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Abstract

There are limited data describing the functional characteristics of HIV-1 specific antibodies in breast milk (BM) and their role
in breastfeeding transmission. The ability of BM antibodies to bind HIV-1 envelope, neutralize heterologous and autologous
viruses and direct antibody-dependent cell cytotoxicity (ADCC) were analyzed in BM and plasma obtained soon after
delivery from 10 non-transmitting and 9 transmitting women with high systemic viral loads and plasma neutralizing
antibodies (NAbs). Because subtype A is the dominant subtype in this cohort, a subtype A envelope variant that was
sensitive to plasma NAbs was used to assess the different antibody activities. We found that NAbs against the subtype A
heterologous virus and/or the woman’s autologous viruses were rare in IgG and IgA purified from breast milk supernatant
(BMS) – only 4 of 19 women had any detectable NAb activity against either virus. Detected NAbs were of low potency
(median IC50 value of 10 versus 647 for the corresponding plasma) and were not associated with infant infection (p = 0.58).
The low NAb activity in BMS versus plasma was reflected in binding antibody levels: HIV-1 envelope specific IgG titers were
2.2 log10 lower (compared to 0.59 log10 lower for IgA) in BMS versus plasma. In contrast, antibodies capable of ADCC were
common and could be detected in the BMS from all 19 women. BMS envelope-specific IgG titers were associated with both
detection of IgG NAbs (p = 0.0001)and BMS ADCC activity (p = 0.014). Importantly, BMS ADCC capacity was inversely
associated with infant infection risk (p = 0.039). Our findings indicate that BMS has low levels of envelope specific IgG and
IgA with limited neutralizing activity. However, this small study of women with high plasma viral loads suggests that
breastmilk ADCC activity is a correlate of transmission that may impact infant infection risk.
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Introduction

Breast milk (BM) can be a vehicle for transmission of various

pathogens, but the risk of infant infection is balanced by the

potential clinical benefit of BM, which provides significant passive

immunity and protection against many infectious agents [1–4]. In

the case of HIV-1, exposure to virus through breastfeeding

accounts for almost half of the 30–40% of vertical transmissions

that occur in untreated, breastfed infants of HIV-1 positive women

[5–7]. Replacement feeding, avoidance of breastfeeding and

reduced BM exposure by early weaning can significantly reduce

BM transmission, however, these interventions have been associ-

ated with significant increase in infant morbidity and mortality [8–

13]. Additionally, HIV-1 infected as well as exposed uninfected

infants who do not breast feed have been shown to exhibit stunted

growth [14,15]. These observations highlight the challenges facing

HIV-1 infected women in sub- Saharan Africa where prolonged

breastfeeding could lead to HIV-1 transmission but no breast

feeding could increase the risk of morbidity and mortality resulting

in a diluted benefit of HIV-1 free survival [16–18]. Consequently,

greater understanding of BM protective factors in HIV-1 infection

may open promising new ways to make breastfeeding safe for

infants born toHIV-1 infected women.

Approximately 15–20% of infants born to all HIV-1+ mothers

in chronic infection acquireHIV-1 through BM [6,7,19,20]. This

relatively low infection rate despite continued exposure suggests

that either BM infectivity is low or that antiviral factors in BM may

play a role in modulating transmission and/or acquisition of HIV-

1 via the oral mucosa. Indeed, antiviral innate immune factors

present in BM such as alpha defensins, bile salt-stimulated lipase,

lactoferrin, and mucins have all been associated with modulating

the risk of BM transmission [21–23]. BM is also composed of both

innate and activated adaptive immune cells, presumably derived

from other mucosal sites such as the gut associated lymphoid

tissue. Indeed, HIV-1 specific CD8 T cells and B cells have been

reported in BM [24–26], but to date there have been no published

studies that have explored the association between the functional

immune responses in BM and risk ofHIV-1 transmission through

breastfeeding.

Vertical transmission, including BM transmission, is character-

ized by a transmission bottleneck [27–39]. In mother- to-child

transmission (MTCT), it has been suggested that this bottleneck is
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in part a result of selection pressure from Nabs because the viruses

that are transmitted tend to be relatively insensitive to neutrali-

zation by maternal autologous antibodies (Abs), even in mothers

who harbor viruses with a range of neutralization sensitivi-

ties[32,39]. Consistent with the hypothesis that adaptive immunity

plays a role in MTCT, several studies comparing levels of

maternal plasma neutralizing antibody (NAb) titers reported that

transmitting (T) mothers have lower levels of NAb in plasma

compared to non-transmitting (NT) mothers [27,32,36–42]

suggesting that maternal NAb may contribute to protection of

the infant. However, the results of these studies are not consistent,

particularly with respect to a role for NAb in protection by

different routes of transmission [43–45]. Moreover, a recent study

of passive Absin 100 HIV-1 exposed infants did not find evidence

for a protective effect of broadly NAb on infant infection [46].

Until recently, most studies of BM HIV-1 Abs focused primarily

on determining the association between the levels or presence of

binding Abs to envelope (env) proteins and transmission. Several

studies that have focused on BM IgG and IgA have showed no

association between levels of these antibodies and transmission

[47,48]. Notably, infant infection status in these early studies was

determined by serology and/or clinical manifestation of AIDS, a

situation that could result in misclassification of infant infection

status. A more recent study that determined infant infection by

DNA PCR showed increased levels of BM IgA in T compared to

NT women suggesting that, rather than providing protection, BM

HIV-1 env specific soluable IgA, is associated with increased risk

of transmission [49]. However, all these studies used subtype B env

proteins, in some cases from lab adapted viruses to detect HIV-1

binding Abs despite being conducted in sub-Saharan Africa where

such variants are not typical of transmitted strains of HIV-1

[49,50]. Taken together, the results from BM binding studies have

not provided clear evidence of a role of BM Abs in vertical

transmission.

BM Abs could provide benefit by directly neutralizing the virus

within the milk or by non-neutralizing mechanisms such as

antibody dependent cellular cytotoxicity (ADCC)that target

infected cells. This could result in reduced levels of infectious

cell-free virus and BM infected cells, which are both correlates of

BM transmission [51–54]. The potential of Abs in BMto neutralize

HIV-1 and/or mediate ADCC has only very recently been

examined, and in this study of ARV-exposed, subtype C-infected

women in Malawi, NAbs were detected in about half of the BM

samples while ADCC activity was present in all BM samples

obtained at 1 month after delivery [55]. There have been no

studies to-date looking at BMS samples obtained from untreated T

and NT women, particularly in colostrum and early milk, which is

relevant given that virus levels are highest in colostrum [51]and

the majority of BM transmissions occur early in life [6,20]. There

has also been no study looking at how these BM Abs function in

relation to MTCT.

We evaluated neutralizing, binding and ADCC activity in BMS

or BMS-derived IgG and IgA and matched plasma from

antiretroviral (ARV) naı̈ve T and NT mothers with high plasma

viral loads and systemic NAbs. Our data shows that BM Nabs are

rare and their levels are significantly lower than in plasma.

However, we report a high frequency of ADCC activity in BMS

that was significantly higher in NT women compared to T women.

These data suggest that BMADCC mediating Abs but not Nabs

may play a role in modulating HIV-1 transmission.

Materials and Methods

Study subjects and sample collection
Women enrolled in a randomized clinical trial comparing

breastfeeding to formula feeding in Nairobi Kenya provided BMS

samples used in this study [6]. Subjects received coded identifi-

cation numbers at the clinic and therefore BMS samples were

anonymous to laboratory personnel. The ethical review commit-

tees of the University of Nairobi, the University of Washington

and the Fred Hutchinson Cancer Research Center approved this

study and the Kenyan ministry of health gave permission for the

original study to be conducted. The methods for enrollment,

counseling and follow up have been described elsewhere [6,51].

Briefly, HIV-1 positive women were enrolled at 32 weeks gestation

and blood samples were taken for viral load and CD4 count

testing. Maternal blood, breast milk samples, and infant blood

samples were collected within the first week post-delivery, at 6

weeks, 14 weeks, 6 months and quarterly thereafter until 2 years.

Infant HIV-1 status was determined using DNA PCR [56]. Breast

milk samples were centrifuged to remove the lipid layer and the

supernatant was stored at 270uC before being shipped either on

dry ice or in liquid nitrogen to Seattle, Washington for long term

storage at 270uC until use. Plasma and BM viral loads were

determined using the Gen-Probe HIV-1 RNA assay (Gen-Probe,

La Jolla, Calf) [51,57]. Breastmilk samples used in this study were

chosen as the first available breastmilk sample after delivery for

each woman and the reported breastmilk viral loads are

contemporaneous.

Breast milk IgG Ab purification
BMS IgG was purified using NAb Protein G spin columns

(Pierce, Biotech, Rockford, IL), with minimal changes to the

manufactures instructions. Briefly, 250 ul of heat-inactivated BMS

was added to 250 ul of binding buffer and the mixture was added

to a protein G column followed by incubation at room

temperature (RT) with end over end mixing for 30 min.

Thereafter, the column was centrifuged to obtain the IgG flow

through (IgG stepFT) which was saved for subsequent IgA

purification. The column with bound Ab was washed 3 times

with 400 ul of binding buffer. Bound Ab was eluted with 1 ml of

elution buffer (pH 2.8) and the eluate was neutralized by adding

100 ul of 1 M Tris. HCl (pH 8.5). Thus, the final purified IgG Ab

was diluted 4-fold relative to the original BMS. The final eluted

IgG and IgA was retained at a 1:4 dilution of the original BMS

Author Summary

In the absence of intervention, only about one third of
infants born to HIV-1 infected mothers who are continu-
ously exposed to maternal breast milk over prolonged
periods get infected. This observation raises the possibility
that immune factors in infected women play a role in
limiting HIV-1 transmission. Identifying factors associated
with reduced HIV-1 transmission risk will improve our
understanding on the potential correlates of protection
that should be the focus of generating effective immuno-
gens and vaccination protocols. Here we assessed the
functional role of breast milk antibodies in a group of
women with high plasma viral loads and systemic NAbs
and determined that overall, breast milk contains low
levels of neutralizing antibodies when compared to
plasma. In contrast, we observed a robust non-neutralizing
activity in breast milk that was associated with infant
infection status. Our study adds to the growing evidence
of a potential role of non-neutralizing antibodies in
limiting HIV-1 transmission and calls for more attention
to this arm of the HIV-1 response.

Breastmilk Antibodies and HIV-1 Transmission
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and this was used undiluted in further neutralization assays.

Coomassie blue staining (Simply Blue, Invitrogen) and ELISAs

using Human IgG ELISA kit (E-80G) and human IgA ELISA kit

(E-80A) (Immunology Consultants laboratory, Newberg, OR)

were used to confirm the purity of Ab fractions.

Breast milk IgA Ab purification
BMS IgA was purified from the IgG step FT using the method

outlined by Hirbod et.al with some modifications [58]. Spin

columns (Thermo) were packed with 400 ul of immobilized jacalin

(Pierce biotech, Rockford, IL) and washed 3 times with 400 ul of

PBS to equilibrate. The column was then loaded with 500 ul of the

IgG step FT and incubated on an end over end roller for 2 hours

at RT. After incubation, the column was centrifuged and a final

flow through (FT- fraction lacking IgG and IgA) was collected and

stored for analysis. The column was washed 3 times with PBS

followed by a 3-hour incubation with 500 ul of 1 M Melibiose to

elute bound IgA. The column was further washed with another

500 ul of elution buffer to maximize recovery and bring the final

dilution of purified IgA fraction to 1:4 relative to the original BMS,

similar to the IgG fraction. As before, coomassie staining and

ELISA were used to confirm the purity of Ab fractions.

Generation of HIV-1 Env genes and corresponding
pseudoviruses

The subtype A HIV-1 envQ461.d1 was cloned directly from

peripheral blood mononuclear cells (PBMCs) of a recently infected

Kenyan woman as described previously [59]. Autologous PBMC

and BM cell derived clones have either been previously described

or were obtained using the same protocol [39], in some cases with

modification of primers to allow amplification of the HIV-1

variant in that particular sample (primers are available upon

request). Plasmid DNA encoding the env of interest and a plasmid

encoding an env-deficient HIV-1 subtype A proviral DNA,

Q23Denv [60], were co-transfected into 293T cells at a 1:2 molar

ratio to generate pseudotyped viral particles as described [39,61].

Virus was harvested 48 hrs post-transfection and the infectivity

was determined by single round infection of TZM-bl cells as

described [39]. Pseudoviruses were also generated using Q23Denv

and simian immunodeficiency virus clone 8 (SIV) [62]orampho-

tropic murine leukimia virus (MuLV)envelope clones [63].

Neutralization assays
Neutralization was assessed by determining infection of a

reporter cell line, TZM-bl, as previously described [39]. Briefly,

500 infectious particles were incubated with 2-fold serial dilutions

of heat inactivated plasma or BMS, purified BMSIgG or IgA

fraction, FT fraction or media only in a total volume of 50 ul at

37uC for 1 hour. TZM-bl cells in 100 ul of growth medium

containing 30 ug/ml of diethylaminoethyl-dextran were then

added. After 48 hours, neutralization was determined by measur-

ing b-galactosidase activity present in the TZM-bl cell lysate. For

each virus/Ab combination, at least two independent experiments

were performed. Each experiment was performed intriplicate for

plasma and BMS or duplicate for purified BMSAb fractions.

Median inhibitory concentrations (IC50s) were defined as the

reciprocal dilution of plasma, BMS or purified antibody that

resulted in 50% inhibition, calculated by interpolation of the linear

portion of the neutralization curve on the log2 scale as previously

described [39,61]. Plasma and BMS samples were tested at 1:100

and 1:20 dilution respectively, while purified BMSAb fractions

were tested at 1:8 dilution (a 2-fold dilution of the recovered

purified fractions that were diluted 4 fold during processing). For

the purposes of analysis, in cases in which the IC50s were less than

the lowest dilutions tested, the midpoint value between the lowest

dilution and zero was assigned. IC50s from replicate experiments

were averaged by the geometric mean. Here IC50s indicate the

geometric mean IC50 estimates [64].

ELISAs for total and HIV-1 Env specific IgG and IgA
Human IgG ELISA kit (E-80G) and human IgA ELISA kits (E-

80A) (Immunology Consultants laboratory, Newberg, OR) were

used to determine the levels of total IgG and IgA in un-purified

BMS and plasma samples according to the manufacturer’s

instructions.

HIV-1env specific ELISAs were performed using the protocol

outlined by Sather et.al with minimal modifications [65]. Briefly,

Immulon 2HB ELISA plates were coated with 25 ng/well of a

HIV-1 subtype A Q461.d1 soluble trimeric gp140 protein purified

as described in [66] in 0.1 M NaHCO3, pH 9.4 overnight at room

temperature. Plates were blocked in phosphate buffered saline

(PBS), supplemented with 10% dry milk and 0.3% Tween-20 for

1 hr at 37uC. Unpurified BMS and plasma samples were diluted in

10% dry milk, 0.03% Tween in PBS. For detection of HIV-1env

specific IgG and IgA, BMS samples were diluted at 1:100 and

were titrated 2-fold up to a maximum dilution of 12,800. In cases

where an end point titer could not be determined at this dilution,

samples were diluted further up to a final dilution of 104,200. For

HIV-1 env specific plasma IgG, samples were diluted at 1:100,000

followed by a 2-fold titration up to a maximum dilution of

12,800,000 while for IgA samples were initially diluted 1:200

followed by a 2-fold dilution up to 25,600. Samples were loaded in

duplicate wells and incubated for 1 hr at 37uC. Plates were washed

in a plate washer and bound IgG Ab was detected at 37uC for 1 hr

with goat anti-human IgG- horseradish peroxidase (HRP) (Bio-

Rad, Hercules, CA) diluted 1:3000 while IgA was detected by goat

anti human IgA HRP(Invivogen, San Diego, CA) diluted 1:4000.

Plates were developed with 50 ul of 1-Step Ultra TMB-ELISA

solution (Pierce Biotech, Rockford. IL) and stopped with 50 ul 1 N

H2SO4. Absorption at 450 nm was read on an EL808 Ultra

Microplate Reader (Bio-TEK Instruments.inc). In this study, end

point titer (EPT) was defined as the BMS or plasma reciprocal

dilution at which the average OD value was greater than or equal

to two times the average OD value of background.

Rapid fluorescence-antibody dependent cellular
cytotoxicity assay (RF-ADCC)

The ability of BMS and their matched plasma to mediate

ADCC activity was determined as described by Gomez-Roman

et.al with a few modifications [67]. Briefly, CEM. NKr cells, a

natural killer resistant cell line (AIDS Research and Reference

Reagent Program, NIAID,NIH) were double stained with a

membrane dye, PKH-26(Sigma, St. Louis, MO, USA) and a

viability dye, carboxyfluorescein diacetate, succinimidyl ester

(CFSE) (Molecular Probes, Eugene, OR, USA) as recommended

by the manufactures. After staining, 16105 cells were coated for

1 hr at RT with 1.5 ug HIV subtype Agp120 protein obtained

from an infant in the Nairobicohortat 6 weeks post-infection

(BL035) [39]. Coated cells were then washed once and

resuspended in 1 ml of RPMI with 10%FBS. Five thousand

coated or uncoated CEM. NKr cells were added to the

appropriate duplicate wells containing 100 ul of 1:100 or 1:1000

heat inactivated BMS or plasma respectively. Similar experiments

were performed using media only or HIV IgG (NIH AIDS

Research, Germantown, MD, USA)as negative and positive

controls, respectively. The antibody-target cell mixture was

incubated at RT for 10 min to allow the antibody to interact

Breastmilk Antibodies and HIV-1 Transmission
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with the antigen on the surface of target cells. Following

incubation, 50 ul of effector cells (HIV negative donor PBMCs)

were added to the mixture at an effector to target cell (E/T) ratio

of 50:1 and incubated for 4 hours at 37uC. For all 19 BMS and

plasma samples, PBMCs from the same donor were used in

parallel assays. Cells were then washed and fixed in 150 ul of 1%

paraformaldehyde-PBS and stored at 4uC overnight. Fixed cells

were analyzed within 24 hours of the ADCC assay using a BD

LSRII instrument (Becton Dickinson, San Jose, CA, USA). Flow

cytometry data was analyzed using Flojo version 9.4.6(Tree Star

Inc, Ashland, OR, USA). ADCC percent killing was defined as the

percentage of membrane labeled cells (PKH-26+) that had lost

their viability dye (CFSE2) after subtracting two times the level of

killing in the media only wells (background), as described in (67).

Statistical analysis
Odds ratios (OR) for assessment of associations between

detection of HIV-1 specific and non-specific activity in BMS and

transmission were estimated by Fisher’s Exact Test. IC50sfor HIV

positive and HIV negative controls were compared by one-sided t-

test on the log2 scale. All comparisons of Ab total concentrations

and HIV-1 env specific titers were based on paired t-tests on the

log10 scale, noting that differences on the log scale were

approximately normally distributed, and corresponding multivar-

iate adjustments were by linear regression. HIV-1 specific titers

among those with detected virus neutralization by BMS IgG and

IgA were each compared to titers among those with undetected

neutralization using Welch’s t-test on the log10 scale. All

correlations were measured by Pearson’s product moment

correlation coefficient (PPMCC), denoted r, with p-values based

on the Student’s t approximation for the distribution of the

corresponding standardized test statistic. The relationship between

maternal clinical correlates and BMS Ab neutralization, HIV-env

specific binding titers and ADCC activity were each individually

assessed by Welch’s t-test with corresponding adjusted estimates by

linear regression. Statistical analysis was performed using R 2.13

ISBN 3-900051-07-0 and STATA version 11 edition, (College

Station, TX).

Results

Characteristics of women in the study
The goal of this study was to determine the presence and

functional capacity of BM HIV-specific antibodies and to

determine if they impact MTCT. Therefore, we selected women

who had high plasma viral loads (greater than the cohort median

of 4.6 log10)and thus were at increased risk of transmission. Among

these women, we identified those who exhibited potent plasma

NAb responses (Majiwa and Overbaugh, unpublished data) to

maximize the chances of detecting BM NAbs. From this subset of

women, we selected those that breast-fed for greater than 3

months to capture cases of BM HIV exposure to the infant.

Women whose infants were HIV-1 positive before 6 weeks of life

were excluded to ensure that transmission was as a result of BM

and not late in-utero, or intra-partum exposure. An additional

criteria was that women had available BMS samples collected at

less than14 weeks after delivery because this early period is the

window within which the majority of BM transmissions occur [6]

and protein concentrations are highest [68,69]. Nineteen women

with a median CD4 count of 360 cells/uL met these criteria. The

median plasma and BM viral loads were5.22 and 2.44 log10

respectively, an ,2-log difference that was also observed in the

larger cohort [51]. Nine of these women transmitted HIV-1 to

their infants via BM at various time-points postpartum (Table 1).

Non-specific inhibition of viruses by BMS
The ability of heat inactivated BMS to neutralize virus bearing a

highly sensitive env variant isolated from a Kenyan woman soon

after her infection was determined. This heterologous HIV-1

subtype A env variant, Q461.d1, was chosen because .90% of

plasma from individuals in the region showed detectable

neutralization of this virus at a 1:100 plasma dilution [70]. The

results with plasma from 4 representative women are shown in

Figure 1A. All4 plasma samples neutralized Q461.d1 with IC50

values of ,500 or greater. Importantly, 50% inhibitory activity

was not achieved when testing plasma samples against SIV

suggesting that the neutralization response was specific to HIV-1.

Overall, virtually all19 plasmas displayed potent HIV-1 specific

neutralization, with IC50s ranging from 185 to 3144 (Table 1).

We could not detect HIV-1 neutralization in any of the BMS at

a similar starting dilution as plasma (1:100 data not shown). At a

very low starting dilution (1:4) there was substantial non-specific

inhibition of SIV and MuLV and preliminary assays suggested

potential cytotoxic effect of more concentrated BMS, as reported

previously [71]. BMS was therefore tested at a starting dilution of

1:20, hence 56 more concentrated compared to plasma. Results

from BMS of 4 representative women against Q461.d1 and SIV

are shown in Figure 1B. While a low level of inhibition of HIV-1

was observed with some BMS such as MJ776 and MP199, there

was little difference in the magnitude of BMS neutralization of

Q461.d1 and SIV in all 4 cases. Among all 19 women, 9 BMSs - 6

from T and 3 from NT women - showed HIV-1 inhibition with

IC50 values ranging from 21–85; there was no detectable

inhibition by BMS from 3 T and 7 NT women. BMS from the

majority of women also inhibited SIV and MuLV pseudoviruses,

with IC50 values ranging from 20–95 (Table 1). A paired

comparison of BMS HIV-1 IC50s with the geometric mean of

IC50s for corresponding negative control viruses (SIV and

MuLV)showed that HIV-1 IC50s were not statistically greater

than those of the negative controls (p = 0.44). This observation

suggested that the majority of inhibition we observed with BMS

was likely not due to HIV-1 specific Abs.

The presence of a non-specific inhibitor of HIV-1 in BMS could

nonetheless be relevant to transmission risk. We thus examined the

association between detection of non-specific activity and trans-

mission and found that this relationship was not statistically

significant (OR = 4.77; 95% CI: 0.51, 71.53; p = 0.17).

Limited ability of purified BMS IgG and IgA Abs to
neutralize heterologous virus

To determine what portion of the non-specific inhibition

observed with unfractionated BMS was due to Abs versus other

factors, we separately purified IgG and IgA Abs from BMS for use

in the neutralization assays. Bands of the expected sizes for IgG

and IgA were observed in the respective purified fractions by

coomassie staining and cross contamination between Ab isotype

fractions by total Ig ELISA was below detection (data not shown).

Purified Ab fractions were tested at a starting dilution of 1:8, which

translated to a dilution 2.5 times higher than the most

concentrated BMS we tested (1:20 dilution). Using the purified

BMS IgG fractions, neutralization of greater than 50%was

detected in only 2 (subjects MJ776 and MP199) of 19 purified

BMS IgG tested, with IC50s of 9.4 and 9.9 respectively. (These

two examples are shown in figure 2A and a summary of the 19 in

Table S1). Of these women MJ776 transmitted HIV-1 to the

infant while MP199 did not. In contrast, there was no detection of

neutralization by purified BMS IgA fractions tested (Results from

4 representative women are shown in figure 2B and a summary of

the 19 in Table S1). Importantly, purified BMS IgG and IgA

Breastmilk Antibodies and HIV-1 Transmission
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fractions did not inhibit viruses pseudotyped with SIV env

including the two BMS IgG fractions from subjects MJ776 and

MP199, which had detectable neutralization of virus pseudotyped

with Q461.d1env (Figure 2A, B, and Table S1). The FT fraction,

which contained undetectable levels of BM IgG and IgA both by

ELISA and coomassie staining, (data not shown) retained the non-

specific activity displayed by BMS (Table S1).

Limited ability of purified BMS IgG and IgA Abs to
neutralize autologous blood and breast milk-derived
virus

To ensure that we were not missing NAb responses by using a

heterologous virus, we examined the ability of BMSAb fractions to

neutralize autologous virus in a subset of the 19 women. BMS IgG

and IgA Ab fractions and FT from a total of 8 women were each

tested against 2 pseudoviruses bearing autologous env variants

from blood [39]. Of the 8 women, 2 women both NTs, showed

low potency neutralization of the blood-derived autologous virus

to one of the two viruses tested. MM471 displayed low

neutralization potency with anIC50 of 15against one of her

autologous viruses when using IgG but not the IgA fraction

(representative experiment is shown in figure 3A). In contrast,

MA411 displayed low neutralization potency with an IC50 of 9

against one of the autologous virus with IgA but not with IgG

fractions (a representative experiment is shown in figure 3B). BMS

IgG and IgA fractions from the remaining six women, all Ts did

not neutralize their respective autologous viruses above 50%.

Autologous viruses for MJ776 and MP199 were not available for

testing

The ability of plasma and BMS purified Ab to neutralize

variants obtained from BM was also determined for two subjects

MF535 (T) and ML055 (NT). Autologous plasma from MF535

and ML055 diluted at 1:100 neutralized the respective BM viruses

withIC50s of 152 and 718, respectively. In contrast, there was no

detectable neutralization by BMAb fractions against these

autologous BM viruses (data not shown).

BMS IgG total and HIV-1 Env specific titers are lower than
plasma IgG

To determine if low NAbs in BMS reflected lower total BM Ab

levels, we measured the levels of total and HIV-1envspecific IgG

and IgA Abs in BMS and compared them to plasma (Figure 4).

The levels of total BMS IgG were 0.88 log10 lower than BMS

IgA(p,0.0001) (Figure 4A, black symbols). This is in contrast to

Table 1. The characteristics of transmitting and non-transmitting women in the study and the neutralization IC50s of their plasma
and BMS.

IC50s

Plasmaa BMSb

ID Number
Viral
Subtype

CD4
Count

Log10

Plasma VLc
Log10

BMS VLc
Infant-
Infection Wkd

Visit
Wke HIVf SIV HIV SIV MLV

Transmitting MB885 A 136 4.78 1.93 6 0 535 50 85 83 95

Women MC046 A 255 5.05 3.17 6 0 1084 50 23 30 27

MF520 A 511 5.59 2.73 15 1 327 50 23 25 26

MF535 D 690 5.53 2.37 6 14 3144 50 21 10 10

MI206 A 262 5.12 2.27 6 0 751 50 22 10 24

MJ412 C 293 4.86 2.9 6 0 283 50 10 29 33

MJ613 A 104 5.64 2.96 6 1 751 50 10 10 24

MJ776 A 385 5.44 4.24 6 0 510 50 28 10 30

MM596 ndg 392 5.75 2.26 6 6 469 50 10 10 10

Non-Transmitting MA411 A 416 5.5 2.76 nah 0 1200 50 38 33 38

Women MB727 C 416 4.70 2.54 na 8 314 50 10 10 10

MB807 A 217 4.78 3.62 na 0 989 50 10 10 10

MG540 A 285 5.6 3.95 na 0 762 50 37 27 22

MH230 A 651 5.02 2.79 na 14 647 50 22 10 10

MK371 D 352 4.62 bdi na 2 354 50 10 10 10

ML055 D 213 5.18 2.76 na 0 1107 50 10 10 45

ML267 nd 551 5.68 3.77 na 0 185 50 10 10 10

MM471 A 360 5.26 3.36 na 8 1963 50 10 10 10

MP199 A 389 5.22 2.73 na 6 1253 50 10 10 28

aPlasma neutralization assays were performed at a starting dilution of 1:100; an IC50 of 50 was assigned in cases where 50% neutralization was not achieved.
bBMS neutralization assays were performed at a starting dilution of 1:20; an IC50 of 10 was assigned in cases where 50% neutralization was not achieved.
cViral Load.
dIndicates week since delivery when infant was first HIV-1 DNA positive.
eIndicates time-point after delivery at which BM sample was obtained.
fQ461.d1.
gNot done.
hNot applicable.
iBelow detection.
doi:10.1371/journal.ppat.1002739.t001
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plasma, where the IgG levels were found to be 1.02 log10 higher

than IgA (p,0.0001) (Figure 4A, grey symbols). There was a

pronounced difference between the magnitude of total IgG in

BMS and plasma with BMS total IgG being2.25 log10 lower than

plasma IgG (p,0.0001). In contrast, the total IgA levels in plasma

were only slightly higher than in BMS, with a modest 0.39log10

difference between BMS and plasma (p = 0.004). We found

statistically significant correlation between total BMS IgG and

plasma IgG (r = 0.67; p = 0.0034)while the levels of BMS total IgA

correlated with total plasma IgA (r = 0.78; p = 0.0003). There was

no significant correlation between BMS total IgG and BMS total

IgA (r = 0.39; p = 0.10) (Table S2).

Next, we determined HIV-1 env specific IgG and IgA titers in

unfractionated BMS and plasma against soluble gp140 protein

derived from the subtype A variant, Q461.d1, that was used for

the neutralization studies (Figure 4B). HIV-1 env specific IgG titers

were obtained in 100% of BMS and plasma samples. In contrast,

HIV-1 env specific IgA titers were obtained in 50% of BMS and

90% of plasma samples; the rest were below the cut off value for

EPT as defined in this study. BMS HIV-1 env specific IgG titers

were 1.96 log10 higher compared to env specific IgA (p,0.0001)

(Figure 4B, black symbols). Similarly, HIV-1 env specific IgG titers

in plasma were higher by 3.63 log10 when compared to the env

specific IgA titers (p,0.0001) (Figure 4B, grey symbols). Overall,

similar to what we found for total IgG levels, BMS HIV-1 env

specific responses were 2.22 log10 lower compared to that in

plasma (p,0.0001) (Figure 4B). For HIV-1 env specific IgA, the

log10 difference between BMS and plasma was 0.59 (p = 0.0004)

(Figure 4B). BMS HIV-1 env-specific IgG titers were correlated

with plasma HIV-1 env specific IgG titers (r = 0.81; p,0.0001)and

BMS total IgG (r = 0.76; p = 0.0003). There was no statistically

significant correlation between BMS HIV-1 env specific IgG titers

and BMS HIV-1 env specific IgA (Table S2). Similar to BMS

HIV-1 env specific IgG titers and BMS total IgG, BMS HIV-1 env

specific IgA titers and BMS total IgA levels were also positively

correlated (r = 0.69; p = 0.015) (Table S2.)

We examined the relationship between the levels of HIV-1 env

specific titers in BMS and detection of neutralizing activity. The

three women with IgG neutralizing activity had a log10 IgG titer of

4.41 as compared to a mean of 3.83 among non-IgG-neutralizers

(p = 0.0001). The one woman with IgA NAbs also had the highest

IgA env specific titer, which was1.10log10 greater than the group

median. (Figure. S1).

ADCC activity is common in BMS and it correlates with
HIV-1 env specific IgG titers

We determined the capacity of BMS binding antibodies and

their matched plasma to mediate ADCC. The appropriate BMS

and plasma dilution for the ADCC assay was determined by

testing serial 10-fold dilutions of 4 representative BMS and plasma

in the ADCC assay. The dilution that permitted detection of HIV-

specific ADCC activity above background levels, but did not yield

inhibition of ADCC activity that can occur with more concen-

trated samples [72] was chosen for testing (1:100 for BMS and

1:1000 for plasma). Using a single dilution also allowed us to test

all 19 BMS and plasma samples with effector cells obtained from a

single PBMC donor, which is critical for avoiding bias due to

differences in effector cell activity observed from donor to donor.

Figure 1. Neutralization potency of plasma and BMS from four mothers against heterologous virus. The graphs show percent
neutralization versus plasma (A) or BMS (B) dilution. Results using pseudovirus generated with heterologous Q461.d1 env (HIV-1 in black lines) are
shown in the left graph and with SIVMneCl8 (SIV in grey lines) are shown in the right graph. The corresponding symbol for the data from each of the
four mothers is shown in the upper right corner. The 50% neutralization level is shown with a dotted line. The results are from triplicate testing and
are representative of at least two independent experiments. The average IC50s for the two experiments for all 19 women is reported in Table 1.
doi:10.1371/journal.ppat.1002739.g001
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Figure 2. Neutralization potency of purified IgG and IgA from four mothers against heterologous virus. The graphs show percent
neutralization versus BMS purified IgG (A) or IgA (B) dilution. The corresponding symbol for the data from each of the four mothers is shown in the
upper right corner. Neutralization by IgG and IgA is represented by filled and open symbols, respectively. Results using pseudovirus generated with
Q461.d1 env (HIV-1 in black lines) are shown in the left graph and with SIVMneCl8 (SIV in grey lines) are shown in the right graph. The 50%
neutralization level is shown with a dotted line. The results are from duplicate testing and are representative of at least two independent
experiments. The average IC50s for the two experiments for all 19 women is reported in Table S1.
doi:10.1371/journal.ppat.1002739.g002

Figure 3. Neutralization potency of IgG and IgA from two mothers against autologous virus. Representative graphs showing percent
neutralization versus BMS purified IgG or IgA dilution. (a) Neutralization by IgG and IgA fractions from subject MM471 and (b) neutralization by IgG
and IgA fractions from subject MA411. IgG (filled square) and IgA (open square) responses against pseudovirus generated with autologous HIV-1 env
are shown in black lines and against SIVMneCl8 (SIV) are shown in grey lines. The 50% neutralization level is shown with a dotted line. The results are
from duplicate testing and are representative of at least two independent experiments.
doi:10.1371/journal.ppat.1002739.g003
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Overall, ADCC activity was detected in all BMS and plasma

samples tested (Figures 5 A and B). BMS ADCC mediated killing

ranged from 1–27% (median,15%) while that of plasma ranged

from 16–36% (median, 24%). BMS ADCC activity was correlated

with gp140 env specific IgG titers (r = 0.56, p = 0.014) (Figure 6). A

log10 increase in gp140 titers was associated with an absolute

increase of 9.3 in % ADCC mediated killing by BMS (95% CI:

2.18, 16.41; p = 0.013).

BMSADCC activity is associated with risk of infant
transmission

The relationship between maternal clinical correlates and BMS

Ab neutralization, HIV-env specific binding titers and ADCC

activity were each individually assessed. There was no statistically

significant association between antibody titers and any of the

clinical parameters examined. (Table S3).

There was no statistically significant association between

detection of NAbs and infant infection (OR = 0.31; 95% CI:

0.0050, 4.94; p = 0.58). We observed a trend for statistical

significance between infant infection and reduced BMSgp140

HIV-1 env specific IgG titers but not plasma titers (estimated

mean log10 difference 0.35 95% CI: 20.07, 0.77; p = 0.098) in a

univariate analysis (Figure 7A). This association was in similar

direction after controlling for plasma viral load(p = 0.038).

Importantly, NT women were more likely to have higher BM

ADCC activity compared to T women (estimated mean % killing

difference 6.89; 95% CI: 0.41, 13.37; p = 0.039) (Figure 7B). This

relationship remained significant in a multivariate analysis

controlling for plasma viral load (p = 0.011) and both plasma

and BM viral load (P = 0.012). There was no association between

BM RNA viral load and BM ADCC activity (p = 0.520) in these 19

women. There was also no significant difference between plasma

ADCC in T and NT women (Figure 7B).

Discussion

The potential of HIV-1 specific Absin BM to inhibit HIV-1 or

impact transmission risk has not been well defined. Despite the fact

that the levels of both IgG and IgA were low in BM compared to

plasma, we observed a trend for inverse correlation between the

levels of HIV-1 specific IgG and risk of infant infection in the 19

women examined here. The effect of these antibodies did not

appear to be through neutralization, as only 4 of 19 women had

any detectable neutralizing IgG or IgA Abs and there was no

correlation between detection of NAb and risk of infant infection.

Rather, the important functional activity of these antibodies was

linked to ADCC activity, as there was a statistically significant

inverse correlation between the levels of ADCC activity and risk of

infant infection. These data suggests that antibodies capable of

mediating ADCC may be one factor that impacts the risk of BM

HIV-1 transmission.

We found that BM HIV-1 env-specific IgG titers were

significantly higher than those of IgA but significantly lower when

compared to IgG from matched plasma samples. A reduced IgA

response at mucosal sites in HIV-1 infection is contrary to what is

observed with mucosal responses to other pathogens but consistent

with previous reports of a low HIV-1 specific binding IgA response

in favor of IgG at various mucosal sites [73–76]. In general, low

mucosal BM IgA might reflect an ability of HIV-1 to impair local

immune responses as a means of evading the humoral immune

system at the mucosal site. However, the observation that BM

HIV-1 env specific IgG titers were correlated with total plasma

IgG levels suggests that some of the BM IgG may originate from

systemic circulation, a process that could help fight infection at the

mucosal site.

Despite low HIV-specific antibody levels in BMS compared to

plasma, antibodies capable of ADCC were detected in all BMS

samples. We found that the capacity to mediate ADCC was

associated with the levels of HIV-1 env specific IgG titers, which is

in agreement with data from previous studies [55,77–79]. This is

perhaps not surprising given that envelope binding is a required

step for ADCC activity measured in the assay used here. Using

purified BMS antibodies from a subset of these women, we further

confirmed that ADCC activity in BM was exclusively mediated by

IgG (data not shown). Thus, IgG mediated ADCC can be detected

in unfractionated breastmilk, which includes IgA and other factors,

as well as with purified antibody. ADCC titers have previously

been shown to be generally higher compared to NAbs titers in the

same individual possibly due to the specificity required to

overcome the constraints posed by env protein in a bid to escape

neutralization and also the fact that virus neutralization requires

that all of the functional trimers be occupied by at least one

antibody [80,81]. Thus it may be possible to elicit high levels of

antibodies capable of ADCC using an HIV-specific immunogen

even in cases where neutralizing responses are limited.

BMS ADCC activity was significantly greater in NT compared

to T women, suggesting a possible role in impacting infant

infection. The mechanism by which BM ADCC might reduce

Figure 4. Levels of total and HIV-1 env specific IgG and IgA in
unfractionated BMS and plasma. (A)Total IgG and IgA in
unfractionated BMS and plasma. The Y-axis shows the log10 Ab conc
(ug/ml) and the X-axis shows the sample type and Ab isotype. Black and
grey symbols denote BMS and plasma, respectively. Triangles and
circles represent IgG and IgA, respectively. (B) Unfractionated BMS and
plasma HIV-1 env specific IgG and IgA titers. The Y-axis shows the log10

HIV-1 env specific titers (reciprocal dilution) and the X-axis shows the
sample type and Ab isotype. Symbols are as described for A.
doi:10.1371/journal.ppat.1002739.g004
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transmission remains to be determined. ADCC would be expected

to lead to effective clearance of infected cells. Given that the levels

of HIV-infected cells in BM are correlated with transmission risk

[52], it is plausible that HIV-specific ADCC responses within BM

may act through reducing cell-associated viral transmission.

Other studies have implicated antibodies capable of ADCC in

providing protection from infection and/or controlling an

established infection. Several studies have shown that de novo

ADCC responses to HIV and SIV infection are correlated with

better viral control in chronic infection and/or clinical outcome.

[77,78,82–85]. Vaccine-induced ADCC responses have also been

correlated with reduced viral loads following SIV challenge

[78,79,86–88], supporting a potential role of Fc-mediated

antibody responses in blunting a new infection in SIV-infected

macaques. A study by Forthal et al. also provided evidence that

antibody-dependent cell-mediated virus inhibition, which is a

measure of ADCC in combination with other antiviral activities,

was correlated with infection rate in the Vax004 vaccine trial,

although ADCC alone was not directly examined in this study

[89]. In addition, studies of passive immunization using HIV

monoclonal antibodies in macaques suggest that FccR binding is

required for optimal protective efficacy [90]. These findings

support a potential role for antibodies that act through ADCC in

providing protection from infection in the non-human primate

model. The current study is the first that reports an association

between HIV-specific ADCC activity and risk of HIV infection in

humans.

This is the first study to examine BMS HIV-1 specific IgG and

NAbs in relation to transmission risk using a relevant HIV-1 env

representing recently transmitted virus from the dominant subtype

in the population. This may explain our ability to detect a trend in

association between binding antibodies and transmission, which

was not seen in prior studies using other env proteins less

representative of viruses in the study population to measure

binding [47,48].

We used the same highly neutralization sensitive (tier 1B)

subtype A HIV-1 env representing the dominant subtype in the

population under study to optimize our chances of detecting NAbs

in BMS. Importantly, plasma from all subjects had a potent NAb

response against this virus, indicating that all subjects had

generated NAbs capable of specifically recognizing this test virus.

Only 4 BMS had Abs that could neutralize .50% of either

Figure 5. ADCC activity in BMS and plasma. Percent ADCC activity in BMS(A) and plasma (B). BMS was tested at a 1:100 dilution and plasma at a
1:1000 dilution. The subject ID for the corresponding ADCC measure is shown below each bar. The results are from duplicate testing and are an
average of at least two independent experiments each done using effector cells from a single donor. nd indicates not done.
doi:10.1371/journal.ppat.1002739.g005

Figure 6. ADCC activity in relation to HIV-1 Env specific IgG
titers in BMS. The Y-axis shows % ADCC activity in BMS (1:100) and
the X-axis shows the log10 BM HIV-1 env specific IgG titers. Filled and
open symbols represent transmitting and non-transmitting women,
respectively. The trend line ‘Linear (ALL)’ is the regression line including
both transmitting and non-transmitting women.
doi:10.1371/journal.ppat.1002739.g006
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heterologous or autologous blood-derived viruses and the presence

of HIV-1 specific NAbs was not associated with infant infection.

The neutralizing activity was observed in women with higher

levels of total IgG Abs in BMS. Therefore, it is possible that

generally low IgG and IgA titers in BM might explain the limited

neutralization capacity displayed by BM Abs.

The results of our study, showing low levels of HIV-1 env specific

NAbs in BMS, are consistent with another recent study of BM HIV-

1 NAbs [55]. In this study of a NVP-treated, clade C infected

cohort, the levels of NAbs and HIV-1 env specific IgG were low in

BM collected at 4 weeks post-delivery compared to plasma. We

observed similarly low NAb levels in the breastmilk of ARV naı̈ve

women in a cohort that was enrolled prior to the availability of

ARVs for prevention of MTCT [6]. Thus, collectively these studies

indicate that the level of HIV-1 specific NAb are low in both early

and mature milk, in both treated and untreated women and this is

true no matter the infecting HIV-1 subtype.

We detected non-specific inhibition of HIV-1 and unrelated

viruses (SIV, MLV) with several unfractionated BMS samples.

This observation is perhaps not surprising because innate factors

in BM such as defensins, lipids and lactofferin have documented

activity against many viruses including enveloped retroviruses [4].

The ability of unfractionated BMS to inhibit HIV-1 in the in vitro

TZM-bl assay used here did not correlate with risk of infant

infection.

There are several limitations to our study, most notably the fact

that we focused on a select group of women with high viral load

and systemic NAbs in order to optimize our chances of detecting

NAbs and to examine antibody levels in relation to transmission

risk. Thus it is unknown if these findings are applicable to women

with low viral loads or low systemic NAbs levels. Interestingly, a

correlation between ADCC activity and viral control in SIV-

infected macaques was only observed when animals with low viral

load were excluded [86]. These authors suggested that a threshold

of antigen may be needed to elicit robust ADCC. Certainly, larger

studies using relevant env antigens to examine HIV-1 specific BM

antibody responses in other populations will be needed to verify

these findings and determine if the findings apply to women with

lower viral levels and/or systemic NAb responses. In addition,

while we focused on breastmilk antibodies in relation to post-

partum transmission, there could be some misclassification of time

of infection in this study. Specifically, the cases of transmission

examined here were all cases of relatively early post-partum

transmission and we cannot exclude that some were the result of

intrapartum transmission, where BM antibody levels would be less

relevant. Finally, while we did not see an association between BM

viral RNA levels in this small study, but this does not rule out a

relationship between ADCC and the cellular viral reservoir.

Larger studies that include cell-associated virus levels and ADCC

activity will be needed to clarify this issue.

In conclusion, we found that the capacity of BM to neutralize

heterologous and autologous viruses obtained from blood and BM

is limited. This observation can be explained in part by the low

titers of Abs in BM compared to plasma in general, particularly

IgG. It is unclear if such low NAb levels could play a role in

protection, but no association was observed in this small study.

However, the association between HIV-1 env specific IgG titers

and ADCC activity with infant infection suggest that BM Ab could

be playing some role in modulating infection through non-

neutralizing mechanisms. To the best of our knowledge, this is the

first study to report a positive association between BM transmis-

sion and ADCC capacity in BM. If these results are verified in a

larger study of MTCT, then it would suggest that immunogens

tailored at enhancing BM Abs capable of ADCC might be of

potential benefit, particularly to HIV-1 infected women with high

viral loads, who are at the greatest risk of transmission.

Supporting Information

Figure S1 Levels of HIV-1 env specific IgG (Y-axis) and
IgA (X-axis) titers and detection of NAbs in BM. Circles

and squares represent transmitting and non-transmitting women,

respectively. Symbols filled with black and grey correspond to

detectable IgG and IgA neutralizing activity, while the open

symbols denote no detection. One point might represent one or

more values.

(TIF)

Table S1 Neutralization potency of purified BMS IgG,
IgA and FT. The table shows the neutralization potency of

purified BMS fractions from Transmitting (T) and Non-transmit-

ting (NT) mothers against heterologous HIV and SIV as a negative

control. Cases were assigned an IC50 value of ,4 when

neutralization was not detected.

(DOCX)

Figure 7. HIV-1 Env specific IgG titers and ADCC activity in BMS
in relation to infant infection. (A) Relation of HIV-1 gp140 specific
IgG titers and maternal transmission. Results are from duplicate testing
of unfractionated BMS and plasma and are an average of at least two
independent experiments. The Y-axis shows the log10 HIV-1 env specific
IgG titers (reciprocal dilution) and the X-axis shows the sample type
(BMS versus plasma) and HIV transmission status (NT versus T). (B) BMS
and plasma mediated ADCC activity in relation to transmission. The Y-
axis shows the % ADCC activity and the X-axis shows the sample type
and HIV transmission status. In both panels, triangles and circles
represent BMS and plasma, respectively while open and filled symbols
represented non-transmitting and transmitting women, respectively.
Results are from duplicate testing of unfractionated BMS and plasma
and are an average of at least two independent experiments.
doi:10.1371/journal.ppat.1002739.g007
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Table S2 Summary of the relationships between total
and HIV-1 env specific IgG and IgA in BMS and plasma.
Difference in levels (log10) indicates the average difference across the

19 women of the log10 levels for the first comparison measure minus

the second. Correlations are described by the Pearson correlation

coefficient, which indicates the strength of the linear association

between the two variables, on the log10 scale. Plasma and BMS

antibodies are correlated and lower levels were observed in BMS than

in plasma. Env-specific IgG levels were greater than env-specific IgA.

(DOCX)

Table S3 Summary of the associations for antibody
levels and BM ADCC with clinical correlates of MTCT of
HIV-1. Estimates for each clinical correlate (maternal plasma

viral load, breastmilk viral load and CD4 count) correspond to the

estimated 10-fold change in the correlate with a unit increase in

the row-level variable. Units for ADCC were on the absolute

percentage scale, while units for all other variables were on the

log10 scale. No statistically significant associations were observed.

(DOCX)
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75. Bélec L, Dupré T, Prazuck T, Tévi-Bénissan C, Kanga JM, et al. (1995)

Cervicovaginal overproduction of specific IgG to human immunodeficiency

virus (HIV) contrasts with normal or impaired IgA local response in HIV

infection. J Infect Dis 172: 691–697.

76. Fiore JR, Laddago V, Lepera A, La Grasta L, Di Stefano M, et al. (2000)

Limited secretory-IgA response in cervicovaginal secretions from HIV-1

infected, but not high risk seronegative women: lack of correlation to genital

viral shedding. New Microbiol 23: 85–92.

77. Baum LL, Cassutt KJ, Knigge K, Khattri R, Margolick J, et al. (1996) HIV-1

gp120-specific antibody-dependent cell-mediated cytotoxicity correlates with

rate of disease progression. J Immunol 157: 2168–2173.

78. Banks ND, Kinsey N, Clements J, Hildreth JE (2002) Sustained antibody-

dependent cell-mediated cytotoxicity (ADCC) in SIV-infected macaques

correlates with delayed progression to AIDS. AIDS Res Hum Retroviruses 18:

1197–1205.

79. Gomez-Roman VR, Patterson LJ, Venzon D, Liewehr D, Aldrich K, et al.

(2005) Vaccine-elicited antibodies mediate antibody-dependent cellular cytotox-

icity correlated with significantly reduced acute viremia in rhesus macaques

challenged with SIVmac251. J Immunol 174: 2185–2189.

80. Bottiger B, Ljunggren K, Karlsson A, Krohn K, Fenyo EM, et al. (1988)

Neutralizing antibodies in relation to antibody-dependent cellular cytotoxicity-

inducing antibodies against human immunodeficiency virus type I. Clin Exp

Immunol 73: 339–342.

81. Yang X, Kurteva S, Ren X, Lee S, Sodroski J (2005) Stoichiometry of envelope

glycoprotein trimers in the entry of human immunodeficiency virus type 1.

J Virol 79: 12132–12147.

82. Ahmad R, Sindhu ST, Toma E, Morisset R, Vincelette J, et al. (2001) Evidence

for a correlation between antibody-dependent cellular cytotoxicity-mediating

anti-HIV-1 antibodies and prognostic predictors of HIV infection. J Clin

Immunol 21: 227–233.

83. Forthal DN, Landucci G, Daar ES (2001) Antibody from patients with acute

human immunodeficiency virus (HIV) infection inhibits primary strains of HIV

type 1 in the presence of natural-killer effector cells. J Virol 75: 6953–

6961.

84. Forthal DN, Landucci G, Haubrich R, Keenan B, Kuppermann BD, et al.

(1999) Antibody-dependent cellular cytotoxicity independently predicts survival

in severely immunocompromised human immunodeficiency virus-infected

patients. J Infect Dis 180: 1338–1341.

Breastmilk Antibodies and HIV-1 Transmission

PLoS Pathogens | www.plospathogens.org 12 June 2012 | Volume 8 | Issue 6 | e1002739



85. Forthal DN, Landucci G, Keenan B (2001) Relationship between antibody-

dependent cellular cytotoxicity, plasma HIV type 1 RNA, and CD4+
lymphocyte count. AIDS Res Hum Retroviruses 17: 553–561.

86. Sun Y, Asmal M, Lane S, Permar SR, Schmidt SD, et al. (2011) Antibody-

Dependent Cell-Mediated Cytotoxicity in Simian Immunodeficiency Virus-
Infected Rhesus Monkeys. J Virol 85: 6906–12.

87. Xiao P, Zhao J, Patterson LJ, Brocca-Cofano E, Venzon D, et al. (2010)
Multiple vaccine-elicited nonneutralizing antienvelope antibody activities

contribute to protective efficacy by reducing both acute and chronic viremia

following simian/human immunodeficiency virus SHIV89.6P challenge in
rhesus macaques. J Virol 84: 7161–7173.

88. Barouch DH, Liu J, Li H, Maxfield LF, Abbink P, et al. (2012) Vaccine

protection against acquisition of neutralization-resistant SIV challenges in rhesus
monkeys. Nature.

89. Forthal DN, Gilbert PB, Landucci G, Phan T (2007) Recombinant gp120

vaccine-induced antibodies inhibit clinical strains of HIV-1 in the presence of Fc
receptor-bearing effector cells and correlate inversely with HIV infection rate.

J Immunol 178: 6596–6603.
90. Hessell AJ, Rakasz EG, Poignard P, Hangartner L, Landucci G, et al. (2009)

Broadly neutralizing human anti-HIV antibody 2G12 is effective in protection

against mucosal SHIV challenge even at low serum neutralizing titers. PLoS
Pathog 5: e1000433.

Breastmilk Antibodies and HIV-1 Transmission

PLoS Pathogens | www.plospathogens.org 13 June 2012 | Volume 8 | Issue 6 | e1002739


