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Abstract 

Background: To compare three computer‑assisted quantitative electroencephalography (EEG) prediction models for 
the outcome prediction of comatose patients after cardiac arrest regarding predictive performance and robustness to 
artifacts.

Methods: A total of 871 continuous EEGs recorded up to 3 days after cardiac arrest in intensive care units of five 
teaching hospitals in the Netherlands were retrospectively analyzed. Outcome at 6 months was dichotomized as 
“good” (Cerebral Performance Category 1–2) or “poor” (Cerebral Performance Category 3–5). Three prediction models 
were implemented: a logistic regression model using two quantitative features, a random forest model with nine 
features, and a deep learning model based on a convolutional neural network. Data from two centers were used for 
training and fivefold cross‑validation (n = 663), and data from three other centers were used for external validation 
(n = 208). Model output was the probability of good outcome. Predictive performances were evaluated by using 
receiver operating characteristic analysis and the calculation of predictive values. Robustness to artifacts was evalu‑
ated by using an artifact rejection algorithm, manually added noise, and randomly flattened channels in the EEG.

Results: The deep learning network showed the best overall predictive performance. On the external test set, poor 
outcome could be predicted by the deep learning network at 24 h with a sensitivity of 54% (95% confidence interval 
[CI] 44–64%) at a false positive rate (FPR) of 0% (95% CI 0–2%), significantly higher than the logistic regression (sen‑
sitivity 33%, FPR 0%) and random forest models (sensitivity 13%, FPR, 0%) (p < 0.05). Good outcome at 12 h could be 
predicted by the deep learning network with a sensitivity of 78% (95% CI 52–100%) at a FPR of 12% (95% CI 0–24%) 
and by the logistic regression model with a sensitivity of 83% (95% CI 83–83%) at a FPR of 3% (95% CI 3–3%), both 
significantly higher than the random forest model (sensitivity 1%, FPR 0%) (p < 0.05). The results of the deep learning 
network were the least affected by the presence of artifacts, added white noise, and flat EEG channels.

Conclusions: A deep learning model outperformed logistic regression and random forest models for reliable, robust, 
EEG‑based outcome prediction of comatose patients after cardiac arrest.
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Introduction
Approximately half of all comatose patients admitted 
after cardiac arrest at the intensive care unit (ICU) never 
regain consciousness [1]. Neurological outcome predic-
tion can facilitate communication between doctors and 
relatives and prevent futile treatment in case of poor out-
come perspectives. Bilateral absence of somatosensory 
evoked potentials (SSEPs) is a widespread, reliable pre-
dictor of poor outcome but has a relatively low sensitivity 
[2–4]. Electroencephalography (EEG) can add to reliable 
prediction of good or poor neurological outcome [5–11]. 
Generalized suppression or synchronous patterns with at 
least 50% suppression between 6 h and 5 days after car-
diac arrest have been invariably associated with poor out-
come [12]. A continuous background pattern at 6 or 12 h 
was an independent predictor of good outcome [13–15].

Visual analysis of the EEG is the current gold standard 
and is included in guidelines and clinical practices [16, 
17]. Visual EEG analysis yields reliable outcome predic-
tion in approximately half of all patients [6, 10, 12, 18]. 
An important drawback of visual EEG analysis is the ina-
bility to capture the integral richness of the EEG signal. 
Furthermore, visual analysis can only be performed by 
experienced electroencephalographers, is time consum-
ing, and is subject to intraobserver and interobserver var-
iability [19, 20]. Automated EEG analysis may overcome 
these limitations and can be performed at the bedside in 
real time in the ICU [20–24].

In previous work, we have introduced the cerebral 
recovery index (CRI), representing a probability of good 
outcome after cardiac arrest on the basis of the EEG that 
can be extracted at the bedside [20, 21]. The original 
CRI allowed reliable prediction of neurological outcome 
using five quantitative EEG features, including continu-
ity, amplitude, and frequency content [21]. We signifi-
cantly improved the CRI by adding more quantitative 
features and using a random forest model [20]. In more 
recent work, we used a logistic regression model in a new 
prediction algorithm on the basis of only two prespeci-
fied EEG features reflecting continuity and amplitude 
ratio [22]. In our latest work in this field, we used deep 
learning of a convolutional neural network (CNN), avoid-
ing the need for explicit feature definition and using the 
ability to learn from the data. With all approaches, we 
achieved a similar or even better prognostic performance 
than with visual analysis [24].

The direct comparison of performance of these three 
prediction models on the same datasets has not been 

performed, and model robustness to artifacts has not 
been evaluated. In this study, we perform a head-to-head 
comparison between logistic regression, random forest, 
and deep learning models for EEG-based prediction of 
neurological outcome of patients with postanoxic coma. 
We train and evaluate the models on the same dataset 
and perform a comparative analysis of prognostic perfor-
mance and robustness to artifacts in an external valida-
tion set.

Methods
Study Design and Participants
This is a retrospective analysis of data acquired in mul-
tiple prospective cohort studies. All studies included 
consecutive adult comatose (Glasgow Coma Scale ≤ 8) 
patients after cardiac arrest admitted to the ICUs of five 
teaching hospitals in the Netherlands (Medisch Spec-
trum Twente, Rijnstate Hospital, St. Antonius Hospital, 
University Medical Center Groningen, and VieCuri Med-
ical Center). Parts of the data have been used in previ-
ous publications [12, 18, 20–24]. The Medical Ethical 
Committee Twente approved the protocol and waived 
the need for informed consent officially in 2019 (K19-11) 
because the EEG data were anonymized and EEG moni-
toring and clinical follow-up are part of current care in 
the participating centers.

Standard of Care and Treatment Withdrawal
Patients were treated according to standard protocols, 
including targeted temperature management at 33  °C 
or 36  °C. Propofol, midazolam, and/or sevoflurane were 
used for sedation, and morphine, fentanyl, or remifenta-
nil was used for analgesia. The decision of the withdrawal 
of life supporting treatment was considered only during 
normothermia, off sedation, and later than 72 h after car-
diac arrest and were based on international guidelines 
(bilateral absence of SSEPs, absent or extensor motor 
responses, and absence of brainstem reflexes). Deci-
sions on treatment withdrawal were sporadically taken 
between 48 and 72 h in cases of absent brainstem reflexes 
or SSEP responses. The EEG recorded in the first 72  h 
after cardiac arrest was not taken into account in deci-
sion making on treatment withdrawal.

Outcome
The primary outcome measure of this study was neu-
rological functional recovery 6  months after cardiac 
arrest expressed as a score on the Cerebral Performance 
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Category (CPC) scale. Outcome was dichotomized as 
good (CPC 1–2, no or mild neurological impairment) or 
poor (CPC 3–5, severe neurological impairment, vegeta-
tive state, or death). Outcome was assessed at 6 months 
during a standardized telephone interview based on a 
Dutch translation of the EuroQol-6D questionnaire, 
except for one center in which CPC scores were assessed 
by using the Short Form 36 questionnaire.

Continuous EEG Recordings and Preprocessing
Continuous EEG recording was started as early as pos-
sible after ICU admission until the patient regained 
consciousness, died, or up to 3–5 days otherwise. EEGs 
were recorded with 21 silver/silver chloride cup elec-
trodes placed on the scalp according to the international 
10–20 system. A computer algorithm, as applied in pre-
vious quantitative EEG studies [21], was used to select 
5-min epochs with the least number of artifacts at every 
hour, 4–72 h after cardiac arrest. If all epochs at a time 
point after cardiac arrest contained too many artifacts, 
the respective time point was skipped. EEGs were trans-
formed to a longitudinal bipolar montage. Subsequently, 
an artifact rejection algorithm, introduced in previous 
work [22], rejected EEG channels in all selected epochs 
with muscle activity or high amplitudes, and flat chan-
nels. Channels were excluded if the threshold of at least 
one of the artifact types was crossed. All threshold values 
were based on previous work [22]. For the CNN, a fixed 
input size was required and channels containing artifacts 
were not removed to maintain a consistent input for the 
networks, representing real-life EEG analysis. If more 
than six EEG channels contained artifacts, the entire 
epoch was excluded from further analysis for all models. 
Following artifact rejection, a sixth order bandpass But-
terworth filter was applied (bandwidth 0.3–25  Hz). The 
5-min EEG epochs were split into 30 segments of 10  s 
and entered into the models.

Quantitative EEG Prediction Models
The logistic regression model used two predefined 
quantitative EEG continuity features computed for the 
entire 5-min epoch as input and generated a single 
probability for good outcome of the epoch [22]. The 
random forest model, based on 500 individual decision 
trees with five terminal nodes, took nine predefined, 
automatically calculated, quantitative EEG features as 
input and computed a probability of good outcome as 
an output for every 10-s segment [20]. Feature extrac-
tion was performed in MATLAB (MATLAB release 
R2019b, MathWorks Inc.). The CNN, based on a VGG 
model C network by the Oxford Visual Geometry 
Group [25], used 30 segments of 10 s as the input and 
computed a probability for good outcome for every 

segment [24]. For the random forest model and the 
CNN, the probability for good outcome was defined as 
the average probability over 30 10-s segments. An over-
view of the models with respective inputs and outputs 
is shown in Fig. 1.

Model Training and Validation
All models were trained and validated on data from 
Medisch Spectrum Twente and Rijnstate Hospital. We 
used fivefold cross-validation, in which 80% of the data 
were used for training and 20% of the data were used for 
internal validation. Models were trained for every hour 
from 4 to 72 h after cardiac arrest. Outcome of the mod-
els was the probability of good neurologic outcome, pro-
vided for every hour. Performance of the trained models 
was subsequently evaluated on the external independ-
ent datasets from the remaining centers. These external 
datasets have partially been used in previous work for 
validation, as well [24]. The training and evaluation of the 
models were performed in MATLAB, R (version 3.6.0, R 
Foundation for Statistical Computing, Vienna, Austria), 
and Python with Keras and Tensorflow by using a Nvidia 
graphics processing unit (GTX 980TI; Nvidia, Santa 
Clara, CA).

Prognostic Performance
Receiver operating characteristic (ROC) analysis was 
performed. The mean ROC curve of all folds in the inter-
nal and external validation set, with corresponding 95% 
confidence intervals, was computed using threshold 
averaging. Overall model performance was quantified 
with the area under the ROC curve (AUC). The thresh-
old values for prediction of good and poor outcome were 
chosen on the mean ROC curve of the training set for 
every hour. The threshold values corresponded with the 
highest sensitivity at > 90% and > 99% specificity for good 
and poor outcome prediction, respectively. In clinical 
practice, the prediction of poor outcome is only valuable 
when the specificity is almost perfect, as incorrectly pre-
dicting poor outcome could result in the withdrawal of 
life-sustaining treatment. For the prediction of good out-
come, a slightly lower specificity can be used to identify, 
with high probability, patients with a large likelihood of 
good recovery.

The sensitivity and false positive rate (FPR) at these 
thresholds with their corresponding 95% confidence 
intervals were calculated in the internal validation and 
external test sets. Between-model differences in sensitiv-
ity for the reliable prediction of good and poor outcome 
in the test sets were tested by using McNemar’s test. A p 
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value < 0.05 was assumed to reflect statistical significance. 
All tests were performed in MATLAB.

Robustness to Artifacts
Robustness to artifacts was assessed by using data from 
Medisch Spectrum Twente and Rijnstate Hospital. The 
robustness of the models was analyzed by compar-
ing the AUCs of the clean EEG epochs with the AUCs 
of epochs that were created with the artifact rejection 
algorithm turned off, epochs containing artificially 
added white noise, or epochs with random flat chan-
nels. Gaussian white noise was added to clean epochs 
to create epochs with a signal-to-noise ratio rang-
ing from 7.5 to 9.5. Up to three EEG channels of clean 
epochs were randomly replaced with zeroes to create 
flat channels. All analyses and tests were performed in 
MATLAB.

Results
Patients
Out of the 929 patients included in this study, 58 
patients were excluded from analyses because of loss to 
follow-up (n = 50) or by the artifact rejection algorithm 
(n = 8). Of the remaining 871 patients, 393 (45%) had 
good neurological outcome. Patient characteristics are 

presented in Table 1. Of the 32,391 5-min EEG epochs 
available for all patients within 4–72  h after cardiac 
arrest, 5430 (17%) were rejected because of artifacts.

Model Training
The training dataset consisted out of 663 patients from 
the Medisch Spectrum Twente and the Rijnstate Hospi-
tal. EEG epochs of 290 and 469 patients were available 
at 12 and 24  h after cardiac arrest, respectively. Typical 
examples of EEG epochs and model outputs (predicted 
probabilities for good outcome) are shown in Fig. 2.

Internal Validation
The ROC curves for the internal (cross-)validation of the 
models at 12 and 24 h after cardiac arrest are shown in 
Fig.  3. Overall model performance was the best for the 
CNN at 12 and 24 h after cardiac arrest (AUC of 0.89 at 
12  h and AUC of 0.90 at 24  h). Sensitivities for reliable 
prediction of good and poor outcome with the respective 
FPRs are displayed in Table 2. At both 12 and 24 h after 
cardiac arrest, the CNN had higher sensitivity for reliable 
prediction of good outcome (67% at 13% FPR at 12 h, and 
71% at 14% FPR at 24 h) than that of the logistic regres-
sion (sensitivity 51% at 9% FPR at 12  h, p = 0.06, and 
sensitivity 56% at 10% FPR at 24 h, p < 0.05) and random 

Fig. 1 An overview of the automatic electroencephalogram (EEG) prediction models used in this study. The inputs of the respective models are 
shown on the left side and the outputs are shown on the right. The logistic regression model used two quantitative features as input and output‑
ted the probability of good outcome by using a regression model with constants optimized during training. The random forest model used nine 
quantitative features for 30 10‑s EEG segments as inputs and operated by using an ensemble of random independent decision trees to generate 
a probability of good outcome for all 30 segments. The convolutional neural network used raw 10‑s segments of EEG as the input and performed 
feature extraction and classification by using convolutional filters. The output of the neural network was the probability of good outcome for all 30 
segments
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forest model (sensitivity 51% at 12% FPR at 12 h, p < 0.05, 
and sensitivity 48% at 14% FPR at 24 h, p < 0.05).

Prediction of poor outcome at 12  h was best for the 
logistic regression model (sensitivity 51% at 1% FPR) 
and the CNN (sensitivity 49% at 1% FPR). Both models 
had significantly higher sensitivity than that of the ran-
dom forest model (sensitivity 28% at 4% FPR, p < 0.05). 
For the prediction of poor outcome at 24  h, the CNN 
had significantly higher sensitivity (55% at 2% FPR) than 
that of the logistic regression (sensitivity 40% at 1% FPR, 
p < 0.05) and random forest model (sensitivity 15% at 3% 
FPR, p < 0.05). The CNN also showed the best overall per-
formance in terms of AUC over the entire 4–72-h time 
period, as shown in Fig. 4.

External Validation
The external dataset consisted of 208 patients from St. 
Antonius Hospital, University Medical Center Gronin-
gen, and VieCuri Medical Center. EEG epochs of 62 and 
124 patients, respectively, were available at 12 h and 24 h 
after cardiac arrest.

The AUCs of the logistic regression model and random 
forest model were the same (0.95) and higher than the 
CNN (0.90) at 12 h after cardiac arrest (Fig. 3). At 24 h, 
the CNN showed the best performance (AUC 0.88). For 

reliable prediction of good outcome at 12  h after car-
diac arrest, the logistic regression model (sensitivity 83% 
at 3% FPR) and CNN (sensitivity 78% at 12% FPR) per-
formed significantly better than the random forest model 
(sensitivity 1% at 0% FPR, p < 0.05) (Table 2). At 24 h, the 
CNN (sensitivity 81% at 22% FPR) performed better than 
the logistic regression model (sensitivity 66% at 17% FPR, 
p = 0.11) and significantly better than the random forest 
model (sensitivity: 0% at 0% FPR, p < 0.05).

For the prediction of poor outcome at 12 h, the logistic 
regression model showed a significantly higher sensitiv-
ity (75% at 3% FPR) in comparison with the CNN (sensi-
tivity 57% at 3% FPR, p < 0.05) and random forest model 
(sensitivity 56% at 3% FPR, p < 0.05). For the prediction 
of poor outcome at 24  h, the CNN obtained a signifi-
cantly higher sensitivity (54% at 0% FPR) in comparison 
with the logistic regression (sensitivity 33% at 0% FPR, 
p < 0.05) and random forest model (sensitivity 13% at 0% 
FPR, p < 0.05). The CNN also showed the best overall per-
formance in terms of AUC for up to 2 days after cardiac 
arrest, as shown in Fig. 4.

Robustness to Artifacts
The CNN showed the best results in terms of robustness 
to artifacts. The AUC of the CNN decreased the least 

Table 1 Patient characteristics and medication use in patients with good and poor outcomes

SD, standard deviation

Characteristics Good Outcome (n = 393) Poor 
Outcome 
(n = 478)

Female sex, n (%) 80 (20) 129 (27)

Age, mean ± SD (year) 60 ± 12 65 ± 14

Out‑of‑hospital cardiac arrest, n (%) 367 (93) 430 (90)

Shockable rhythm, n (%) 359 (91) 267 (56)

Primary cardiac cause, n (%) 353 (90) 326 (68)

Targeted temperature management, n (%) 370 (94) 426 (89)

Treated with propofol, n (%) 334 (85) 385 (81)

Max propofol rate, mean ± SD (mg/kg/h) 3.2 ± 1.2 2.8 ± 1.1

Treated with midazolam, n (%) 108 (27) 121 (25)

Max midazolam rate, mean ± SD (µg/kg/h) 116 ± 70 126 ± 91

Treated with fentanyl, n (%) 154 (39) 204 (43)

Max fentanyl rate, mean ± SD (µg/kg/h) 1.6 ± 0.8 1.5 ± 0.8

Treated with remifentanil, n (%) 21 (5) 33 (7)

Max remifentanil rate, mean ± SD (µg/kg/h) 7.2 ± 4.4 4.4 ± 3.1

Treated with morphine, n (%) 185 (47) 175 (37)

Max morphine rate, mean ± SD (µg/kg/h) 26 ± 11 29 ± 17

Treated with sevoflurane, n (%) 21 (5) 30 (6)

End‑tidal volume %, mean ± SD 1.4 ± 0.3 1.3 ± 0.3

Somatosensory evoked potential performed, n (%) 42 (11) 268 (56)

N20 bilaterally absent, n (%) 0 (0) 121 (25)
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compared with the other two models at 12 and 24 h after 
cardiac arrest when artifact rejection was not enabled, 
in EEGs with randomly flattened channels, and in EEGs 
with additional Gaussian white noise. The ROC curves 
and AUCs of all models during the artifact robustness 
testing are shown in Fig. 5.

Discussion
We compared the performance of three EEG-based, 
computer-assisted prediction models for good and poor 
neurological outcome of comatose patients after car-
diac arrest. A deep learning model based on a trained 
CNN performed better overall than logistic regression 

Fig. 2 Examples of 10‑s electroencephalogram (EEG) segments of three different patients at 12 and 24 h after cardiac arrest. The probability of 
good outcome predicted by the logistic regression model, random forest model, and convolutional neural network are shown below each panel. 
The colors denote the prediction of good (green), uncertain (orange), or poor (red) outcome of all models. Top: EEG segments of a patient with syn‑
chronous patterns at suppressed background, with very low probabilities of good outcome. This patient, indeed, had a poor neurologic outcome 
(Cerebral Performance Category [CPC] = 5). Middle: EEG segments of a patient with a discontinuous background pattern. At 12 h after cardiac arrest, 
all three models predicted an uncertain outcome. At 24 h after cardiac arrest, the logistic regression and random forest model still predicted an 
uncertain outcome, wheras the convolutional neural network correctly predicted a good outcome. This patient had a good neurologic outcome 
(CPC = 2). Bottom: EEG segments of a patient with early return to a continuous background pattern, with high probabilities of good outcome. This 
patient had a good neurologic outcome (CPC = 1)
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and random forest models in AUC and in sensitivity for 
prediction of good or poor outcome. Only in the first 
12  h after cardiac arrest were the performance of the 
logistic regression and deep learning models compara-
ble with each other for prediction of poor outcome. At 
an FPR < 1%, the CNN could predict poor outcome with 

a sensitivity of 44–64% up to 2 days after cardiac arrest. 
These predictive values for poor outcome are higher 
than reported values for visual EEG examination (sen-
sitivity 47%) [6, 12, 18] or SSEP (sensitivity 28%) [4]. An 
important strength of a CNN is that it may also use EEG 
features that cannot be observed by a human reviewer, 

Fig. 3 Average receiver operating characteristic (ROC) curves of the logistic regression model (yellow), random forest model (red), and convolu‑
tional neural network (blue). For the internal validation, ROC curves with corresponding 95% confidence interval (CI) are shown for all models at 
12 (a) and 24 (c) hours after cardiac arrest. For the external test, ROC curves with corresponding 95% CIs are shown for all models at 12 (b) and 24 
(d) hours after cardiac arrest. The solid red and green circles indicate the chosen thresholds in the training set for the prediction of poor and good 
outcomes, respectively. AUC = area under the curve
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Table 2 Predictive values of the prediction algorithms, including 95% CIs, for the prediction of good and poor outcome 
at 12 and 24 h after cardiac arrest for the internal and external validation tests

CI, Confidence interval, FPR, false positive rate

Parameter Internal validation External validation

Logistic regression Random forest Convolutional 
neural net-
work

Logistic regression Random forest Convolutional 
neural net-
work

Prediction of good outcome

Predictive threshold for > 90% 
specificity at 12 h

0.79 0.91 0.62 0.79 0.91 0.62

Sensitivity at 12 h in % (CI) 51 (32 to 70) 51 (10 to 92) 67 (34 to 100) 83 (83 to 83) 1 (0 to 4) 78 (52 to 100)

FPR at 12 h in % (CI) 9 (0 to 19) 12 (0 to 29) 13 (0 to 29) 3 (3 to 3) 0 (0 to 0) 12 (0 to 24)

Predictive threshold for > 90% 
specificity at 24 h

0.71 0.94 0.62 0.71 0.94 0.62

Sensitivity at 24 h in % (CI) 56 (39 to 73) 48 (20 to 75) 71 (59 to 83) 66 (55 to 76) 0 (0 to 0) 81 (72 to 90)

FPR at 24 h in % (CI) 10 (0 to 21) 14 (8 to 20) 14 (3 to 25) 17 (12 to 22) 0 (0 to 0) 22 (14 to 30)

Prediction of poor outcome

Predictive threshold for > 99% 
specificity at 12 h

0.02 0.06 0.16 0.02 0.06 0.16

Sensitivity at 12 h in % (CI) 51 (30 to 72) 28 (0 to 63) 49 (18 to 81) 75 (75 to 75) 56 (31 to 81) 57 (43 to 71)

FPR at 12 h in % (CI) 1 (0 to 5) 4 (0 to 16) 1 (0 to 4) 3 (3 to 3) 3 (3 to 3) 3 (3 to 3)

Predictive threshold for > 99% 
specificity at 24 h

0.10 0.03 0.17 0.10 0.03 0.17

Sensitivity at 24 h in % (CI) 40 (24 to 55) 15 (5 to 24) 55 (34 to 76) 33 (33 to 33) 13 (0 to 50) 54 (44 to 64)

FPR at 24 h in % (CI) 1 (0 to 4) 3 (0 to 9) 2 (0 to 9) 0 (0 to 0) 0 (0 to 2) 0 (0 to 2)

Fig. 4 Area under the curve for the outcome prediction over a 4–72 h time period after cardiac arrest on the internal validation set (a) and the 
external test set (b)
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Fig. 5 Average receiver operating characteristic (ROC) curves for the logistic regression model at 12 h (a) and 24 h (b) after cardiac arrest, the ran‑
dom forest model at 12 h (c) and 24 h (d) after cardiac arrest, and convolutional neural network at 12 h (e) and 24 h (f) after cardiac arrest. For every 
model, the ROC curves are shown for a baseline electroencephalogram (EEG) (solid line), EEGs without artifact rejection (dashed line), EEGs with flat 
channels (dotted line), and EEGs with additional Gaussian white noise (dash‑dotted line). The convolutional neural network showed the best robust‑
ness to artifacts. AUC = area under the curve
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probably resulting in an optimal utilization of the integral 
richness of the EEG signal [25–27].

The performance of the CNN and logistic regres-
sion model are in line with our previous work [22, 24]. 
The logistic regression model performed particularly 
well during the first hours after cardiac arrest. This is 
because the regression model features were solely based 
on established visual EEG observations in patients with 
a poor outcome [22]. A prediction model only based on 
EEG continuity features will have strong performance 
early after cardiac arrest but will lose performance over 
time, when EEG continuity becomes less discriminative. 
The random forest model performed worse in this study 
than in our previous work [20, 21]. The models we used 
in 2017 were trained on a smaller dataset and were prob-
ably overestimated [20, 21].

Of the three models analyzed, the CNN was the most 
robust to artifacts. The removal of the artifact rejection 
algorithm, the addition of Gaussian white noise, or the 
randomized flattening of EEG channels had only small 
effects on its predictive performance. In CNNs, convolu-
tions are applied over multiple channels and samples of 
the EEG signal, thereby incorporating both spatial and 
temporal information in feature extraction [24, 27]. This 
allows the CNN to overlook representations of the input 
that are nondiscriminative, such as artifacts, and instead 
“remain focused” on truly discriminative features in the 
input data [26]. In the logistic regression model and ran-
dom forest model, the feature calculations are averaged 
over all EEG channels. The presence of an artifact in one 
or multiple channels will skew the average computed 
value of these features, which negatively affects predic-
tion performance of these models.

We did not study what caused the differences in perfor-
mance of the three models. In general, this is not trivial 
(and may differ per EEG pattern), as the logistic regres-
sion and random forest models are based on explicit fea-
tures, whereas the deep learning model is not. Explainable 
deep learning may further provide information about the 
features used in the CNN [29]. However, such analysis 
was beyond the scope of our current analysis.

The use of sedative medication and mild hypothermia 
during targeted temperature management could have 
influenced our results [17]. However, we observed the 
opposite effect in previous work, in which higher doses 
of sedative medication were associated with better out-
comes [22, 30]. We assume that patients with less severe 
brain injury are more likely to have a continuous EEG and 
have more arousals, often requiring more sedative medi-
cation. Recent data from a large observational study on 
hypothermia versus normothermia after out-of-hospital 
cardiac arrest also showed no difference in mortality or 
poor neurological outcome between the two groups [31].

A possible limitation of our analysis is that we used 
only one  5-min EEG epoch per hour. Predictive perfor-
mance could be improved by using complete continuous 
recordings rather than 5-min epochs for every hour. The 
temporal evolution of the EEG during the ICU admis-
sion can provide additional information [32]. Other deep 
learning networks are optimized toward continuous tem-
poral data [33, 34] and may further increase predictive 
values.

The prediction of neurological outcome can possibly 
be improved by combining patient data. Multimodal pre-
diction models [35, 36], combining neurological exami-
nation, SSEP, and cerebral magnetic resonance imaging 
with the EEG may be tested in future studies.

Conclusions
In this comparative study, a deep learning model based 
on a CNN was the best computer-based model for EEG-
based outcome prediction of neurological outcome after 
cardiac arrest in predictive performance and robust-
ness to artifacts. Its performance was better than logis-
tic regression and random forest models and better than 
that reported for human visual EEG analysis. Prospective 
studies on effects of the implementation of computer-
assisted EEG analysis on ICUs are needed.
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