WAIC values obtained using the two methods,

suggesting that our pseudo-posterior is practically equivalent

to the true posterior.
6. Results
Based on AICc and BIC, we selected a degree of three for the

polynomial function describing the time variance of the par-

ameters for Dictyostelium, and a degree of one for melanoma

(electronic supplementary material, tables S1 and S2),

suggesting that the Dictyostelium cells are changing their

behaviour more rapidly than the melanoma cells.

For Dictyostelium, WAIC selects the receptor saturation

model as the best model, while, for melanoma, the slightly

more complex overcrowding model is preferred (table 1).

While there are known issues with AICc and BIC—AICc

can select overly complex models, whereas BIC typically

selects overly simple models [35], and neither accounts for

parameter uncertainty—that make them less reliable than

WAIC, we also compared the models based on these simpler

statistics to check for consistency (electronic supplementary

material, tables S3 and S4). The difference between the

model selected by WAIC and the models selected by AICc

and BIC never exceeds a graph distance of one (figure 3).

For both datasets, the selected models produce very good

visual agreement with the data (figures 1 and 2). These fits

are a vast improvement over those produced by the simple

diffusion model (electronic supplementary material, figures

S1 and S2), and also provide a clear improvement over the

basic model (electronic supplementary material, figures S3

and S4); the inclusion of the receptor saturation effect appears

to allow the models to better replicate the peaked cell front,

which the basic model tends to smooth over.

For Dictyostelium, the diffusion rate of the cells, DC, is esti-

mated to first increase with time and then to decline again

towards the end of the time period (figure 4a). The responsive-

ness of the Dictyostelium cells to the folate gradient, a, tends to

increase over time (figure 4b), and the rate at which the cells

deplete folate, g, shows no clear trend (figure 4c). To investigate

the importance of the time variance of each of these parameters

in improving the fit of the selected model, we refitted the model

multiple times by maximum weighted log-likelihood (see the

electronic supplementary material, Supplement C), gradually

replacing the time-varying parameters with constants and

comparing these simplified models based on AICc and BIC

(electronic supplementary material, table S5). We found that

BIC selects only a and DC to be time-varying parameters,

suggesting that g can be left time-invariant. The difference in
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AICc score between the model with all three time-varying par-

ameters and the model with time-invariant g is small. These

findings are consistent with the trends in figure 4.

Carrying out a similar model selection for melanoma

(electronic supplementary material, table S6), both AICc

and BIC consistently suggest that the time dependence of

DC and g can be removed, leaving a as the only time-varying

parameter. A plot of the time dependence of a is given in

figure 5, which shows a monotonically decreasing trend.
7. Discussion
Despite several decades of work developing mathematical

models for collective cell movement, surprisingly little has

been done to confront these models with data. Recent develop-

ments in both microscopy techniques and computer-intensive

statistics are gradually removing the obstacles in this area.

Here, we have begun exploring the technical challenges associ-

ated with carrying out statistical inference (comprising both

parameter estimation and model selection) for PDE models

using microscopy data on collective cell movement.
Our novel inference method, which involves running

independent parameter optimizations on many bootstrap

replicates of the data, was motivated by Friedman et al. [34],

where it was referred to as a ‘poor man’s’ approximation of

the posterior distribution. In comparison with MCMC, our

bootstrapping approach is easily automated and can be

parallelized to spread the high computational cost over many

processors. By generating a pseudo-posterior distribution, the

bootstrapping approach also allows us to compute WAIC,

which accounts for parameters that are poorly determined

when penalizing model complexity, making it a more powerful

and reliable model comparison statistic than AICc and BIC.

This reduced penalty for poorly defined parameters may be

why, in the melanoma case, WAIC selects a more complex

model than AICc and BIC (figure 3). While we showed in a

test study that obtaining WAIC from our pseudo-posterior

gives good correspondence with the standard WAIC values

calculated by sampling from the true posterior (electronic sup-

plementary material, Supplement E), one issue that arose in

our main study could potentially have led to a certain distor-

tion in the approximations of the posterior distributions. This

was that some optimizations failed due to instability in the

numerical model solution at certain parameter combinations,

which could mean that certain areas of parameter space are

under-represented. These numerical instabilities are a known

issue for advection–diffusion models that become evident

when the Péclet number (the ratio of the advection coefficient

to the diffusion coefficient, multiplied by the box length used

when discretizing the PDE in space during numerical solution

[36]) exceeds one. Our pseudo-posteriors, therefore, are limited

to those regions where the numerical solutions of the models

are relatively stable, and this may have led to them being differ-

ent to the pseudo-posteriors that we would have obtained with

accurate analytical solutions.

In addition to these limitations, statistical methods, on their

own, are not able to identify a model with absolute certainty, as

has been discussed, for example, in Burnham & Anderson [37].

This is a consequence of both sampling uncertainty, and

the reliance of these methods on heuristic approximations (as

discussed in the previous paragraph, or in Supplement C of

the electronic supplementary material). However, statistical

methods can identify those models that are most likely given

current data, filtering out those that are unlikely to be correct

and thus guiding future targeted experimental work to confirm

the statistical findings. This makes model inference a useful

tool, as narrowing down hypotheses using experiments alone

is often made infeasible by the number and complexity of
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these hypotheses, and the cost of such experiments. We have

critically assessed the reliability of the novel statistical pro-

cedures used here in three ways. First, we have tested them

on two different model organisms: Dictyostelium and mela-

noma cells. Second, we compared our novel model selection

scheme, based on WAIC, with two established asymptotic

model selection criteria (AICc and BIC), and found that the

models selected by these different statistics are never separated

by a graph distance of more than one. This agreement between

statistics is reassuring; we expect WAIC to provide a slight

improvement on, but not a complete deviation from, the

asymptotic results. Finally, while we lack complete a priori
knowledge of the processes affecting cell movement in our

datasets, we do have partial knowledge with which to validate

the statistical results, as discussed in the next paragraph.

Through model inference and comparison, we have

drawn a number of conclusions about the drivers of collective

movement in assays for both Dictyostelium and melanoma

cells. In both systems, the simple diffusion model is rejected

as a description of the observed movement patterns in

favour of our more complex models that incorporate direc-

tional movement in response to attractant gradients that are

self-generated through depletion. This indication of the

importance of the self-generated gradient mechanism shows

agreement with experimental findings for melanoma [3],

and experimental and simulation model results for Dictyoste-
lium [7], that this mechanism is a key driver of the direction of

chemotaxis in these systems. Confidence in the ability of our

inference methods to identify the correct movement mechan-

isms is further increased by the fact that, for both cell types,

we observe a substantial improvement of the receptor satur-

ation model over the basic model (table 1). This agrees with

the widely accepted concept that connection between extra-

cellular signals and the intracellular mechanisms that drive

cell migration occurs through cell-surface receptors. These

receptors communicate to the inside of the cell by adopting

two states, unoccupied and occupied; thus the only

information seen by the motility machinery is the fractional

occupancy of the receptors. At high receptor saturation, there

can be very little difference in receptor occupancy between

the front and rear of the cell. Incorporating receptor saturation

led to our models being better able to replicate the form of

the peak in cell density that marks the moving cell front. The

receptor saturation effect causes this peak to become more

defined, by causing the cells at the very front of the distri-

bution, where attractant is most concentrated, to move more

slowly than those directly behind, leading to a build-up of

cells where the faster moving individuals meet the slower

front-runners. Our fitting methods also allowed us to predict

how the gradients in folate and LPA, on which we had no

directly measured data, changed over the course of the

assays. For Dictyostelium, the form of the predicted folate distri-

bution gives a relatively close visual match to that measured

experimentally by Tweedy et al. [7], using the same assay but

with a higher initial folate concentration.

In addition to providing insights into the self-generated

gradient mechanism, our model comparison study also

suggests that an effect of cells blocking each other’s move-

ment when at high density (described in our overcrowding

model) was evident in the melanoma data, but not in the

Dictyostelium data. The primary reason for this difference

may be that the cell densities in the Dictyostelium dataset

never became high enough for overcrowding effects to exert
an effect that our inference methods could detect; a visual

comparison of images from the two datasets indicates that

there are fewer direct contacts between the Dictyostelium
cells (figure 1a) than between the melanoma cells

(figure 2a). It is not completely clear how CIL would be

expected to modify cells moving in a self-generated gradient,

but this process is known to occur in neural crest cells [38]. As

the melanocytes that mutate into melanoma cells develop

from neural crest cells [39], it is likely that melanoma cells

will also exhibit CIL, which may be a contributing factor to

the selection of the overcrowding model for the melanoma

dataset. Previous results simulated from an individual-

based cell movement model suggested that CIL may also

play a role in Dictyostelium movements in the system investi-

gated here [7]. Our inability to detect this effect in

Dictyostelium through a preference for the overcrowding

model over the receptor saturation model may be a result

of the loss of information incurred in moving from an indi-

vidual-based modelling approach, where the movement

path of each cell is known, to the population-based approach

used in our study, where individual movement paths are not

analysed.

Our model comparison finds no evidence for direct attrac-

tive or repulsive interactions between the cells for melanoma;

a finding that is backed up by a lack of evidence for such con-

specific interactions in the literature. For Dictyostelium, AICc

suggests that such interactions may be important, but the

other two comparison statistics (including the more reliable

WAIC) place the interaction model second to the receptor sat-

uration model (table 1; electronic supplementary material,

table S3). Thus, while there may be some chemical com-

munication between the Dictyostelium cells, its effect on the

observed behaviour is not strong enough to be reliably

detected. Vegetative Dictyostelium cells are known to secrete

and respond to chemorepellents, but these appear to act

over short time scales (minutes rather than hours) and

ranges, so that repulsive interactions are not found to be

important over the time frame and distances involved in

our assay [40,41]. As Dictyostelium is well known for exhibit-

ing aggregative interactions when exposed to prolonged

starvation conditions [15], a shift in preference towards the

interaction model may have been observed had we run the

cell movement assay for a longer time period, or used

Dictyostelium cells that were at a later stage in their development.

We found evidence in both of our datasets for changes in

cell behaviour over time (figures 4 and 5; electronic supplemen-

tary material, tables S1 and S2). The diffusion coefficient for

Dictyostelium is estimated to be low at the beginning of the

assay (figure 4a), which may be a result of most of the cells

still being in the process of transitioning under the gel at this

stage. During this transition, the cells experience resistance

from the gel [19], which will reduce the speed of diffusion.

The diffusion rate increases once the cells have successfully

moved under the gel, but then declines again towards the

end of the time period, which may be a result of both starvation

[42] and the cells changing their mode of motility from predo-

minantly random movement towards chemotaxis, which is

strong at the end of the time period (figure 4b). The chemotactic

response of the Dictyostelium cells to the folate gradient

increases over time. Slow initial chemotaxis may again be a

result of the cells still adapting to move under the gel, while

starvation may contribute to the subsequent increase in the

efficiency of chemotaxis; starvation results in increasing
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polarity of the cells, leading to greater persistence in their direc-

tion of movement [43]. It is also possible that the decreased

random movement and increase in chemotaxis are caused by

repression of macropinocytosis, which is important for feeding

but incompatible with chemotaxis [44]. The production of

folate deaminase (the enzyme responsible for folate depletion)

by Dictyostelium has previously been found to increase over

time in response to folate exposure [45]. However, we find no

evidence for this trend in the rate with which our cells deplete

folate (figure 4c). It is possible that this increase in enzyme pro-

duction had already occurred by the time the first image was

obtained, over an hour after the cells were added to the

system, and was, therefore, not detectable in the data. For mel-

anoma, only the chemotactic responsiveness of the cells shows

a temporal trend, declining over the course of the assay

(figure 5). This decline could be caused by cells being imper-

fectly maintained during the longer assay conditions, or by

endocytosis and degradation of the LPA receptor, which is a

universal behaviour [4].

To conclude, we have developed an inference methodology

that overcomes many of the computational difficulties

associated with fitting a set of candidate PDE models for cell

movement to data. We have applied these methods to data

from two systems: one involving Dictyostelium, a well-studied

model organism in this field, and the other involving human
melanoma, a cancer made particularly aggressive by its rapid

spread. Through model comparison, we have successfully

drawn conclusions about the drivers of movement in these

systems, many of which are in agreement with previous exper-

imental and modelling work, and, thus, offer a validation of

our inference methods. Our study systems here are relatively

simple in comparison with the levels of complexity often

observed in vivo, where multiple cell types may be interacting

within a considerably more complex environment. However,

they are nonetheless examples of real cell movement behav-

iour, one of which is of great medical relevance, in which

we have been able to detect the presence of self-generated

chemotactic gradients; a movement driver recently found to

be important in many systems, including in vivo [3–7]. This

success is an encouraging first step, indicating that model infer-

ence has the potential to support targeted experimental work

in increasing our understanding of collective cell movement

in a range of systems.
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