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Metabolic acidosis, a common complication in patients with chronic kidney

disease (CKD), results in a multitude of deleterious effects. Though the

restoration of kidney function following transplantation is generally

accompanied by a correction of metabolic acidosis, a subset of transplant

recipients remains afflicted by this ailment and its subsequent morbidities. The

vulnerability of kidney allografts to metabolic acidosis can be attributed to

reasons similar to pathogenesis of acidosis in non-transplant CKD, and to

transplant specific causes, including donor related, recipient related, immune

mediated factors, and immunosuppressive medications. Correction of

metabolic acidosis in kidney transplantation either with alkali therapy or

through dietary manipulations may have potential benefits and the results of

such clinical trials are eagerly awaited. This review summarizes the published

evidence on the pathogenesis and clinical consequences of chronic metabolic

acidosis in kidney transplant recipients.
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Introduction

Metabolic acidosis, defined as serum total CO2 level below 22mEq/L is a common

complication in advanced chronic kidney diseases (CKD), and there is a graded

association with CKD severity (Dobre et al., 2013). Kidney transplantation, the

preferred treatment modality for kidney replacement therapy is associated with

restoration of several essential kidney functions, however acid base abnormalities

are slow to correct. It is estimated that the prevalence of metabolic acidosis ranges

from 12% to 58% (Park et al., 2017; Djamali et al., 2019) in kidney transplant

recipients and it can occur at a relatively higher estimated glomerular filtration rate

(eGFR) when compared to general population with non-transplant CKD. This is

primarily related to the inability of the single functioning kidney to excrete the daily

acid load, added to the tubular toxicity of the immunosuppressive medications,

particularly calcineurin inhibitors. Recipient and donor characteristics have been

postulated to also play a role in the development of mild to moderate degrees of

chronic metabolic acidosis after kidney transplantation.

Persistent metabolic acidosis can cause several complications. These include, but are

not limited to the development of metabolic bone disease, sarcopenia, insulin resistance,
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anemia, kidney disease progression, and increased all-cause

mortality in individuals with non-transplant CKD (Dobre

et al., 2013). It is reasonable to assume that the same

consequences will be encountered in metabolic acidosis

occurring after kidney transplantation, though the evidence is

somewhat limited. The association with eGFR decline and

allograft loss has been described (Park et al., 2017), as well as

the association with cardiovascular morbidity and mortality,

although the evidence remains scarce (Djamali et al., 2019;

Bohling et al., 2021).

In this review, we describe the proposed mechanisms of the

development of metabolic acidosis in kidney transplant

recipients, and detail the factors pertinent to chronic kidney

disease in general, and those specific to kidney transplantation.

We also discuss the complications associated with chronic

metabolic acidosis and the available evidence in support of its

treatment in kidney transplant recipients.

Epidemiology

The actual prevalence of metabolic acidosis in kidney

transplant recipients remains unclear, primarily due to

multiple definitions being used and the timing relative to

kidney transplantation event. Evidence for impaired tubular

hydrogen ion transport, and diminished renal ammonia

production was mechanistically studied and reported for the

first time in 1967 in a transplant patient with multiple tubular

defects (Massry et al., 1967). The presence of renal tubular

acidosis alone has been described in multiple studies since

then, most of the data obtained in the early post kidney

transplantation period (Massry et al., 1967; Better et al., 1970;

Wilson and Siddiqui, 1973). More recently, in cross-sectional

studies, the incidence of renal tubular acidosis has been reported

up to 33–35% of kidney transplant recipients (Keven et al., 2007;

Malik et al., 2011).

In a cross sectional study of 823 individuals with a kidney

transplant, 58% of participants had a sodium bicarbonate

concentration less than 24 mmol/L (Yakupoglu et al., 2007)

In a large retrospective cohort of 2318 kidney transplant

recipients (Park et al., 2017), almost 14% of participants

with eGFR 30–60 ml/min/1.73 m (Park et al., 2017), had

metabolic acidosis at six months post-transplant, and this

remained relatively persistent at 60 months post-transplant

with 16% of participants having metabolic acidosis. Amongst

the individuals with eGFR 15–30 ml/min/1.73 m (Park et al.,

2017), the prevalence of metabolic acidosis was much higher,

estimated at 63% at 6 months, and 60% at 60 months post-

transplant. In a post hoc analysis of an open label randomized

study of 90 kidney transplant recipients, the prevalence of

metabolic acidosis was as high as 63% immediately after the

transplantation. This decreased to 28% at 12 months post-

transplant as the eGFR increased (Wiegand et al., 2019).

Pathophysiology

A healthy kidney maintains acid-base homeostasis primarily

by ammoniagenesis, regeneration of bicarbonate and excretion of

hydrogen ions (Kraut and Madias, 2016). As the kidney function

is lost and replaced by the solitary kidney allograft, the amount of

ammonia production per nephron increases as a compensatory

mechanism. This gives rise to hyperchloremic (non-anion gap)

metabolic acidosis. However, the excretion of urinary acid

continues to decrease. The increase ammonia production leads

to a vicious cycle involving intrarenal complement activation,

which results in tubulointerstitial injury. This initiates a cascade

of events reducing the kidney’s capacity to synthesize ammonia

and further decreasing urinary acid excretion (Clark et al., 1990;

Raphael et al., 2017; Raphael, 2018) (Figure 1). Accumulation of

phosphate, sulfate, and other non-volatile acids takes place

eventually leading to high anion gap metabolic acidosis, as the

allograft function is progressively lost.

Increased endogenous endothelin has been proposed to play

a role in the progression of kidney disease in animal models

(Wesson, 2001). Endothelin-1 (ET-1) is known to promote acid

excretion by enhancing Na+/H+ exchange in proximal and distal

tubules which reduces bicarbonate secretion and stimulates

aldosterone. Consequently, the increase in aldosterone leads to

an increase in H +ATPase activity, resulting in inflammation and

tubulointerstitial injury (Wesson, 2001; Bento et al., 2007;

Wesson et al., 2011; Wesson et al., 2015). In rat models who

underwent subtotal nephrectomy, increased levels of systemic

and renal endothelin-1 were observed (Wesson, 2001). Despite

normal serum bicarbonate, intra renal acid accumulation and

renal angiotensin II levels are increased which result in increased

ET-1 and aldosterone levels, leading to tubular toxicity. It is

important to note that angiotensin II receptor antagonism alone

was not as effective for preserving eGFR decline compared to

alkali supplementation, which resulted in decreasing intra renal

acid accumulation (Wesson, 2001; Wesson et al., 2011; Wesson

et al., 2015).

The mechanism of nephron hyperfiltration and

compensatory increase in ammoniagenesis leading to

complement activation and increased endothelin and

aldosterone is especially important in kidney transplant

recipients. Hyperfiltration hypothesis has been well described

in kidney transplant recipients (Terasaki et al., 1994). By virtue of

having a solitary functioning kidney and therefore, reduced

nephron mass, the mechanisms of metabolic acidosis post

kidney transplantation can be extrapolated from observations

derived from animal models with subtotal nephrectomies. In

addition to having a solitary kidney, factors pertinent to donor

and recipient characteristics also play a significant role in

nephron hyperfiltration (Keven et al., 2007; Kocyigit et al., 2010).

The concept of “nephron underdosing” was described by

Brenner in 1993 as a potential cause for long term allograft failure

(Brenner and Milford, 1993). It emphasized the importance of
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size mismatch between the donor and recipient. Hyperfiltration

hypothesis was later described by Terasaki, demonstrating that

reduced renal mass due to donor-recipient size mismatch results

in compensatory nephron hypertrophy and nephron burn out

resulting in chronic allograft failure (Terasaki et al., 1994). This is

probably true for both living and deceased donor recipients.

Reduced nephron mass can lead to proportionately reduced

excretion of urinary acid, therefore contributing to

development of acidosis.

Immunosuppressive medications, most notably, calcineurin

inhibitors play an important role in the development of

metabolic acidosis in transplant recipients. Unlike acidosis

seen with nephron hypertrophy, that can be either non-anion

gap or high anion gap acidosis, calcineurin inhibitors are

typically associated with renal tubular acidosis (RTA)

(Watanabe et al., 2005; Mohebbi et al., 2009). Calcineurin

inhibitors (CNIs) are known to have a dose and duration

dependent effect causing renal tubular toxicity. This tubular

toxicity resulting in RTA is hypothesized to be more

functional rather than structural. Hyperchloremic (non-anion

gap) metabolic acidosis associated with CNI administration

develops only in the setting of increased intrarenal post-

glomerular blood flow and has been observed to be

accompanied by the CNI arteriolopathy (Kaneko et al., 2022).

Several mechanism of CNI induced hyperchloremic metabolic

acidosis have been proposed in animal models, including

impaired secretion of both H+ and K+, and downregulation

of ammonia transporters in the collecting ducts (Kaneko et al.,

2022). In humans, activation of the sodium- chloride

cotransporter in the distal tubular cells leads to an impaired

negative potential in the collecting duct lumen, and manifests

clinically as hyperkalemic RTA and hypertension. Specific

differences exist between the two most frequently used CNIs.

Cyclosporin causes renal tubular acidosis by blocking the

peptidyl prolyl cis-trans isomerase activity through a

cyclophilin- dependent mechanism. Such inhibition may cause

distal renal tubular acidosis (Watanabe et al., 2005). Tacrolimus,

on the other hand, has been noted to affect major transport

proteins that are involved in acid base homeostasis in the

proximal and distal tubules, including endothelin 1 and H + -

ATPase transport protein (Mohebbi et al., 2009). This dose

dependent tubular toxicity may be reversed with reduction in

the medication dose (Mohebbi et al., 2009).

Rejection can cause tubulitis and ischemic tubular

dysfunction, affecting H + ATPase activity and anion

exchanger leading to RTA (Mookerjee et al., 1969; Batlle

FIGURE 1
Mechanisms of metabolic acidosis in kidney transplantation.
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et al., 1981). However, the data proving the association of

rejection with metabolic acidosis is somewhat conflicting

(Schwarz et al., 2006; Keven et al., 2007). There is reason to

speculate that a feedback loop generated from local acidic

environments can modulate immune responses, resulting in

increased phagocytic activity of macrophages, thus enhancing

inflammation (Riemann et al., 2016). Other medications used in

the post-transplant period, including the antibiotic

Trimethoprim—Sulfamethoxazole, can cause distal type

4 RTA (Pochineni and Rondon-Berrios, 2018).

Lastly, hyperkalemia, a common occurrence post kidney

transplantation (generally related to medications, delayed

graft function, potassium intake, etc) also contributes to

development of acidosis. Hyperkalemia decreases ammonia

generation and transport in proximal tubule and collecting

duct respectively, leading to impaired ammonia excretion and

subsequent metabolic acidosis (Harris et al., 2018). Of the

post-transplant immunosuppressants, CNIs are particularly

implicated in the development of hyperkalemia by

suppression of mineralocorticoid receptor transcriptional

activity, leading to signs of hypoaldosteronism (Deppe

et al., 2002).

Complications of metabolic acidosis
in kidney transplant recipients

Association with graft failure

Chronic metabolic acidosis that persists after kidney

transplantation may be detrimental to allograft survival. In a

large cohort of adult kidney transplant recipients followed for

about 62 months (14,271.3 person-years in total), metabolic

acidosis defined as the serum total CO2 level less than

22 mmol/L at three months post-transplant was associated

with increased risk of graft loss and death censored graft

failure (Park et al., 2017). Similar results were reported in

other studies (Wiegand et al., 2019); however, others have

failed to reproduce these findings (Schulte et al., 2019). This

points towards the need for rigorously designed trials, focused on

metabolic complications following kidney transplantation, as an

adjunct to immunological therapies, with the ultimate goal to

enhance graft and overall survival.

Anemia

Post transplantation anemia is common in kidney transplant

patients with prevalence being reported around 30–50% of the

patients (Yabu and Winkelmayer, 2011; Gafter-Gvili and Gafter,

2019). The pathogenesis appears to be multifactorial, including

iron deficiency, reduced graft function, immunosuppressive

medications, and erythropoietin resistance secondary to

inflammatory state (Yabu and Winkelmayer, 2011). The

correlation between metabolic acidosis and anemia has been

shown in both hemodialysis and transplant patients (Yorgin

et al., 2002). The exact mechanism remains unclear; however, it

has been hypothesized that a rightward shift in the

oxygen—hemoglobin dissociation curve resulting in

downregulation of erythropoietin receptors could be one of

the culprits (Ambuhl, 2007).

Bone disease

Metabolic bone disease after kidney transplantation is due to

a host of pathophysiological processes and can take the form of

either high or low bone turnover. Acidosis can reduce synthesis

of 1,25 (OH)2 vitamin D3 by proximal tubule, increasing calcium

excretion and serum PTH levels, thus promoting bone resorption

(Jaeger et al., 1987; Alpern and Sakhaee, 1997; Yakupoglu et al.,

2007; Zhang and Chouhan, 2012). In vitro acidic environment

has been shown to increase resorptive activity of osteoclasts

(Murrills et al., 1993). Additionally, pre-transplant bone

disease may be worsened by the development of post-

transplant acidosis and concomitant use of

immunosuppressive regimen, especially corticosteroids and

CNIs. As a consequence, close to 9% of bone mineral density

may be lost at 18 months post-transplant (Julian et al., 1991),

therefore increasing the risk of bone fractures in this patient

population (Chiu et al., 1998).

Frailty and sarcopenia

Individuals with advanced kidney disease often have reduced

muscle mass and exercise tolerance (Painter et al., 1986; Dobre

et al., 2015; Dubey et al., 2020). Physical capacity and exercise

tolerance increases only slightly after kidney transplantation, and

this remains an active area of research. Metabolic acidosis has

been shown to be one of the contributing factors to sarcopenia

after kidney transplantation. Acidosis induces muscle catabolism

and inhibits muscle protein synthesis (May et al., 1987; Bailey

et al., 2006). It has also been associated with higher serum cortisol

levels; the rate of protein catabolism is indirectly associated with

serum bicarbonate levels and directly to serum cortisol levels

(Garibotto et al., 1994). Correction of acidosis with serum

bicarbonate supplementation in chronic kidney disease has

shown to decrease proteolysis and improve muscle mass

(Reaich et al., 1993; Dubey et al., 2020), but these outcomes

have not been studied in kidney transplant recipients. In

addition, post kidney transplant patients have been known to

have hypophosphatemia. This is largely due to inappropriate

renal excretion of phosphorus related to multiple factors

including hyperparathyroidism, metabolic acidosis, and

tubular dysfunction (Guntupalli et al., 1982; Ghanekar et al.,
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2006). Increased phosphaturia can result in depletion of

intramuscular ATP stores, resulting in sarcopenia.

Mortality

Metabolic acidosis has been shown to be an independent risk

factor for all-cause mortality in CKD (Navaneethan et al., 2011;

Raphael et al., 2011; Raphael et al., 2016). These findings were

replicated in kidney transplant population. In a single center

observational study, comparing kidney transplant recipients with

serum bicarbonate 24-25.9 mEq/L, those with serum bicarbonate

levels less than 24 mEq/L at one year post transplantation had

increased risk of cardiovascular events and all-cause mortality

(Djamali et al., 2019). The direct role of metabolic acidosis on

increased mortality remains unclear, however worsening

cardiovascular disease, including altering the heart contractile

function and lowering the trigger for arrhythmias in the setting of

acidosis may explain this observed association.

Metabolic acidosis treatment in
kidney transplant recipients

There is a paucity of evidence attesting to the benefits of

metabolic acidosis correction in kidney transplant recipients. In

fact, in a large retrospective study of 4741 kidney transplant

recipients sodium bicarbonate therapy was associated with

higher risk of graft failure (Schulte et al., 2019). However

there were significant limitations of this study, including the

reliance of health insurance data to define the study groups, and

the lack of laboratory values to assess allograft function and acid

base status.

In a small randomized controlled trial aimed to investigate

the effect of sodium bicarbonate therapy on vascular endothelial

function in 20 kidney transplant recipients (Bohling et al., 2021),

the sodium bicarbonate therapy was considered safe and not

associated with increased blood pressures, weight gain, or change

in inflammatory markers. A larger trial, looking at similar

outcomes in kidney transplant recipients is underway

(NCT05005793). The results of Preserve—Transplant study, a

multi-center randomized controlled trial designed to investigate

the effect of sodium bicarbonate therapy in preserving kidney

allograft function and slowing progression of chronic kidney

disease in kidney transplant recipients over a period of two years

(Wiegand et al., 2018) are eagerly awaited (NCT03102996).

Data on dietary fruits and vegetable consumption as a

measure of metabolic acidosis correction in kidney transplant

recipients is even scarcer. In CKD, a diet rich in fruits and

vegetables favorably affects acid-base metabolism, neutralizes

diet-induced acid, and has been shown to be cardio-protective

(Goraya et al., 2021). In a prospective cohort of 400 kidney

transplant recipients, consumption of a vegetable enriched diet

was associated with lower cardiovascular and all-cause mortality

(Sotomayor et al., 2020). We propose that the reduced dietary

acid load directly derived from a high fruits and vegetables diet

contributes to the reduced cardiovascular risk, however the acid

base parameters pre- and post-therapy were not reported

(Sotomayor et al., 2020).

Conclusion

Metabolic acidosis is an understudied, highly prevalent

complication in kidney transplant recipients. In addition to

mechanisms described in metabolic acidosis of CKD,

calcineurin inhibitors play a central role in its development

and maintenance, through dysregulation of tubular transport

proteins involved in acid load handling. Additional research

aimed to unfold the mechanisms and consequences of

metabolic acidosis present post kidney transplantation will

help inform future large intervention trials designed to correct

it, in an attempt to prevent allograft loss and improve overall

survival in kidney transplant recipients.
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