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Abstract: The abnormal Wnt signaling pathway leads to a high expression of β-catenin, which causes
several types of cancer, particularly colorectal cancer (CRC). The inhibition of tankyrase (TNKS)
activity can reduce cancer cell growth, invasion, and resistance to treatment by blocking the Wnt
signaling pathway. A pharmacophore search and pharmacophore docking were performed to identify
potential TNKS inhibitors in the training databases. The weighted MM/PBSA binding free energy
of the docking model was calculated to rank the databases. The reranked results indicated that
26.98% of TNKS inhibitors that were present in the top 5% of compounds in the database and near an
ideal value ranked 28.57%. The National Cancer Institute database was selected for formal virtual
screening, and 11 potential TNKS inhibitors were identified. An enzyme-based experiment was
performed to demonstrate that of the 11 potential TNKS inhibitors, NSC295092 and NSC319963 had
the most potential. Finally, Wnt pathway analysis was performed through a cell-based assay, which
indicated that NSC319963 is the most likely TNKS inhibitor (pIC50 = 5.59). The antiproliferation assay
demonstrated that NSC319963 can decrease colorectal cancer cell growth; therefore, the proposed
method successfully identified a novel TNKS inhibitor that can alleviate CRC.

Keywords: TNKS inhibitor; virtual screening; pharmacophore; Wnt signaling pathway; docking;
β-catenin

1. Introduction

Colorectal cancer (CRC) is the second deadliest cancer in the world and 1.93 million
new cases were diagnosed in 2020, as shown in the report of global cancer statistics [1].
According to the tumor-node-metastasis classification system that doctors use to determine
the status and treatment of CRC, the disease evolves in several stages. Given the increase
in the global incidence of CRC and the poor 5-year survival rates for stages III and IV,
determining a new treatment strategy is crucial. The Wnt signaling pathway is most
frequently mutated in CRC, which increases the pathway activity. The Wnt/β-catenin
signaling pathway controls vital biological processes, such as embryonic development, cell
fate determination, and cell proliferation [2]. However, abnormal components or proteins in
the Wnt/β-catenin pathway may cause the accumulation of β-catenin, even in the absence
of Wnt ligands, leading to carcinogenesis [2,3]. The adenomatous polyposis coli (APC)
protein has a high probability of mutation and was identified in 70–90% of patients with
CRC [4]. An APC mutation leads to chromosomal instability that causes other mutations,
such as RSK or a p53 gene mutation, that leads to CRC [4,5].
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Usually, β-catenin is a key protein that controls the activation of the Wnt/β-catenin
signaling pathway. The stability of β-catenin is controlled by the destruction complex,
which is composed of Axin, APC, glycogen synthase kinase 3β (GSK3β), and casein kinase
1 (CK1). In the absence of Wnt ligands, β-catenin is phosphorylated through the destruction
complex, followed by ubiquitination and degradation. When the Wnt/β-catenin signaling
pathway is activated by Wnt ligands, the coreceptors’ low-density lipoprotein 5/6 (LRP5/6)
is phosphorylated by Dishevelled (Dvl). Phosphorylated LRP5/6 then recruits Axin and
destabilizes the destruction complex, leading to the accumulation of β-catenin, which
enters the nucleus to trigger the downstream signal pathway [6]. However, loss of function
of the APC also causes uncontrollable transcription of the downstream genes through
the excess accumulation of β-catenin and aberrant proliferation [7]. Tankyrase proteins
(TNKS-1 and TNKS-2), members of the poly (ADP-ribose) polymerase enzyme (PARP)
family, use NAD+ as the substrate for ADP-ribose and transfer ADP-ribose into the target
protein (PARsylation) [6,8]. TNKSs are involved in various biological functions such as
telomere maintenance, DNA repair, mitosis, and GLUT4 vesicle trafficking [9]. Additionally,
TNKSs regulate the Wnt/β-catenin pathway through the PARsylation and destabilization
of Axin. Because Axin is the concentration-limiting component of the destruction complex,
its abundance regulates the stability of β-catenin [6]. Although many TNKS inhibitors
have been identified, none of them have entered the market [10]. Hence, providing a novel
TNKS inhibitor strategy may be beneficial for combating related cancers. Studies have
demonstrated that inhibiting the Wnt signaling pathway through a TNKS inhibitor could
potentially treat CRC [11,12].

Virtual screening (VS) is a useful technique for identifying drugs by screening small-
compound databases to determine if active inhibitors or novel scaffolds, which have been
applied in many studies [13–16]. Structure-based VS calculates the binding free energy or
considers the features or shape of the ligand binding site. Generally, docking, structure-
based pharmacophore, and molecular dynamics (MD) simulations are the approaches
used in structure-based VS For a structure-based pharmacophore, the researcher builds a
pharmacophore model based on the shape or features of a protein for database screening;
this approach has been successfully utilized in several studies [13,17]. In general, the VS
hit rates and high throughput screening rates are 1–40% and 0.01–0.14%, respectively. The
common activity cutoff in VS is 1–25 µM, and using a value of less than 1 µM is rare [18].
Although VS can identify potential compounds and decrease the cost of experiments,
determining the affinity of compounds of less than 10 µM still presents a challenge.

In this study we combined several methods, such as pharmacophore search and molec-
ular docking, binding free energy calculations, and ligand interactions, to screen for new
TNKS inhibitors. Our results revealed that NSC319963 has the most therapeutic potential
as a novel scaffold for TNKS inhibition because it inhibits the Wnt/β-catenin signaling
pathway and cell proliferation in various CRC cell lines with diverse APC genotypes. More-
over, NSC319963 can enhance the effect of 5-fluorouracil (5-FU) on CRC cells. NSC319963
can reduce the viability of CRC and may provide a new therapeutic treatment for CRC.

2. Materials and Methods
2.1. Data Set Preparation

All TNKS crystal structures were obtained from the RCSB Protein Data Bank. The struc-
tures of the ChEMBL compounds and TNKS-1 and TNKS-2 inhibitors were downloaded
from the ChEMBL database, and FDA-approved drugs were acquired from DrugBank.
National Cancer Institute (NCI) compounds were obtained from the National Institutes of
Health public database. All compounds were prepared in silico by the Molecular Operating
Environment software package (MOE2019.01) (http://www.chemcomp.com, accessed on
28 December 2021). The drug-like properties of the compounds were calculated using
the “Filter by Lipinski and Veber Rules” module of BIOVIA Discovery Studio software
package (DS2018) (https://www.3ds.com/products-services/biovia/products/molecular-
modeling-simulation/biovia-discovery-studio/, accessed on 28 December 2021). Com-
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pounds were removed if they violated more than one Lipinski or Veber rule. The blood-
brain barrier (BBB) permeability of the compounds was calculated through the “ADMET
Descriptors” module of DS2018. The compounds were removed if the value of log(BBB) of
the compound was less than −0.52. After these compounds were prepared, the conformers
were generated by using the “Conformational Search” module of the MOE software. The
“Stochastic” search method was selected with an RMS gradient of 0.1, a rejection limit of
100, a conformation limit of 250, and an iteration limit of 250. All conformers were used for
testing or VS.

2.2. Pharmacophore-Based VS

To analyze the interaction patterns between ligands and TNKS, 10 TNKS structures
were selected (Table S1) using the “Analyze Ligand poses” module of DS2018. Critical
residue was delineated if more than five of the interactions were between the bound ligand
and the residues of the TNKS structures. The pharmacophore model was generated if more
than five ligand features interacted with the critical residues of the TNKS structures. Five
pharmacophores were generated by MOE2019.01, in which F1 was the donor feature, F2 rep-
resented the acceptor feature, F3 stood for the aromatic feature, and F4 and F5 represented
the hydrophobic and aromatic features, respectively. F2 and F3 were deemed essential
because they can be found in all TNKS structures. The “PLIF” panel and “Querygenerator”
tools of MOE2019.01 were executed to construct excluded volumes by using the average
shape of the ligand binding sites from 10 TNKS structures. The pharmacophores and
excluded volumes were utilized to test or screen compounds by using the “pharmacophore
search” module in MOE2019.01. Compounds were removed if they overlapped with the
excluded volumes or fit fewer than four pharmacophores (two essential pharmacophores
and two other pharmacophores).

2.3. Structure-Based VS

After the pharmacophore search, pharmacophore docking was performed using MOE
software. The TNKS-1 crystal structure (PDB: 4U6A) was selected for docking with small
ligands. If the docking could fit more than four pharmacophores, the docking result
was retained. To increase the VS hit rate, the binding energy was calculated using the
“Calculate Binding Energies” module in DS2018 following the pharmacophore docking.
The compounds were reranked on the basis of the weighted binding energies. The weighted
binding energy was defined as ∆G × NR, where ∆G is the calculated binding energy, and
NR is the number of critical residues calculated with the “Analyze Ligand poses” module
in DS2018.

2.4. MD Simulations

The ligands were treated with an antechamber tool of the AMBER program with a
GAFF force field. Restrained electrostatic potential charges were calculated through Gaus-
sian 09 using Hartree−Fock (HF)/6-31G(d). Short-term MD simulations were performed
using the GROMACS 2018 program with Amber99 SB-ILDN force field. The ligand-bound
TNKS structure was placed in a cubic TIP3P water box (8.2 × 8.2 × 8.2 nm3) and then
neutralized with ions (Na+ and Cl−) to generate a 0.15 mol/L NaCl solution. A steepest
decent energy minimization was performed in 2000 steps. After energy minimization,
a 1000 ps isobaric-isothermic (NPT) ensemble was performed. Long-range electrostatic
interactions were calculated using the particle mesh Ewald method with grid dimensions
of 0.12 nm and an interpolation order of 4. The short-range nonbonded interactions were
treated with a cutoff radius of 1.0 nm, and van der Waals potentials were switched and
started at 0.8 nm. The velocity-rescaling thermostat was set to a constant temperature
(310 K) and pressure (1 bar). Temperatures of the complexes and solvents were separately
coupled with a coupling time of 0.1 ps. Isotropic pressure coupling was applied with a
coupling time of 0.1 ps and compressibility of 4.5 × 10−5 bar−1 in the x-, y-, and z-directions.
After equilibration, the MD simulations were conducted without restraint for 10 ns. The
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MM/PBSA binding energies of the TNKS inhibitors were calculated using the GROMACS
program tool g_mmpbsa [19]. More detailed settings of the free energy calculations were
described in our previous studies [20–22].

2.5. Compound Similarity

The structures of NSC319963 and NSC295092 were calculated to verify the novelty
of the scaffold structure. The 795 TNKS inhibitors were selected with the “Find Similar
Molecules by Fingerprints” module in DS2018. NSC319963 was defined as a reference
structure. The fingerprint ECFP_4 was selected, and the cutoff was set to 0.4 [23,24].

2.6. The Source of Compounds

The XAV939 compound was purchased from Selleckchem (Sylvanfield Drive, Houston,
TX, USA), and the 5-FU was obtained from Medchemexpress (Monmouth Junction, NJ,
USA). The NCI compounds were acquired from the National Institute of Health (Bethesda,
MD, USA). The XAV939 and NCI compounds were dissolved in dimethyl sulfoxide (DMSO),
and the 5-FU was dissolved in ddH2O. All the compounds were stored at −20 ◦C.

2.7. Cell Culture

The DLD-1 cells were maintained in RPMI 1640 (Gibco/Invitrogen, Carlsbad, CA,
USA), supplemented with 10% heat-inactivated fetal bovine serum (FBS; Sigma-Aldrich,
St. Louis, MO, USA), 2 mM L-Glutamine, 4.5 g/L glucose, 10 mM HEPES, 1 mM sodium
pyruvate, and penicillin-streptomycin at 37 ◦C with 5% CO2. The SW403 cells were
maintained in Leibovitz’s L-15 Medium with 10% FBS and penicillin-streptomycin at 37 ◦C.
The HCT-116 cells were maintained in McCoy’s 5A Medium (Corning, Glendale, AZ, USA),
10% FBS, and penicillin-streptomycin at 37 ◦C with 5% CO2. All human colon cancer cell
lines were obtained from the Bioresource Collection and Research Center (Food Industry
Research and Development Institute, Hsinchu, Taiwan).

2.8. TNKS-1 Activity Assay

All the NCI compounds were screened with a TNKS-1 histone ribosylation colorimet-
ric assay kit (BPS Bioscience, San Diego, CA, USA), which tested their ability to inhibit
TNKS-1 activity. The plate was coated overnight with histone, and 150 µL of a blocking
buffer was added over 60 min at room temperature. Then, the reaction buffer was pre-
pared at room temperature with various concentrations of compounds, and 30 ng/well
of TNKS-1 was added. A total of 50 µL of streptavidin-HRP was then added at room
temperature for 30 min. Finally, 100 µL Colorimetric HRP Substrate was added for 20 min
at room temperature, and 100 µL of 2 M sulfuric acid was added to end the reaction. Ab-
sorbance was detected at 450 nm using a Varioskan LUX Multimode Microplate Reader
(Thermo Fisher Scientific, Waltham, MA, USA). The inhibition percentage was calculated
using the following equation:

Inhibition rate = 1 − (sample − blank control)/(negative control − blank control) × 100% (1)

where the blank control was the absent compound plus TNKS-1. The negative control was
TNKS-1 only.

2.9. SuperTopFlash Reporter Assay

A total of 30,000 DLD-1 cells were seeded on a 24-well plate overnight. The cells were
transfected with a 20:1 ratio of a M50 Super 8 × TOPFlash Firefly luciferase reporter gene
(Addgene, Watertown, MA, USA) and pGL4.74 [hRluc/TK] Renilla luciferase reporter gene
(Promega, Madison, WI, USA) using ViaFect Transfection Reagent (Promega, Watertown,
MA, USA) for 24 h. The various concentrations of compounds were treated for 24 h, and
the cells were lysed and analyzed with a dual-luciferase reporter assay system (Promega,
Watertown, MA, USA). Luminescence was analyzed using a Varioskan LUX Multimode
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Microplate Reader. The luciferase reporter activity was normalized with respect to Renilla
luciferase activity and expressed as a percentage of the control activity.

2.10. Western Blot

A total of 1 million SW403 cells were seeded on 6-cm dishes overnight, and various
compounds were treated for 48 h. The cell lysates were collected, and samples were loaded
onto sodium dodecyl sulfate-polyacrylamide gel through electrophoresis and transferred
onto polyvinylidene difluoride blotting membranes. The membranes were blocked using
5% skim milk with phosphate-buffered saline (PBST) for 1 h. An anti-Axin2 antibody (Cell
Signaling Technology, Danvers, MA, USA) was added overnight in 4 ◦C conditions. The
membrane was washed three times with PBST, and either an anti-active β-catenin antibody
(Millipore, Burlington, MA, USA), anti-total β-catenin antibody (Genetex, Irvine, CA, USA),
or anti-α-tubulin antibody (Genetex, Irvine, CA, USA) was added for 1 h. The membrane
was then washed three times with PBST. An ECL reagent was added, and the luminescence
was analyzed.

2.11. Colony Formation Assay

A total of 2000 or 100,000 cells/well of DLD-1, HCT-116, and SW403 were seeded
overnight in 6-well plates. The compounds were treated the following day, and the medium
with the compound was replenished every 3 days for 12 or 18 days. Colonies were stained
with 2 mg/mL crystal violet in methanol for 30 min. The colonies were dissolved with 15%
acetic acid, and absorbance was analyzed at 540 nm using the Varioskan LUX Multimode
Microplate Reader.

2.12. Statistical Analysis

All experiments were repeated at least three independent times, except for the TNKS-1
activity assay, which was repeated once or twice. Data were presented as the
mean ± standard deviation (SD). The pIC50 response was measured using nonlinear curve
fitting with the dose–response module in OriginPro 2020, and the pIC50 was calculated
using the equation −log10(IC50). The significance of the various concentration groups
was analyzed with a one-way analysis of variance with Tukey’s multiple comparisons test
module in OriginPro 2020. Statistical significance was set at p < 0.05 and is indicated with
an asterisk.

3. Results
3.1. Structure-Based Pharmacophore VS

In the VS model training, the structure-based pharmacophore search was initially
performed to identify potential TNKS inhibitors. A total of 10 TNKS crystal structures
(Table S1) were selected to identify critical residues in TNKSs. Seven critical residues
interacted with the cocrystal ligand in TNKSs, namely His1184 (TNKS-1) and His1031
(TNKS-2), Gly1185 (TNKS-1) and Gly1032 (TNKS-2), Tyr1213 (TNKS-1) and Tyr1060 (TNKS-
2), Ala1215 (TNKS-1) and Ala1062 (TNKS-2), Lys1220 (TNKS-1) and Lys1067 (TNKS-2),
Ser1221 (TNKS-1) and Ser1068 (TNKS-2), and Tyr1224 (TNKS-1) and Tyr1071 (TNKS-2;
Figures 1 and S1). The five pharmacophores (F1–F5 in Figure 2 and Table 1) were generated
on the basis of critical residues and cocrystal ligand interactions, and F2 and F3 were
deemed essential pharmacophores because their features were present in all of the TNKS
crystal structures. A total of 795 TNKS inhibitors, 1945 FDA-approved compounds, and
6618 ChEMBL compounds were pooled together for the pharmacophore search. The
results identified 357 TNKS inhibitors, 160 FDA-approved compounds, and 937 ChEMBL
compounds. The hit rate of the TNKS inhibitors in the total compounds increased from
8.5% [795/(795 + 1945 + 6618)] to 24.55% [357/(357 + 160 + 937)]. Thus, the compounds
filtered through the pharmacophore search could increase the hit rate of TNKS inhibitors in
the databases.
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F3 aromatic, and the two greens are F4 and F5 aromatic or hydrophobic. The F2 and F3 are defined 
as essential ligand features. 
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Figure 2. The defined pharmacophore model of TNKS protein. (a) 10 crystal structures and co-crystal
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Table 1. List of pharmacophore model.

Pharmacophore Frequency

F1 Donor 7/10
F2 Acceptor 10/10 a

F3 Aromatic 10/10 a

F4 Aromatic or Hydrophobic 9/10
F5 Aromatic or Hydrophobic 6/10

Search hit, at least 4 hits, 2 Essential + 2 Others
a defined as an essential pharmacophore.

The combination of docking and a pharmacophore-based search was recommended
to increase the hit rate, compared with using only one approach [25]. The 50 TNKS-1
inhibitors, 50 TNKS-2 inhibitors with an IC50 value of less than 2 µM, 160 FDA-approved
compounds, and 937 ChEMBL compounds that were hit in the pharmacophore search
were then selected for pharmacophore docking. The results indicated that 33 TNKS-1,
30 TNKS-2 inhibitors, 29 FDA-approved compounds, and 259 ChEMBL compounds were
hit. We ranked these compounds on the basis of their docking scores, and we analyzed
the true positive hit rates, as presented in Figure 3 and Table 2. The pharmacophore
docking indicated that 17.46% of the TNKS inhibitors were present in the top 5% of the



Biomedicines 2022, 10, 143 7 of 16

ranked compounds, the random ranking was 5.13%, and the ideal ranking was 28.57%.
We redocked the cocrystal ligands of the TNKSs to illustrate that except for 3UH2 with a
high RMSD value of 3.39 Å and 4BJC, for which the pharmacophore docking could not fit
the pharmacophore, the cocrystal structures had low RMSD values (Figure S2). The hit
rate of the TNKS inhibitors for pharmacophore docking based on docking scores was more
accurate than random ranking to illustrate that the cocrystal ligands of TNKSs have low
RMSD values.
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Table 2. Hit rates of different docking methods used for virtual screening.

Top (%) Random (%) Docking (%) Binding Energy (%) Weighted Binding Energy
(Docking-Based) (%) Ideal (%)

1.00 1.14 6.35 6.35 6.35 6.35
5.00 5.13 17.46 25.40 26.98 28.57

10.00 10.23 20.63 42.86 49.21 57.14
15.00 15.10 33.33 55.56 58.73 84.12
18.00 17.95 36.51 58.73 66.67 100.00

3.2. Binding Free Energy Calculation Applied to Improve Correlation Coefficient

The calculation of MM/PBSA binding free energy from the minimized structures
could result in a satisfactory correlation coefficient between affinity and binding free
energy [26,27]. Therefore, the binding energy of compounds was calculated and ranked
with the “Calculate Binding Energies” module in DS2018. The results indicated that the
hit rate of the TNKS inhibitors was 25.4% in the top 5% compounds of all the ranking
compounds, meaning that the hit rate when calculating binding energy is more accurate
than that obtained through pharmacophore docking only. Moreover, studies have also
demonstrated that the combination of docking scores and residue interactions can increase
the VS hit rate [15,28]. Hence, we combined the binding energy and critical residues
methods to rank the compounds by their weighted binding energy scores (Figure 3 and
Table 2). The hit rate of the TNKS inhibitors increased to 26.98% in compounds ranking in
the top 5%. The hit rate of the weighted binding energy was more accurate than that of the
DS2018 binding energy calculations in this study.

Other than the binding energy calculated with the DS2018 software, the MM/PBSA
binding free energy calculations from the GROMACS software were also performed for
comparison. Three scaffold groups of TNKS inhibitors and their derivatives were selected
to assess the MM/PBSA calculations (Table S2). All the docking modes were calculated
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at minimization, 1 ns NPT ensemble simulation, and 10 ns MD simulation. The results
demonstrated that minimization and the NPT ensemble had suitable correlation coefficients
between the pIC50 and binding energy calculated in scaffold groups 1 and 2, but had a poor
correlation coefficient for group 3 (Figure 4a). However, the rescored binding free energies
of all pooled scaffold groups of TNKS inhibitors and their derivatives determined through
minimization revealed a worse correlation coefficient compared with the rescored weighted
binding energy of all the scaffold groups of TNKS inhibitors (Figure 4b,c). Hence, the
combination of binding energies and critical residues improved the correlation coefficient
for the pIC50 in this study.
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3.3. The Compositive VS Model Applied for New Scaffold Screening

The NCI database, which contains information on approximately 260,000 compounds,
was selected for VS in this study. The drug-likeness of the compound was calculated with
Lipinski’s rules and Veber’s rules. Although the incidence of brain metastasis from CRC
is low [11], the global incidence of CRC is expected to increase [18]. Some patients have
been diagnosed with brain metastasis from CRC [29]. If the compound could penetrate
the BBB, it may be able to resist CRC-induced brain metastasis. Therefore, the compounds
were filtered according to BBB permeability in DS2018. After the database was filtered by
Lipinski’s rules, Veber’s rules, and BBB permeability, approximately 130,000 compounds
remained, which generated approximately 6,300,000 conformers using MOE2019. Next,
the database was screened according to the proposed workflow (Figure 5). Finally, the
top 15 compounds were selected and ranked according to their calculated binding energy
scores from the minimized structures (Table 3).
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3.4. Inhibition of TNKS-1 and Wnt Signaling Test

TNKS inhibitors catalyze NAD+ to generate ADP-ribose polymers on target pro-
teins [31]. Therefore, a TNKS-1 histone ribosylation colorimetric assay was used to evaluate
the inhibition efficiency of the compounds, and 10 µM of each compound was used for
screening. For the TNKS-1 enzyme-based assay, five compounds (NSC319963, NSC315247,
NSC295092, NSC123012, and NSC102371) demonstrated >50% TNKS-1 inhibition (Table 4).
Although the weighted binding energy (minimization-based) demonstrated a high correla-
tion coefficient, the hit rate confirmed with the enzyme-based assay was only 45.5%. TNKSs
control Wnt/β-catenin signaling through the stabilization of the β-catenin destruction
complex. Inhibition of TNKS activities increases β-catenin through the decrease of the
β-catenin destruction complex in the cytoplasm [6]. The active β-catenin associates with
T-cell factor/lymphoid enhancer factor (TCF/LEF) transcription factors and triggers down-
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stream signal transduction [32]. A SuperTopFlash reporter has seven TCF/LEF regions
that can amplify the signal of β-catenin [33]. Thus, the five compounds were screened
using a SuperTopFlash reporter assay at 10 µM in DLD-1 cells with constitutively active
β-catenin [34]. NSC295092 and NSC319963 demonstrated a Wnt activity inhibition of
>50% (Table 4). NSC102371, NSC123012, and NSC315247 demonstrated suitable TNKS-1
inhibition effects at 10 µM, but the Wnt activity inhibition effect was less than 50%. The IC50
of NSC295092 and NSC319963 was further evaluated, and the values of TNKS-1 inhibition
were 7.18 and 7.66 nM, respectively. The IC50 of the Wnt activity inhibition of NSC295092
and NSC319963 was 5.11 and 5.45 nM, respectively.

Table 3. Top 15 compounds selected in the combinatorial virtual screening.

NSC ID Predicted
pIC50

a
Weighted Binding Energy

(Docking-Based) b
Weighted Binding Energy

(Minimization-Based) c

1 123012 6.23 −333.97 −819.40
2 295092 6.52 −321.65 −852.57
3 401309 6.53 −313.99 −853.66
4 158478 6.27 −312.32 −823.95
5 12375 5.52 −307.31 −739.31
6 345683 5.57 −304.95 −745.41
7 188041 7.03 −303.33 −909.31
8 400085 6.26 −301.18 −823.19
9 319963 6.73 −300.46 −875.90
10 102371 6.99 −299.06 −905.23
11 315247 7.07 −298.22 −914.52
12 670437 9.06 −295.86 −1138.15
13 670428 9.18 −295.52 −1151.59
14 121291 4.58 −289.87 −633.33
15 102045 d 6.63 −289.48 −864.12

a Predicted pIC50 was referred from y = −112.87x−116.23 which from minimize-based weighted binding energy;
b,c The unit is kJ/mL; d The experiment pIC50 of TNKS-1 is 6.44 [30].

Table 4. Summary of selected compounds and XAV939 for 10 µM inhibition and pIC50 in TNKS-1
and TCF-reporter activity assays.

Compound Pred pIC50
b

% of Inhibition at 10 µM pIC50

TNKS-1 c TCF-Reporter TNKS-1 TCF-Reporter

1 XAV939 a 102.34 74.73 ± 2.52 8.45 ± 0.29 6.85 ± 0.06
2 NSC670437 9.06 −7.33 nd nd nd
3 NSC670428 9.18 5.52 nd nd nd
4 NSC401309 6.54 20.14 nd nd nd
5 NSC400085 6.54 16.29 nd nd nd
6 NSC319963 6.73 100.75 73.47 ± 6.02 7.66 ± 0.05 5.45 ± 0.06
7 NSC315247 7.07 60.07 −15.93 ± 28.86 nd nd
8 NSC295092 6.53 102.09 55.33 ± 1.51 7.18 ± 0.05 5.11 ± 0.05
9 NSC188041 7.03 11.84 nd nd nd

10 NSC158478 6.26 −8.19 nd nd nd
11 NSC123012 6.24 50.92 45.23 ± 19.02 nd nd
12 NSC102371 6.99 88.54 −23.67 ± 11.01 nd nd

a Control inhibitor; b Pred pIC50 was referred from y = −112.87x−116.23; c One or two independent experiments.
nd: not determined.

TNKS inhibitors have decreased β-catenin protein expression with stable Axin [12].
Therefore, we evaluated the protein expression of active β-catenin, total β-catenin, and
Axin2 through Western blot. We determined that NSC295092 and NSC319963 can decrease
active β-catenin and total β-catenin by promoting Axin2 in SW403 (Figure S3). To de-
termine whether NSC295092 and NSC319963 were novel scaffolds of TNKS inhibition, a
two-dimensional fingerprints method (ECFP_4) was performed with DS2018 software, and
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NSC319963 was set as the reference structure to compare with 795 known TNKS inhibitors
and NSC295092. If the Tanimoto coefficient was more than 0.4, the compound had a sim-
ilar scaffold as the reference compound [23,24]. The Tanimoto coefficient of NSC295092
was 0.74, and the highest value of the other known TNKS inhibitors was 0.31 (Figure 6).
Therefore, NSC319963 and NSC295092 had a similar scaffold and may be considered novel
TNKS inhibitors. The docking modes of NSC295092 and NSC319963 revealed similar
interactions with TNKS-1 (Figure 7). In all of the compounds, His1184 and Try1224 formed
π-alkyl with 1H-quinolin-2-one ring, Gly1185 and Ser1221 formed hydrogen bonds with
1H-quinolin-2-one ring, and Ala1215 and Lys1220 formed alkyl with the 3-methyl group.
However, Tyr1213 and Tyr1224 formed alkyl with the 4-methyl group only in NSC295092,
and Tyr1213 and Tyr1224 formed alkyl with the 4-chloro group only in NSC319963. Lys1220
formed a carbon hydrogen bond with the 4-chloro group in NSC319963. The docking
modes of compounds NSC295092 and NSC319963 with TNKS-1 were also superposed with
compound XAV939 showing these compounds are in the same binding pocket of TNKS-1
and with similar interactions (Figure S4).
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3.5. NSC319963 Inhibits Cell Growth on Colony Formation in CRC Cell Lines

Aberrant Wnt signaling, which normally originates from an APC mutation, was
observed in 70–90% of patients with CRC [4]. The short-form APC mutation of the CRC cells
was sensitive to TNKS inhibitors. The NSC319963 had a superior pIC50 for Wnt inhibition
than NSC295092. Therefore, the CRC cell lines, namely SW403 with short-form APC
mutation, DLD-1 with APC mutation, and HCT-116 with wild-type APC, were selected to
evaluate the inhibition of colony formation of NSC319963 for 18 days. NSC319963 inhibited
colony formation in all CRC cell lines at 10 µM, which indicates that NSC319963 can inhibit
SW403, DLD-1, and HCT-116 cell growth. (Figure 8).
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4. Discussion

In this study, we conducted a more efficient VS of new scaffolds of TNKS inhibitors
compared with traditional screening methods after first completing screening model train-
ing. Simple docking methods, such as rigid body or induced fit docking, have been used in
many studies [15,35,36] and may easily be biased because of their oversimplified simulation
systems (Figure S2). The pharmacophore method is used to identify potential compounds
through pharmacophores, which are built with ligand or protein features, and the screened
compounds are deemed potential compounds if they can fit the pharmacophores. Although
this method also successfully identified some protein inhibitors, the results contained many
false positives [13,17]. Studies have used the pharmacophore and docking methods to
determine TNKS inhibitors with suitable affinity in an enzyme-based assay [37] and have
indicated that the combination of methods can increase the hit rate compared with a single
approach [25,36]. Therefore, the combination of pharmacophore and docking methods
provides the benefits of both methods and can increase the VS hit rate or affinity. According
to our model training results, the combination increased the VS hit rate by decreasing the
incidence of bias in the docking model (Figure 3 and Table 2).
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Studies have demonstrated that calculating the binding free energy from the structure
after minimization or MD simulations by using the MM/PBSA method can result in
a suitable correlation coefficient between the affinity and binding free energy [26,27].
Therefore, we calculated the binding free energy from the pharmacophore docking method
in this study. The results (Figure 3 and Table 2) indicated that calculating binding free
energy on the basis of the docking structure through MM/PBSA could increase the VS hit
rate from 17.46% to 25.40%. Moreover, given that MM/PBSA calculations could yield more
accurate results when combined with residue interactions than without residue interactions,
the VS hit rate could be increased from 25.40% to 26.98%, which is consistent with the
results of a previous study [15]. After the screening model training, a revised model was
applied to search the NCI database for the new scaffolds of TNKS inhibitors. This method
led to five compounds with over 50% inhibition, according to the TNKS-1 enzyme-based
assay (5/11), and a hit rate of 18.2% (2/11) in the final cell assay, in which two compounds
were hit. Although the hit rate was poor, the potency of the hit compounds was higher
than in some studies [14,17,35].

The docking model of NSC319963 and NSC295092 (Figure 7) demonstrated that both
compounds interacted with seven critical residues and were derivatives. The MM/PBSA
values obtained from the minimized structures of NSC319963 and NSC295092 were −875.90
and −852.57 kJ/mL, respectively. Hence, NSC319963 had stronger affinity than NSC295092.
NSC319963 demonstrated the greatest potential as a TNKS inhibitor according to the TCF
luciferase reporter assay (Table 3), which was consistent with the MM/PBSA values from
the minimized structure. Calculations of binding free energy from the minimized structures
through MM/PBSA may be conducted to modify the structure, but they are unsuitable for
VS because of the computing cost. Docking models of NSC319963 and NSC295092 provided
molecular insights into the compounds that inhibit TNKS activity. Therefore, a combination
of the docking model and the calculation of binding free energy from the minimized
structures through MM/PBSA can optimize NSC319963 to increase the compound affinity.

To further verify the inhibitory effect of NSC319963 on CRC, three cell lines, namely
SW403, DLD-1, and HCT-116, were assessed for colony formation. As presented in
Figure 8, 10 µM NSC319963 produced greater inhibitory effects of cell viability on the
SW403 (less than 20%) than the HCT-116 (less than 40%) and DLD-1 (50%) cell lines. The
possibility of SW403 containing a short-form APC mutation and DLD-1 and HCT-116 con-
taining an APC mutation and wild-type APC, respectively, may indicate that the regulatory
effect of NSC319963 on Axin was associated with the activity of APC. Because APC may
be mutant in DLD-1 cells, the interaction between Axin and APC might decrease. The
effect of NSC319963 on β-catenin accumulation might also decrease, which may lead to a
poor effect on colony formation. By contrast, SW403 contains a short-form APC mutation;
therefore, the region of the Axin/APC interaction remains normal. The short-form APC
mutation may increase the possibility of an Axin/APC interaction; therefore, NSC319963
has a greater inhibitory effect on SW403 cells than on DLD-1 cells. However, NSC319963
also demonstrated a synergistic effect with 5-FU on DLD-1 viability (Figure 9), which
indicates that NSC319963 can enhance the chemosensitivity of 5-FU on CRC.
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5. Conclusions

In conclusion, the Wnt signaling pathway is the most common mutation in CRC, and
an abnormal Wnt signaling pathway increases cancer cell growth, invasion, and resistance
to treatment [38–40]. TNKS inhibitors have the potential to treat CRC by decreasing Wnt
signaling pathway activity [11,12]. In this study, an improved VS strategy was proposed
for screening potential BBB-permeable TNKS inhibitors. This strategy combined phar-
macophore, docking, MM/PBSA, and critical residue interactions to determine a novel
scaffold for TNKS inhibition from the NCI database. The NSC319963 compound inhibits
TNKS and Wnt signaling pathway activities, decreases SW403 cells growth, and is nontoxic
to HMEC-1 cells. According to the Tanimoto coefficient, NSC319963 is a novel scaffold for
TNKS inhibition. Thus, our VS strategy successfully identified a novel scaffold for TNKS
inhibition with suitable inhibition of the Wnt signaling pathway ability (pIC50 = 5.59). This
strategy can also be applied in future studies to identify other protein inhibitors.
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detection of active β-catenin, total β-catenin and AXIN2, Figure S4: The superposition of compound
XAV939 with screened compounds NSC319963 and NSC295092 in the binding pocket of TNKS-1.
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