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Abstract: Infections caused by invasive molds, including Aspergillus spp., can be difficult to diagnose
and remain associated with high morbidity and mortality. Thus, early diagnosis and targeted
systemic antifungal treatment remains the most important predictive factor for a successful outcome
in immunocompromised individuals with invasive mold infections. Diagnosis remains difficult due to
low sensitivities of diagnostic tests including culture and other mycological tests for mold pathogens,
particularly in patients on mold-active antifungal prophylaxis. As a result, antifungal treatment is
rarely targeted and reliable markers for treatment monitoring and outcome prediction are missing.
Thus, there is a need for improved markers to diagnose invasive mold infections, monitor response to
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treatment, and assist in determining when antifungal therapy should be escalated, switched, or can
be stopped. This review focuses on the role of immunologic markers and specifically cytokines in
diagnosis and treatment monitoring of invasive mold infections.

Keywords: Aspergillus; invasive aspergillosis; invasive mold infections; immune response;
Mucormycosis; prognosis; mold-reactive T-cells; interleukin 6; interleukin 8; interleukin 10

1. Introduction

Invasive mold infections (IMI) continue to be associated with significant morbidity and high
mortality rates globally, particularly in immunocompromised individuals [1–4]. Early diagnosis and
appropriate treatment remain the most important predictors of survival [5], although early diagnosis
remains difficult to establish, particularly at the initial stages of infection [6,7], and treatment is
becoming increasingly complicated due to antifungal resistance [8,9].

Mycological diagnosis of IMI is challenging, with many molds not growing in blood cultures and
cultures of bronchoalveolar lavage fluid (BALF) having a low sensitivity [10–12]. Consequently, fungal
biomarkers such as galactomannan (GM), (1,3)-β-d-glucan (BDG), and extracellular glycoprotein, as
well as molecular diagnostic tests (polymerase chain reaction (PCR)) applied to blood or bronchoalveolar
lavage fluid (BALF), have emerged [7,11,13–16]. However, performance of these biomarkers and
diagnostic tests has been shown to be less than optimal for invasive aspergillosis (IA) in patients
receiving mold-active prophylaxis or treatment, which has been shown to reduce sensitivity of
diagnostic tests [13,17–22]. In addition, sensitivity for molecular blood tests varies based on the
degree of immunosuppression and neutrophil count, which triggers angioinvasive versus airway
invasive growth in IA [23,24]. Specific biomarkers are also lacking for most other invasive mold
infections, including mucormycosis, lomentosporiosis, and scedosporiosis [1]. In addition, cytokines
are adjunctive tests to be used along with other markers to establish the etiology, as some of them also
increase in non-fungal infections.

The performance of currently available biomarkers for the early diagnosis of IMI may be enhanced
by combining multiple biomarkers and immunologic signals to maximize sensitivity and specificity [9].
Various molds have been shown to induce T-helper cell (Th)1 and Th17 subsets, resulting in elevated
levels of several cytokines [25–27]. As cytokines are centrally involved in protective immunity against
Aspergillus spp. and other molds [28,29], they have been a target for potential immunologic markers
for the diagnosis of IMI [9].

Given that immunologic markers in blood have shown promise in the diagnosis of IMI, they
may also serve as candidates for early assessment of treatment efficacy and antifungal treatment
stratification. Previous studies have shown that serum GM kinetics may offer the clinician a substantial
support in decision-making concerning early change, intensification, or even discontinuation of
antifungal therapy, and may therefore facilitate therapeutic management of patients with IA [30,31].
In particular, persistently positive GM values may warrant further clinical/radiological evaluation to
evaluate for breakthrough IMI and, if increasing, prompt early escalation of anti-mold therapy [31].
Importantly, serum GM has limited sensitivity, particularly in individuals without neutropenia or
those on antifungal prophylaxis, and is only specific for Aspergillus spp. [30]. It is produced by very
few other molds such as Fusarium spp. [32], reducing the applicability of GM kinetics for treatment
monitoring in patients with non-Aspergillus IMI. Immunologic markers may therefore be particularly
valuable for patients with invasive aspergillosis and negative serum GM levels and for patients with
other IMIs where reliable blood biomarkers are lacking, although cytokine levels may vary among
different patient groups (e.g., SOT patients or patients with chronic respiratory disease on chronic
steroids) and further understanding of the performance of these immunologic markers across different
patient groups is needed.
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Here, we review the literature on immunologic marker for the diagnosis and treatment monitoring
of IMI.

2. Anti-Mold Immune Response: The Impact of the Host and the Pathogen and
Translational Implications

Studies have shown that cytokines are centrally involved in protective immunity against
Aspergillus spp. and other molds [28,29]. While dormant, Aspergillus spores do not induce
an inflammatory response. Once germination occurs in the host, the innate immune response is
triggered [33,34] and ciliated epithelium, alveolar macrophages, and dendritic cells serve as the first
line of defense against germlings [35], driving the production of cytokines and chemokines that direct
the innate and adaptive immune responses [36]. In the early stages of IA, conidia are neutralized
by local alveolar macrophages, and IL-8, a known neutrophil chemotactic factor, is produced by
macrophages and epithelial cells to attract neutrophils to the site of infection [25,29]. In vitro studies
have linked the increased release of IL-8 to the up-regulation of gene transcription by A. fumigatus [36].
These studies also found increased production of IL-6 by A549 pulmonary epithelial cells and primary
epithelial cells [37], and this is thought to play an important role in T-cell recruitment. Other studies
have shown that in vitro opsonization of A. fumigatus conidia with H-ficolin, L-ficolin [38], and M-ficolin
play essential roles in pathogen recognition and complement activation through the lectin pathway
and potentiate IL-8 secretion by A549 lung epithelial cells [39,40].

The immunologic response to invading conidia is not homogeneous, and the risk of IA is
thought to be related to genetic factors and levels of expression or functional activity of cytokines and
chemokines [41]. The risk of IA has been associated with deficiency in the (1,3)-β-d-glucan receptor
dectin-1 [42–44], Toll-like receptor 4 (TLR4) polymorphisms [45,46], increased damage-associated
molecular pattern (DAMP) signaling [47], decreased chemokine (C-X-C motif) ligand 10 (CXCL10)
expression [48], DECTIN1 Y238X polymorphism [43], and polymorphisms for the pentraxin-3 gene
(PTX3) [49–52].

Once exposed to Aspergillus conidia, the incubation period prior to invasion and clinical signs
and symptoms of infection is not well defined but is likely highly variable based on the burden of
inhaled conidia and underlying host characteristics, especially the degree of immunosuppression.
One analysis of individuals with acute myeloid leukemia (AML) estimated the median incubation
period of IA at 14.6 days (12.8–16.5 days), although this estimate was based on the time interval
between the onset of severe neutropenia and diagnosis of IA [53]. Another study evaluated Aspergillus
airborne spore counts and compared these levels to the diagnosis of IA in hospitalized patients and
found that IA diagnosis was associated with high airborne spore counts in the preceding period
from 28 to 42 days [54]. In addition, in this study, hospital admission for IA was associated with the
presence of circulating respiratory viruses, particularly respiratory syncytial virus, adenovirus, and the
H1N1 strain of Influenza A. The suspected incubation period in patients with severe influenza and
IA in one study was significantly shorter given that the median time to IA diagnosis was 3 days [55].
Further attempts at evaluating incubation period of IA and other IMIs would be instructive.

Although many similarities exist between infections from Aspergillus spp. and other pathogenic
filamentous fungi in terms of biology, risk factors, and clinical presentation, the host immune response
varies. In vitro, Rhizopus oryzae has been shown to induce significantly higher levels of IL-6 and
tumor necrosis factor alpha (TNFα) release from healthy human mononuclear cells, when compared
to Aspergillus spp. [56]. In a model of invasive Mucorales infection, peripheral blood mononuclear
cells (PBMCs), monocytes, and monocyte-derived dendritic cells (mDCs) from healthy donors were
stimulated with resting and germinated stages of Mucorales and Ascomycota. Both inactivated germ
tubes and resting spores of Mucorales species significantly stimulated mRNA synthesis and secretion of
proinflammatory cytokines, including IL-6 and TNFα, and induced the upregulation of co-stimulatory
molecules on mDCs and a T-helper cell response [57]. Another model of stimulated mononuclear cells
examined TNFα and IL-6 secretion to cells exposed to different pathogenic fungi. Lomentospora prolificans
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induced significantly higher levels of TNFα and IL-6 secretion, compared to A. fumigatus-exposed cells,
while R. oryzae caused release of higher levels of TNFα, compared to cells exposed to the Aspergillus
spp., and IL-6 levels were very high as well, but when compared to the other fungi these levels were
not statistically different [58].

Thus, fungal pathogens trigger a specific immune response that may be measurable before clinical
signs and symptoms of disease develop, and may aid diagnosis and treatment monitoring in a field
where available gold-standard diagnostics are imperfect.

3. Immunologic Markers for Diagnosis of Invasive Mold Infections

As early diagnosis of IA and IMI is associated with improved outcomes [5], more rapid diagnosis
is crucial and identifying immunologic markers for early diagnosis may lead to decreased morbidity
and mortality in IMI with improved outcomes.

Table 1 gives an overview of immunologic markers for diagnosis of IMI. In a prospective, nested,
case-control study of adults with underlying hematological malignancy and suspected pulmonary
infection, a bundle of cytokines was tested from BALF and serum to investigate whether any cytokines
were significantly associated with IPA. Compared to matched controls, levels of IL-8 and IL-6 were
significantly higher in serum and BALF among individuals with IPA [28]. In another nested, case-control
study from Belgium involving 48 patients with probable or proven IA and 48 matched controls, of
which each 30 had underlying hematological malignancies, a panel of biomarkers from serum and
BALF was obtained, and IL-8, followed by IL-6 and IL-23 were best at discriminating IPA from no IPA
in BALF, with IL-8 alveolar levels ≥ 904 pg/mL predicting IPA with high sensitivity (90%), specificity
(73%), and negative predictive value (88%) [40]. In that study, serum levels of IL-6, IL-8, IL-17A,
and IL-23 were also significantly increased among patients with IPA [40].

In addition, a recent single-center cohort study from Austria found that in a high-risk cohort of
adult patients with underlying hematological malignancy and suspected IPA, of which the majority
were receiving anti-mold prophylaxis at the time of BALF and serum sampling, IL-8 was the most
reliable blood biomarker in those with IA and IMI, compared to controls, when a high cut-off was used,
and exhibited close-to-perfect performance when combined with either the BALF Lateral Flow Device
Test (LFD) or BALF Aspergillus PCR [9]. The cohort study design and the collection of same-day serum
samples in this study allowed the investigators to try to determine the “real-life” diagnostic potential of
these cytokines for diagnosing IPA and IMI, without having to take into account numerous covariates,
and to evaluate combinations of biomarkers such as IL-8 with other diagnostic tests, such as BALF PCR
and BALF LFD. Importantly, these analyses confirmed the potential clinical value of IL-8 in diagnosing
IA in patients with hematologic malignancy, and to a lesser extent non-Aspergillus IMI, specifically
when combined with the BALF LFD or BALF PCR or other more specific biomarkers of IA. Limitations
of the studies include the small number of proven cases of IA and the fact that they included very
few cases of other IMI. For example, in the Austrian study, of 106 cases of suspected pulmonary IA,
there were only 11 probable and 32 possible cases of IA [9]. The low numbers of proven/probable IMI
were hypothesized to reflect the use of highly effective anti-mold prophylaxis strategies in place at the
center performing the study. Overall, IMIs are rare in patients receiving anti-mold prophylaxis (2%–3%
prevalence) [59–61] and therefore multicenter studies are needed to confirm these findings in larger
cohorts of patients with IA and other IMI.

4. Immunologic Markers for Treatment Monitoring in Invasive Mold Infections

Immunologic markers could be helpful to assist treatment stratification in predicting treatment
outcomes. They may help predicting the likelihood of a favorable treatment response versus risk
of disease progression or relapse, or even breakthrough infection [62]. They may also assist in the
transition from intravenous to oral therapy and offer guidance in treatment cessation.

Table 1 gives an overview of immunologic markers for treatment monitoring of IMI. In a model
of neutropenic rats infected with IA and treated with amphotericin B, there was an association with
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decreased levels of GM in the lungs and serum and decreased levels of IL-6, macrophage Inflammatory
protein 2 (MIP-2), and monocyte chemoattractant protein 1 (MCP-1) in the lungs, likely reflecting
successful treatment and decreased fungal loads and inflammation [63]. In humans with IA and a
variety of immunocompromising conditions, multiple cytokines, particularly IL-6 and IL-8, have shown
promise for treatment monitoring and outcome prediction. In a multi-center study of 119 patients with
IA, IL-6, IL-8, and IL-10 levels were generally elevated at baseline and trended down over time with
treatment [64]. Persistently elevated levels of circulating IL-6 and CRP at week 1 were associated with
treatment failure and death. Also, high levels of IL-8 at baseline were associated with poor clinical
response and death at week 12 (sensitivity of 85% and specificity of 55% using a cutoff >135 pg/mL).
In addition, persistently elevated levels of IL-6 and IL-8 during serial weekly measurements were
associated with poor outcome. Conversely, sharp declines in IL-10 within the first 2 weeks of therapy
were associated with lack of response to treatment [64].

Serum and BALF were collected and tested for IL-6, IL-8, and IL-10 as well as GM and BDG (in
serum) levels in another single-center study of 106 prospectively enrolled adult patients with underlying
hematological malignancy and suspected invasive pulmonary aspergillosis [65]. Elevated IL-6 and
IL-8 levels from serum and BALF at the time of bronchoscopy were associated with increased 30-day
all-cause mortality, and increasing IL-6 and IL-8 levels from serum within the first four days following
bronchoscopy were associated with higher 90-day mortality rates [65]. In another study, stimulated
peripheral blood cells from patients with IMI from Aspergillus spp. and Mucorales were associated
with elevated genus-reactive CD4/CD69/CD154 positive T-cells, including elevated levels in 9 of
10 patients with proven IMI and levels were normal in 39/49 without proven IMI (sensitivity of 90% and
specificity of 80%) [66]. Of note, the usefulness of this test was limited by low T-cell counts in patients
with bone marrow suppression [66]. CD154 levels decreased in four patients with invasive Mucorales
who underwent surgical resection, again suggesting that this marker may be useful in determining
treatment response [67].

Further research is needed to evaluate the impact of different antifungals and different mechanisms
of antifungal activity on the production of cytokines. In a recent in vitro model of invasive aspergillosis,
cytokine levels increased by addition of hyphal suspension over 4 h about 54-fold for IL-6, and 1000-fold
for IL-8. While conventional amphotericin B further increased IL-6 and, to a lesser extent, IL-8 levels,
this was not the case for its liposomal formulation. Similarly, conventional amphotericin B substantially
increased cytokines in blood without the presences of fungus, while fluconazole reduced cytokine
increase for all three cytokines compared to stimulation with hyphae without antifungal agent [68].
Thus, antifungal agents may impact cytokine levels and this impact needs to be further evaluated and
better understood prior to using cytokine levels as a criterion for monitoring treatment.

5. Conclusions

Immunologic markers, including cytokines and mold-reactive T cells, have shown promise
for adding diagnostic value for diagnosis of IMI and may be attractive as markers for treatment
monitoring and outcome prediction of IMIs, in particular those with negative serum GM levels.
Multi-center studies are needed, however, to validate these findings, determine reliable cutoff levels for
these assays, and assess whether immunologic markers can be readily and cost-effectively measured
with easily usable assays with low turnaround time so that they are useful in guiding treatment.
Future studies will also need to evaluate the potential of serial cytokine measurement as a predictor
for outcomes and tool for treatment monitoring in IA and non-Aspergillus IMI, and determine if
the change in serial cytokine levels is still predictable of IA and IMI outcome in individuals with
complicating viral or bacterial infections. Finally, more research is needed to determine if immunologic
markers can be incorporated into algorithms to identify patients who would benefit from stepdown in
therapy (e.g., transition from intravenous to oral antifungals), cessation of therapy, or conversely the
broadening of antifungal therapy.
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Table 1. Comparison of various reported biomarkers/cytokines in IMI diagnosis and treatment.

Sample Biomarker/
Cytokine Mechanism of Action/Source IMI Association? Prognostic of Mortality? Change with Treatment?

BALF

GM Component of fungal cell wall Elevated in IMI

Positive level at baseline and
persistently positive/elevated

level associated with increased
mortality [30]

Unknown (BALF often not
resampled)

IL-6 Produced by alveolar macrophages
and lung epithelial cells Elevated in IMI [28,40]

Higher levels at time of
sampling associated with
increased mortality [65]

Unknown

IL-8 Produced by alveolar macrophages
and lung epithelial cells

Elevated in IMI [28,40],
Sp/Sn >90%

Higher levels at time of
sampling associated with
increased mortality [65]

Unknown

IL-17A Secreted by Th17 cells [69], possibly
also neutrophils [70] Elevated in IMI [40] Unknown Unknown

TNFα

Thought to be from Th17 cells, but
other immune cells (e.g.,

macrophages, dendritic cells) may
also contribute [25]

Elevated in IMI, but poor
Sn/Sp [40] Unknown Unknown

IL-1β Secreted by activated
macrophages [71] Elevated in IMI [40] Unknown Unknown

IL-23 Likely also from Th17 cells [69] Elevated in IMI [40] Unknown Unknown
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Table 1. Cont.

Sample Biomarker/ Cytokine Mechanism of Action/Source IMI Association? Prognostic of Mortality? Change with Treatment?

Serum

GM Component of fungal cell wall Elevated in IMI Yes [65,72]
Decreases with successful treatment,

increase should prompt clinical
re-evaluation

BDG Component of fungal cell wall Elevated in IMI Yes [65,73]
Decreases with successful treatment,

increase should prompt clinical
re-evaluation

IL-6
Produced by alveolar

macrophages and lung
epithelial cells

Elevated in IMI [28,40]
Higher levels at time of

sampling associated with
increased mortality [65]

Persistently elevated levels during
serial weekly measurements associated

with poor outcome [64]. Increasing
levels after 4 days associated with

higher 90-day mortality [65]

IL-8
Produced by alveolar

macrophages and lung
epithelial cells

Elevated in IMI [28,40]
Higher levels at time of

sampling associated with
increased mortality [65]

Persistently elevated levels during
serial weekly measurements associated

with poor outcome [64]. Increasing
levels after 4 days associated with

higher 90-day mortality [65]

IL-10
Produced by T cells, B cells,

monocytes,
and macrophages [74]

Elevated in IMI [75] No [65]

Decreasing IL-10 within first 2 weeks of
therapy associated with lack of

response to IA treatment [64]. Not
predictive of mortality [65]

IL-17A Secreted by Th17 cells [69],
possibly also neutrophils [70] Elevated in IMI [40] Unknown Unknown

IL-23 Likely also from Th17 cells [69] Elevated in IMI [40] Unknown Unknown

CD4/CD69/CD154+
T cells Bone marrow Elevated in IMI [58] Unknown Unknown

Abbreviations: BALF, bronchoalveolar lavage fluid; BDG, (1,3)-β-D-glucan; GM, galactomannan; IL, interleukin; IMI, invasive mold infection; Sn, sensitivity; Sp, specificity; TNFα, tumor
necrosis factor alpha.
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