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Purpose: To provide nonrigid respiratory motion‐corrected DCE‐MRI images with 
isotropic resolution of 1.5 mm, full coverage of abdomen, and covering the entire 
uptake curve with a temporal resolution of 6 seconds, for the quantitative assessment 
of hepatic lesions.
Methods: 3D DCE‐MRI data were acquired at 3 T during free breathing for 5 minutes 
using a 3D T1‐weighted golden‐angle radial phase‐encoding sequence. Nonrigid respira-
tory motion information was extracted and used in motion‐corrected image reconstruction 
to obtain high‐quality DCE‐MRI images with temporal resolution of 6 seconds and iso-
tropic resolution of 1.5 mm. An extended Tofts model was fitted to the dynamic data sets, 
yielding quantitative parametric maps of endothelial permeability using the hepatic artery 
as input function. The proposed approach was evaluated in 11 patients (52 ± 17 years, 5 
men) with and without known hepatic lesions, undergoing DCE‐MRI.
Results: Respiratory motion produced artifacts and misalignment between dynamic 
volumes (lesion average motion amplitude of 3.82 ± 1.11 mm). Motion correction 
minimized artifacts and improved average contrast‐to‐noise ratio of hepatic lesions 
in late phase by 47% (p < .01). Quantitative endothelial permeability maps of mo-
tion‐corrected data demonstrated enhanced visibility of different pathologies (e.g., 
metastases, hemangiomas, cysts, necrotic tumor substructure) and showed improved 
contrast‐to‐noise ratio by 62% (p < .01) compared with uncorrected data.
Conclusion: 3D nonrigid motion correction in DCE‐MRI improves both visual and 
quantitative assessment of hepatic lesions by ensuring accurate alignment between 
3D DCE images and reducing motion blurring. This approach does not require breath‐
holds and minimizes scan planning by using a large FOV with isotropic resolution.
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1 |  INTRODUCTION

Dynamic contrast‐enhanced MRI (DCE‐MRI) of the liver is 
an approach yielding structural and functional information 
regarding tissue microvasculature. This is especially import-
ant in oncology, as it allows one to differentiate between 
healthy liver parenchyma as well as benign and malignant 
lesions.1 For DCE‐MRI in clinical practice, a series of T1‐
weighted MR images are acquired at different timepoints 
(TA) during intravenous injection of a paramagnetic contrast 
agent. In addition to assessing the contrast uptake visually, 
this technique allows one to calculate quantitative maps of 
pharmacokinetic parameters related to perfusion,2 such as 
the volume transfer constant (ktrans), which is associated 
with endothelial permeability, the volume fraction of blood 
plasma (νp), or the extravascular extracellular fractional vol-
ume (νe).

3,4 These DCE maps are commonly obtained by fit-
ting a pharmacokinetic model on a voxel‐by‐voxel basis.5,6

To date, organ motion is one of the main challenges for the 
acquisition of accurate DCE images of the liver. In particu-
lar, respiratory motion can lead to substantial motion artifacts 
within each T1‐weighted DCE‐MR image and to misalign-
ment between different images. This misalignment is espe-
cially problematic for the calculation of quantitative DCE 
maps, as the voxel‐by‐voxel fitting might be carried out over 
different voxels for each TA. To minimize respiratory motion 
artifacts, breath‐holding techniques have been used com-
monly in clinical setting for 3D DCE‐MRI. Often patients 
are asked to hold their breath at multiple instances for each 
TA for a predefined duration (10‐15 seconds).7-9 Although 
breath‐holding can ensure high image quality for each TA, 
it can still suffer from misalignment between DCE images, 
as each breath‐hold might be carried out at a slightly differ-
ent breathing position. Different postprocessing techniques 
have been suggested to minimize this misalignment by reg-
istering each volume in the time series to a reference vol-
ume. This approach, however, has limitations when applied 
to DCE, as the signal in each voxel varies over time not only 
due to breathing motion, but also due to contrast uptake,10-12 
therefore introducing a bias that can be misinterpreted by 
registration algorithms. Additionally, breath‐holding‐based 
techniques are especially limited in patients with limited 
respiratory reserve (e.g., elderly, postoperative patients, or 
patients with compromised cardiopulmonary functions), and 
the total number of acquired images is restricted.13,14 Hence, 
the number of timepoints that can be sampled along the con-
trast uptake curves is also limited, providing a poor tempo-
ral resolution for the fitting of the pharmacokinetic models. 
Free breathing DCE‐MRI techniques have been proposed pri-
marily for patients who have difficulties in complying with 
breathing instructions (such as pediatric patients), using soft‐
gating or radial imaging and compressed sensing to minimize 
respiratory motion artifacts.13-17 In general, these approaches 

suffer from residual motion artifacts and are associated with 
limitations in terms of through‐plane resolution and SNR.

Recently, Feng et al proposed an approach in which DCE‐
MRI data are acquired continuously during free breathing 
using a golden‐angle stack‐of‐stars scheme and then retro-
spectively sorted into different respiratory motion states.15,18 
Each motion state is then separated into multiple DCE‐MR 
images at different TAs. Motion and TA‐resolved 3D images 
are reconstructed directly from these bins using iterative 
reconstruction schemes and exploiting sparsity along the 
motion dimension. This method minimizes respiratory motion 
artifacts while providing accurate DCE‐MR information. 
Other approaches using nonrigid motion correction of each 
dynamic phase have also been proposed.19,20 Nevertheless, 
so far these techniques have only been demonstrated for a 
few timepoints TA with an intermediate slice resolution. In 
addition, the calculation of quantitative DCE maps has not 
been evaluated based on these methods.

In this study, we propose a novel approach that provides 
motion‐corrected DCE‐MRI images with full abdominal cov-
erage, isotropic spatial resolution of 1.5 mm, and covering 
the entire contrast uptake curve with a temporal resolution 
of 6 seconds. All data are acquired continuously during free 
breathing by using a golden‐angle radial phase‐encoding 
(GRPE) acquisition scheme. In the proposed technique, DCE 
images and deformable nonrigid respiratory motion informa-
tion are obtained directly from the same data, without the 
need for an additional scan. Motion correction is carried out 
iteratively during image reconstruction. As a result, quantita-
tive DCE maps can be calculated directly from the motion‐
corrected DCE images.

2 |  METHODS

The approach investigated in this study can be divided 
into 3 main steps, as shown in Figure 1. First, continuous 
data acquisition during free breathing is carried out with a 
3D‐GRPE sampling trajectory. Second, the acquired data 
are retrospectively binned into multiple respiratory motion 
states (Nresp) along the breathing cycle, which are predicted 
according to a respiratory self‐navigator extrapolated from 
central k‐space lines. The retrospective binning carried out 
in this approach ensures that the same amount of data is 
used to form each motion state and that it is taken evenly 
throughout contrast uptake. This step averages the intensity 
variations induced by contrast uptake evenly throughout in 
each motion state, which would otherwise introduce a bias 
in the image registration procedures. 3D images describing 
different respiratory motion states are reconstructed with 
a non‐Cartesian iterative SENSE reconstruction with spa-
tial and temporal regularization. 3D nonrigid respiratory 
motion of each state with respect to a reference state in the 
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breathing cycle (end‐expiration) is then estimated using a 
nonrigid spline‐based image registration with normalized 
mutual information metric. This provides Nresp nonrigid 
transformations or motion fields (MFs), which are then 

directly incorporated into the final image reconstruction 
of 3D dynamic motion‐corrected (MC) images. Data sets 
without motion correction (NMC) are also reconstructed for 
comparison.

F I G U R E  1  Magnetic resonance continuous acquisition during free breathing using a 3D golden‐angle radial phase‐encoding (GRPE) k‐space 
sampling trajectory (“Acquisition”). Data are retrospectively binned in Nresp respiratory motion states that characterize the patient’s breathing 
cycle, according to a respiratory self‐navigator. After reconstruction of respiratory‐resolved images, nonrigid motion fields (MFs) are obtained 
using spline‐based image registration (“Respiratory Data Binning and Motion Estimation”). The MFs are incorporated directly into the final image 
reconstruction of the dynamic motion‐corrected 3D images (“Dynamic Motion Correction”)
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2.1 | Data acquisition
A 3D fat‐suppressed T1‐weighted gradient‐echo acquisition is 
carried out continuously for 4 minutes during free breathing 
with a GRPE sampling trajectory.21 This trajectory combines 
Cartesian frequency encoding with a radial‐like sampling 
in the phase‐encoding plane, where the individual phase‐ 
encoding steps are sampled along radial lines. Successively 
acquired lines are separated by the golden angle (111.25º). 
This strategy ensures a homogenous sampling of the phase‐
encoding plane through time, flexibility regarding temporal 
retrospective data binning, and the possibility to derive a res-
piratory self‐navigator directly from the acquired data.22,23 
Characteristic imaging parameters are TR/TE = 3.3 ms/1.36 ms,  
flip angle = 12°, FOV = 288 × (288 – 345) × (288 – 345) mm3,  
isotropic spatial resolution = 1.5 mm, and partial Fourier fac-
tor = 5/8. A total of 120 k‐space points along each GRPE 
line are acquired with a total number of 640 GRPE lines. 
Magnetic resonance contrast injection always takes place 
during the acquisition, approximately 1 minute after the start 
of the sequence.

A 2D fat‐suppressed T2‐weighted turbo spin‐echo 
sequence is also acquired for further characterization of 
lesions (TR/TE = 6427 ms/100 ms).

2.2 | Retrospective respiratory data 
binning and motion estimation
After the GRPE sequence is acquired, a full 1‐dimensional 
projection of the signal along the foot–head direction is 
reconstructed from the central k‐space spokes. These are 
acquired once every 120 TRs, yielding 640 samples over the 
entire acquisition and therefore yielding a temporal resolu-
tion for the navigator of 0.5 seconds. After 1‐dimensional 
Fourier transform, these projections showed organ motion 
along the foot–head direction. This procedure is repeated 
for each receiver coil separately. These signal changes are 
caused primarily by respiratory motion but are also due 
to the injection of the MR contrast agent in the imaging 
volume, resulting in changes of the main signal. However, 
respiratory motion and contrast agent dynamics show 
very different temporal behavior and hence can be sepa-
rated with a principal component analysis. Nevertheless, 
depending on the area of interest (i.e., depending on the 
receiver coil), either respiratory or contrast changes are 
the dominating components; hence, simply always taking  
the first or second phase contrast (PC) is not sufficient to 
reliably extract a respiratory self‐navigator. To ensure that 
the correct PC is extracted, we use the following approach 
in all patients:

1. Reconstruction of 1‐dimensional projection from central 
k‐space spokes for each receiver coil;

2. Application of principal component analysis to each coil 
separately, to obtain the PC of signal changes;

3. Transformation of each PC into the frequency domain (fre-
quency range: ±1.1 Hz) by applying a Fourier transform;

4. Identification of PC with the highest respiratory contribu-
tion (PCresp), achieved by looking at the frequency spec-
trum of each component and selecting the one with the 
greatest area under the curve in the frequency range of 
0.1‐0.5 Hz24; and

5. Application of principal component analysis along the 
PCresp of each coil, to extract 1 respiratory self‐navigator.

The GRPE data are then retrospectively separated into Nresp 
bins according to the amplitude of the respiratory self‐navi-
gator. This is achieved in a sliding window fashion such that 
each bin contains the same amount of k‐space data.

2.3 | Respiratory motion estimation
Once the GRPE data have been reassigned to the Nresp dif-
ferent motion states, a non‐Cartesian iterative sensitivity‐ 
encoding approach25-27 is used to reconstruct for each res-
piratory motion state (including the reference) an image Î, 
as follows:

where the terms TVs = ||∇sI||1 and TVt = ||∇tI||1 are the spa-
tial total variation within each motion state and temporal total 
variation across different but confining motion states; ∇s and 
∇t represent the spatial and temporal gradients, respectively 
(these terms minimize aliasing artifacts, which in turn allow 
for a more precise registration procedure to the reference 
image); λs and λt represent the spatial and temporal regular-
ization parameters, respectively, and are used to tune regular-
ization strength to reach the desired equilibrium between data 
consistency ‖EI−K‖2

2
 and minimization of undersampling 

artefacts; K is the k‐space data present in the bin of inter-
est; and E is the encoding operator that applies the Fourier 
transform and gridding operations while encompassing infor-
mation on the coil sensitivities. To minimize reconstruction 
times, coil compression to 6 channels was carried out prior to 
image reconstruction. The regularization parameters λs and λt 
were manually optimized once and then kept constant for all 
patients. Equation 1 was solved using a nonlinear conjugate 
gradient approach with a backtracking line search.25

Next, these images are registered through a 3D non-
rigid spline‐based image registration algorithm based on 
normalized mutual information.28 The MFs resulting from 
this procedure are then used in the final image reconstruc-
tions to transform all data to the reference motion state  
(i.e., end‐expiration).

(1)Î =argmin
�
‖EI−K‖2

2
+𝜆sTVs+𝜆tTVt

�
,
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2.4 | Motion‐corrected DCE‐MRI 
reconstruction
A motion‐corrected non‐Cartesian iterative kt‐SENSE image 
reconstruction algorithm29,30 is used to obtain the final 3D 
dynamic DCE‐MR images. The kt‐SENSE reconstruction 
uses signal similarities along the temporal dimension to mini-
mize undersampling artifacts. Radial phase‐encoding under-
sampling artifacts show high incoherence over time, as each 
dynamic phase is reconstructed with a different radial phase‐
encoding pattern. The contrast agent dynamics, however, lead 
to slower intensity variations; therefore, the 2 signals can be 
separated in xf‐space. This separation is achieved using pre-
vious information obtained from low‐spatial‐resolution train-
ing data (M), which have the same temporal resolution as 
the final dynamic DCE‐MRI. For GRPE, M can be obtained 
by applying a low‐pass Gaussian filter in the phase‐encoding 
plane and reconstructing a set of dynamic DCE‐MR images 
with a standard iterative SENSE reconstruction.31 In this 
study we have set sigma of the Gaussian filter to 0.1, leading 
to a spatial resolution of approximately 8 mm for M. The 
training data are then used to regularize the iterative image 
reconstruction in xf‐space, which reconstruct the dynamic 
image series (Î) at once in the following manner:

where E� =EFf→t represents the encoding operator with an 
additional temporal Fourier transform f→t, K represents 
the k‐space data, and � is the regularization parameter. In 
this equation, Î is given in xf‐space, and the final diagnostic 
DCE images in xt‐space are obtained by applying f→t to the 
result of Equation 2. The retrospective binning of the data to 
obtain Î is carried out in a sliding window fashion to yield 48 
DCE phases, each formed by 3134 GRPE points. The slid-
ing window approach was chosen to have an overlap of 50%  
(i.e., 1567 GRPE points), leading to a temporal spacing 
between neighboring DCE phases of 6 seconds. The motion 
correction is then introduced directly in Equation 2 through 
the encoding operator E as follows:

where MFj is the motion field relative to the motion state j; 
Sc is the coil sensitivity map for each coil c;  is the Fourier 
transform; and Aj is a logical operator that collects only  
k‐space data acquired in the motion state j. This means that 
the data for each dynamic time frame are split into all motion 
states and transformed to the reference motion state. For 
comparison, kt‐SENSE reconstruction was also carried out 
without respiratory motion correction.

Similar to the reconstruction of the respiratory‐resolved 
images, coil compression using 6 channels was applied. The 
strength of the regularization parameter � was determined 
manually to achieve a good tradeoff between artifact sup-
pression and temporal accuracy of the DCE signals. Image 
reconstruction was carried out with a preconditioned conju-
gate gradient approach.

The reconstruction algorithm was written in MATLAB 
(R2016b, The MathWorks, Natick, MA) and Python (Python 
Software Foundation). It was run in parallel on a 24‐core 
workstation equipped with 256 GB of memory. On average, 
the MC reconstruction of a 48‐phase DCE time series took 
5 hours to complete versus the 40 minutes needed for the 
reconstruction without motion correction.

2.5 | Patient population
The study was prospectively approved by and registered 
with the local institutional review board. All data were 
acquired on a 3T Biograph mMR hybrid scanner (Siemens 
Healthcare, Erlangen, Germany). A total of 11 oncologi-
cal patients undergoing whole‐body PET‐MR examination 
were included and provided written, informed consent. 
Five patients who were suspected or known to have hepatic 
lesions received 0.01 mmol/kg of gadoxeate disodium, 
while the remaining 6 patients were examined for rea-
sons primarily not related to liver imaging of metastases 
and were injected with 0.1 mmol/kg of gadobutrol. The 
former contrast agent is hepato‐specific and used solely 
in MR liver imaging of focal lesions, whereas the latter is 
extracellular and used in a wide range of MRI applications 
including hepatic imaging. All contrast injections were 
administered manually during the scan.

2.6 | Quantitative DCE maps
Signal intensity curves (S(t)) are extracted from the dynamic 
3D‐DCE images into contrast uptake curves (C(t)) using a 
conversion approach suggested by the Quantitative Imaging 
Biomarkers Alliance,32 which was further developed by 
Medved et al33 for heavily T1‐weighted sequences as follows:

where C (t) is the time‐dependent concentration of contrast 
agent expressed in mM; S(t) and S(0) are the time‐dependent 
and precontrast signal intensities, respectively; r is the relax-
ivity of the contrast agents (5 mM‐1 s‐1 for gadobutrol and 6.2 
mM‐1 s‐1 for gadoxetate disodium) at a field strength of 3 T34; 
T1ref is the native precontrast T1 value of a reference tissue 
(809 ms was chosen for the liver parenchyma)35; and S(0)ref 

(2)Î =argmin
�
‖E�I−K‖2

2
+𝜆‖M−1I‖2

2

�
,

(3)
E=

∑

j

AjScMFj,

(3)C (t)≈
(S (t)−S (0))

r ⋅ T1ref ⋅ S (0)ref



1758 |   IPPOLITI eT aL.

is the precontrast signal intensity value of the same reference 
tissue calculated in a region of interest (ROI).

After the conversion from signal intensity to contrast 
agent concentration, a standard model such as the extended 
Toft model was applied,5,6 to derive voxel‐wise maps of the 
volume transfer constant (ktrans) as follows:

where Ctoi (t) is the temporal evolution of the contrast uptake 
curve for any given voxel in the tissue of interest; Cp (t) rep-
resents the blood plasma contrast uptake curve as obtained 
from the arterial input function (AIF) measured in the hepatic 
artery; vp is the volume fraction of blood plasma; ve is the 
extravascular extracellular fractional volume; ΔT is the time 
delay of the tissue enhancement relative to the dynamic con-
trast agent concentration in arterial plasma Cp (t); and * is the 
convolution operator. The hepatic artery was used as source 
for the input function to fit the parametric maps.

2.7 | Quantitative evaluation
To assess the effect of respiratory motion correction on the 
visualization of hepatic lesions, contrast‐to‐noise ratio (CNR) 
at the border between the inspected lesions and their sur-
rounding tissue for each data set was determined as follows:

where S̄I represents the mean intensity value measured 
inside an ROI enclosing the lesion; and S̄O is the mean 
signal intensity value in an ROI that directly borders this 
lesion, whereas �O represents its SD. The mean CNR 
(CNRMC, CNRNMC) and SD (�MC, �NMC) of the motion‐
corrected and uncorrected data set were then calculated. 
Statistical significance in the difference of CNR values 
was assessed through a paired t‐test after ensuring the nor-
mality assumption of distribution of values through the 
1‐sample Kolmogorov‐Smirnov test. Differences were con-
sidered to be significant for p < .05 in all tests. The CNR 
evaluation was carried out on the latest phase of the recon-
structed dynamic data sets (approximately 4 minutes after 
contrast injection) and on the ktrans parametric maps fitted 
from the pharmacokinetic model. In addition, the motion of 
each lesion examined in the former evaluation was calcu-
lated as the RMS displacement (RMSD), derived from the 
amplitude of the MF that characterizes the transformation 
between the end‐inspiration and end‐expiration state.

3 |  RESULTS

3.1 | Evaluation of motion correction
Figure 2 shows a coronal slice of the reference motion state 
Îref  together with 4 different respiratory‐resolved motion 
states Îj (Figure 2A). The difference images between the 
motion states and the reference state |||Îref − Îj

||| (Figure 2B), 
and between the transformed images of each motion state 
to the reference state and the reference state itself 
|||Îref −MFj ⋅ Îj

||| (Figure 2C), show that the obtained MFs 
accurately transform Îj to Îref  and minimize anatomical dif-
ferences between the motion states. The value of |||Îref − Îj

||| 
shows strong differences seen especially around small fea-
tures such as edges, the heart, and vessels, which increase 
from I1 to I7 as the states being examined become more 
distant from the reference end‐expiration state. For 
|||Îref −MFj ⋅ Îj

||| , image differences can be seen primarily 
around the heart due to uncompensated cardiac motion. 
Respiratory movement concerning the liver in general and 
the central part of the abdominal area appears to be effec-
tively corrected for.

Supporting Information Figure S1 and Figure 3 depict 
the NMC and MC coronal sections of the liver, taken from 
a patient injected with gadobutrol and a patient injected with 
gadoxetate disodium, respectively, showing dynamic contrast 
uptake. The patient in Supporting Information Figure S1 
is exemplary of a healthy liver and shows how the contrast 
uptake evolves in time in healthy tissue and in the vascula-
ture. Figure 3 is an example of a liver affected by neuroendo-
crine tumors, which can be clearly identified (arrows) in the 
late stages of the contrast uptake. In the uncorrected images, 
respiratory motion strongly impairs the visibility of the vas-
culature and neuroendocrine tumor lesions. Motion blurring 
of the kidneys and at the edge of the liver can also be seen. 
The proposed respiratory MC approach compensates for this 
effect and ensures accurate depiction of the anatomy and 
pathologies leading to sharp edges and clear visibility of vas-
culature and neuroendocrine tumor lesions, which is main-
tained throughout the dynamic sequence.

Temporal profiles in 6 patients of tumors (gadoxetate 
disodium patients, Figure 4A,B) and vessels (gadobutrol 
patients, Figure 4C) are shown in Figure 4 for uncorrected 
and corrected images. In each dynamic DCE image, a line 
along the foot–head direction was selected and plotted over 
time, showing the contrast dynamics. Blurring induced by 
respiratory movement reduces the detectability of small fea-
tures. This can lead to the apparent disappearance of features 
for the entire (Figure 4A,C) dynamic image sequence. In 
addition, small features in close proximity cannot be distin-
guished anymore (Figure 4B,C). Motion‐corrected images 
generally show well‐defined feature boundaries and contrast 
uptake in both space and time.

(4)
Ctoi (t) = vpCp (t)+ktrans

t

∫
0

Cp (�−ΔT) ⋅ e
−

ktrans

ve
(t−�−ΔT)

d�

= vpCp (t)+ktrans ⋅ e
−

ktrans

ve
Δt
∗Cp (t−ΔT)

(5)CNR=
S̄I − S̄O

𝜎O
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F I G U R E  2  Depiction of 4 respiratory‐resolved motion states Îj and reference state Îref  (A) and their absolute difference |||Îref − Îj
||| (B). C, 

Absolute difference between the motion states transformed to the reference state by using the estimated MFs |||Îref −MFj ⋅ Îj
|||

(A)

(B)

(C)

F I G U R E  3  Contrast dynamics of 8 temporal timepoints out of the 48 DCE volumes for patients injected with gadoxetate disodium. For 
visibility, only a part of the FOV is shown. Respiratory motion correction (MC) reduces motion‐induced blurring (red arrows) of the anatomy and 
pathology. In addition, some of the small lesions only become distinguishable from healthy liver with MC (blue arrows). Abbreviations: NMC, no 
motion correction
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The quantitative CNR evaluation of the MC and NMC 
data sets was carried out on 19 lesions in the latest dynamic 
phase that were chosen across all patients affected by hepatic 
metastases (Table 1). The CNR of the MC data set showed a 
statistically significant increase, yielding a CNRMC of 1.46 ± 
0.51 against CNRNMC of 1.09 ± 0.33, therefore scoring an 
overall average percentage increase of 47% (p<10−4 ). Table 1 
summarizes the RMSD of each investigated lesion and a 
mean RMSD over all lesions (RMSD) of 3.82 ± 1.11 mm.

3.2 | Dynamic contrast‐enhanced 
quantitative improvement assessment
Figure 5 shows the anatomical images from the NMC (Figure 5A) 
and MC (Figure 5B) data sets of a liver affected by metastases, 
together with the contrast uptake curves measured in an ROI 
encircling a lesion and a sample of healthy tissue (Figure 5C). 
The uptake curves regarding the lesion show how the MC and 
NMC dynamic data sets differ, with a focus on the estima-
tion of the enhancement peak (1.5 minutes) and of the later 
dynamic phases (3‐5 minutes). The MC contrast uptake curve 

measured in a lesion shows the characteristic rapid wash‐in 
followed by rapid washout, which can be clearly distinguished 
from healthy tissue. In the NMC images, the signal from the 
lesion is strongly blurred and the measured uptake curve 
appears to be very similar to healthy tissue.

The achieved spatial resolution of 1.5 mm3 is sufficiently 
high to sample the input functions (Figure 5D,E) necessary 
for the underlying pharmacokinetic model, in both the aorta 
(Figure 5F) and hepatic artery (Figure 5G). The input func-
tions sampled in the aorta are very similar due to the position 
and small size of the sampling ROI, which is hardly affected 
by respiratory movement. Input functions sampled in the 
hepatic artery, in contrast, differ strongly between NMC and 
MC, especially during the enhancement peak, which appears 
underestimated in the NMC data set.

Figure 6 shows the quantitative ktrans maps calculated on 
the data sets of patients affected by hepatic lesions injected 
with gadoxetate disodium. In the first patient (Figure 6A), 
larger lesions have diminished contrast in the maps derived 
from NMC dynamic data sets, whereas small lesions dis-
appear completely. Both large and small lesions can be 

F I G U R E  4  Temporal dynamics of signal intensity of lesions (gadoxetate disodium) and vessels (gadobutrol). For the temporal plots, a 
line of voxels was sampled along the foot–head direction (i.e., along the main respiratory motion direction) in 6 different patients. A,C, Blurring 
induced by respiratory movement led to the apparent disappearance of features for the entire dynamic image sequence. B,C, Small features in close 
proximity cannot be distinguished anymore. Motion‐corrected images generally show well‐defined feature boundaries and contrast uptake in both 
space and time

(A)

(B)

(C)
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distinguished clearly from healthy liver tissue using the 
proposed MC scheme. In Figure 6B, the contrast provided 
in the uncorrected ktrans map is not sufficient to distinguish 
the highlighted lesion from the background tissue, whereas 
it is clearly visible using MC. Figure 7 displays the ktrans 
maps calculated using 2 patients without known or sus-
pected haptic malignant lesions injected with gadobutrol. 
The first patient (Figure 7A) is affected by a liver heman-
gioma, which is typically less perfused than healthy tis-
sue. The hemangioma can be better distinguished in the 
MC ktrans map compared with the uncorrected ktrans map. 
The second patient (Figure 7B) shows a cyst that can only 
be properly distinguished from the surrounding healthy tis-
sue using MC. In general, the NMC maps obtained from 
both gadoxetate disodium and gadobutrol contrast agents 
show an overall higher range of values for the healthy liver 
parenchyma. This can reduce the contrast between healthy 
tissue and the features of interest. Figure 8A,B shows  

2 examples of lesions characterized by a central necrotic 
core (blue arrows), identified on the corresponding ktrans 
maps as areas of low permeability. In the T2‐weighted 
images, the necrotic core is confirmed as a hyperintense 
region.36 In the MC maps, the necrotic cores can be better 
identified compared with the NMC ktrans maps.

The quantitative CNR evaluation was carried out on a 
set of 10 lesions visible in the MC and NMC permeability 
maps (Table 2). Similar to the CNR evaluation of the late 
phase, a statistically significant increase (CNRMC = 4.12 ± 
1.01 against CNRNMC = 2.55 ± 0.80) was obtained, yielding 
an overall percentage increase averaged over all examined 
lesions of 62% (p<10−4 ).

4 |  DISCUSSION

Abdominal organ motion caused by respiration is a major 
challenge in the accurate acquisition of the DCE‐MRI time 
series and subsequent derivation of parametric maps, as it 
introduces motion artifacts and misalignment between the 
images at different timepoints. This study demonstrates that 
based on the proposed MC algorithm, breathing artifacts can 
be minimized, substantially improving the image quality in 
DCE‐MRI and increasing the reliability in the derivation of 
quantitative ktrans maps obtained during free breathing.

In this study, respiratory MFs were estimated directly from 
the DCE‐MR data. To obtain MFs that accurately describe 
respiratory motion, it is necessary that image registration of 
the different motion states is not affected by intensity changes 
due the contrast agent uptake. That was achieved with the 
retrospective data‐binning procedure of our approach, which 
used the same amount of data in each motion state, taken 
evenly from the entire contrast uptake curve according to 
the respiratory self‐navigator. Therefore, temporal inten-
sity changes due to contrast agent were averaged out for all 
motion states, which can be seen in Figure 2.

The RMSD measured across all investigated lesions 
reveals an average absolute displacement of approximately 
4 mm, ranging from 2 mm to 6 mm. These measures agree 
with recent studies that reported an average translational 
rigid liver motion comprised between 1.2 mm and 19.9 
mm, depending on the examined location.37,38 However, the 
observed increase in CNR values is not only directly related 
to the motion amplitude of the lesions before MC is applied. 
The size of the lesion (with respect to the motion amplitude) 
and the patient’s breathing pattern are also important factors 
that affect CNR estimation.

An approach to minimize rather than correct for respira-
tory motion of DCE‐MRI of the liver has been proposed by 
Feng et al.20 In this XD‐GRASP approach, the DCE‐MRI 
data acquired with a golden‐angle stack‐of‐stars sequence are 
retrospectively sorted into 2 additional temporal dimensions 

T A B L E  1  Contrast‐to‐noise ratio of the last DCE phase and 
displacement statistics

Lesion No. CNR
NMC

CNR
MC

RMSD(mm)

1 1.69 2.39 3.01

2 1.32 1.90 2.06

3 1.27 1.72 3.01

4 1.48 2.03 2.34

5 0.45 2.08 5.79

6 1.15 1.44 4.72

7 2.25 3.59 5.49

8 1.76 3.06 4.19

9 2.32 3.15 2.95

10 2.52 2.09 1.92

11 0.76 2.28 4.41

12 2.14 3.67 3.05

13 1.33 1.86 4.16

14 1.18 2.11 4.36

15 1.00 1.49 3.83

16 1.90 2.79 3.88

17 1.94 1.91 5.52

18 2.34 2.62 4.66

19 1.07 1.71 3.44

CNR
NMC

±�
NMC

CNR
MC

±�
MC

RMSD±�
RMSD

(mm)

1.57 ± 0.59 2.31 ± 0.67 3.82 ± 1.11

Note: These results are from the contrast‐to‐noise ratio (CNR) analysis of the 
MC (CNR

MC
) and NMC (CNR

NMC
) dynamic data sets carried out together with 

the lesion RMS displacement (RMSD) evaluation. The value of CNR
MC

 (±�
MC

) 
represents the mean CNR (± SD) calculated across all lesions of the MC data 
set; CNR

NMC
 (±�

NMC
) refers to the mean CNR (± SD) of the NMC data set.
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F I G U R E  5  Transversal slice acquired at the last sampled phase (4 minutes after contrast injection) and extracted from the uncorrected 
(NMC) (A) and MC (B) dynamic data sets. A region of interest (ROI) is drawn in a hepatic lesion in the MC (blue) and NMC (red) data sets, 
together with an ROI of healthy tissue (green) in the MC data set. C, Respiratory motion leads to a blurring of signal from the lesion and 
surrounding healthy tissue, making the measured uptake curve in the lesion difficult to distinguish from healthy tissue. Uptake curves from the MC 
image show the characteristic uptake behavior of hepatic lesions. Transversal slice at the offspring of the hepatic artery (HA) also show the aorta 
(AO) at an arterial phase (15 seconds after contrast injection) for the uncorrected (D) and motion‐corrected (E) data sets. Respiratory motion has 
little effect on the uptake curve from the aorta (F), but can strongly impair the uptake curves in small vessels such as HA (G)

(A) (B) (E)

(F)

(G)

(C) (D)

F I G U R E  6  The ktrans maps of 2 patients (A,B) injected with gadoxetate disodium suffering from hepatic malign lesions. Motion correction 
improves the visibility especially of small lesions in the ktrans maps

(A)

(B)
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(contrast‐enhancement phases and respiratory phases) and 
reconstructed iteratively, exploiting data similarity between 
neighboring timepoints along these dimensions. The golden‐
angle stack‐of‐stars trajectory obtains a high number of 
radial frequency–encoded lines, ensuring sufficient data in 
each contrast and motion‐resolved bin. Golden‐angle radial 
phase‐encoding, on the other hand, obtains much fewer radial 
spokes in the ky‐kz plane. Therefore, each bin would not 
have a sufficient amount of data for image reconstruction. 
Furthermore, 8 respiratory bins and 48 dynamic time frames 
would require the simultaneous reconstruction of 384 3D vol-
umes, leading to very high memory demands.

Recently, Johansson et al39 presented a deformable MC 
approach for DCE‐MRI of the liver. In contrast to our work, 
motion is not applied during image reconstruction, but a 

simplified back‐projection deformation approach is used, 
which carries out MC as a preprocessing step before image 
reconstruction.40 In addition, their voxel size is approximately 
a factor of 4 larger than in our study, potentially making the 
assessment of small features such as necrotic cores challenging.

The parametric ktrans maps show that the proposed MC 
scheme significantly improves contrast between features of 
interest (e.g., metastases, cysts, hemangiomas) and healthy 
tissue and can more accurately resolve tumor substructures 
that are closely related to perfusion, such as necrotic cores. In 
addition, ktrans values of healthy liver tissue are more repro-
ducible among patients. This is due to 2 main factors that have 
a direct effect on the fitting of the pharmacokinetic model. 
First, minimizing motion artifacts and image misalignment 
in the NMC data sets leads to better‐defined features and 

F I G U R E  7  The ktrans maps of 2 patients injected with gadobutrol. A, Visibility of a hemangioma is improved with MC. B, A hepatic cyst can 
be seen clearly in MC, but can hardly be distinguished from the surrounding healthy tissue in NMC

(A)

(B)

F I G U R E  8  The ktrans maps of a 
patient injected with gadoxetate disodium 
and suffering from necrotic hepatic lesions 
(A,B). Identification and delineation of 
the necrotic substructure is more accurate 
in the MC map compared with the NMC 
map. The necrotic core is confirmed by the 
hyperintense region in the turbo spin‐echo 
(TSE) image. It is important to note that 
the TSE images were acquired during a 
breath‐hold with a low slice resolution of 6 
mm. Therefore, our ktrans maps and the TSE 
images do not show the exact same anatomy

(A)

(B)
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ensures that data fitting is carried out over well‐aligned vox-
els. Second, motion artifacts can also impair the AIF signal, 
especially in the case of the relatively small hepatic artery. 
These artifacts primarily lead to an underestimation of con-
trast uptake during the enhancement peak (Figure 5C) and 
therefore to an overestimation of ktrans. Following MC, the 
detection and delineation of hepatic lesions is substantially 
improved in both the dynamic images and parametric ktrans 
maps. This assumption is confirmed by the CNR evaluations 
conducted on the latest dynamic phase recorded and the ktrans 
maps, achieving an average increase of 47% and 62%, respec-
tively. These results suggest that successful MC can improve 
the visualization of various features within each patient, but 
at the same it could also provide more accurate comparisons 
concerning group studies.

Further improvements in ktrans estimation could be 
achieved by using native T1 maps32 for signal conversion and 
automatic contrast injection. Both NMC and MC ktrans maps 
are affected by these parameters; therefore, the results of the 
comparison between NMC and MC carried out in this study 
would not change.

Here, we obtained the AIF from the hepatic artery to 
demonstrate the effect that respiratory motion can have on the 
calculation of the AIF, but we did not use an uptake model 
that is specifically designed for this AIF. Nevertheless, the 
improvements of ktrans achieved with our approach in this 
study are also expected to apply to advanced pharmacoki-
netic models, which specifically require information from the 
hepatic artery such as the dual‐input single‐compartment and 
2‐compartment models.41,42

5 |  CONCLUSIONS

In this study, we introduced a novel MC method allowing for 
free breathing 3D abdominal DCE‐MRI with isotropic reso-
lution of 1.5 mm covering the entire contrast uptake curve 
with a temporal resolution of 6 seconds. Nonrigid respiratory 
MC minimized motion‐induced blurring and artifacts, lead-
ing to an improved visualization and delineation of lesions. 
In addition, it ensured accurately aligned dynamic images, 
improving the calculation of quantitative 3D ktrans permeabil-
ity maps. This approach does not require any breath‐holds, 
and the large FOV with isotropic resolution minimizes scan 
planning, making this technique straight forward to apply in 
a clinical setting.

ACKNOWLEDGMENTS

The authors gratefully acknowledge funding from the German 
Research Foundation (GRK 2260 ‐ BIOQIC and DFG‐CRC 
1340 ‐ Matrix in Vision). The work was also partly supported 
by the EMPIR project 15HLT05 PerfusImaging. The EMPIR 
initiative is co‐funded by the European Union’s Horizon 
2020 research and innovation programme and the EMPIR 
Participating States.

CONFLICT OF INTEREST

Dr. Mathias Lukas is an employee of Siemens Healthcare.

ORCID

Matteo Ippoliti   https://orcid.org/0000-0002-3019-7647 
Christoph Kolbitsch   https://orcid.org/0000-0002-4355-8368 

REFERENCES

 1. Choyke PL, Dwyer AJ, Knopp MV. Functional tumor imaging with 
dynamic contrast‐enhanced magnetic resonance imaging. J Magn 
Reson Imag. 2003;17:509–520.

 2. Cao Y, Wang H, Johnson TD, et al. Prediction of liver function by 
using magnetic resonance‐based portal venous perfusion imaging. 
Int J Radiat Oncol Biol Phys. 2013;85:258–263.

 3. Materne R, Smith AM, Peeters F, et al. Assessment of hepatic 
perfusion parameters with dynamic MRI. Magn Reson Med. 
2002;47:135–142.

 4. Patel J, Sigmund EE, Rusinek H, Oei M, Babb JS, Taouli B. 
Diagnosis of cirrhosis with intravoxel incoherent motion dif-
fusion MRI and dynamic contrast‐enhanced MRI alone and in 
combination: preliminary experience. J Magn Reson Imaging. 
2010;31:589–600.

 5. Tofts PS, Kermode AG. Measurement of the blood‐brain barrier 
permeability and leakage space using dynamic MR imaging. 1. 
Fundamental concepts. Magn Reson Med. 1991;17:357–367.

T A B L E  2  Contrast‐to‐noise ratio of parametric ktrans

Lesion No. CNR
NMC

CNR
MC

1 2.85 3.88

2 3.30 4.91

3 2.23 3.53

4 3.74 4.59

5 3.43 6.32

6 2.16 4.53

7 1.51 3.40

8 2.10 3.93

9 1.42 2.95

10 2.77 3.13

CNR
NMC

±�
NMC

CNR
MC

±�
MC

2.55 ± 0.80 4.12 ± 1.01

Note: These results are from the CNR analysis of the MC (CNR
MC

) and NMC 
(CNR

NMC
) parametric ktrans maps. The value of CNR

MC
 (±�

MC
) represents 

the mean CNR (± SD) calculated across all lesions of the MC‐derived map; 
CNR

NMC
 (±�

NMC
) refers to the mean CNR (± SD) of the NMC map.

https://orcid.org/0000-0002-3019-7647
https://orcid.org/0000-0002-3019-7647
https://orcid.org/0000-0002-4355-8368
https://orcid.org/0000-0002-4355-8368


   | 1765IPPOLITI eT aL.

 6. Tofts PS, Brix G, Buckley DL, et al. Estimating kinetic parameters 
from dynamic contrast‐enhanced T(1)‐weighted MRI of a diffus-
able tracer: standardized quantities and symbols. J Magn Reson 
Imaging. 1999;10:223–232.

 7. Quillin SP, Atilla S, Brown JJ, Borrello JA, Yu CY, Pilgram TK. 
Characterization of focal hepatic masses by dynamic contrast‐ 
enhanced MR imaging, findings in 311 lesions. Magn Reson 
Imaging. 1997;15:275–285.

 8. Miyazaki K, Orton MR, Davidson RL, et al. Neuroendocrine tumor 
liver metastases: use of dynamic contrast‐enhanced MR imaging 
to monitor and predict radiolabeled octreotide therapy response. 
Radiology. 2012;263:139–148.

 9. Rogelj P, Zöllner FG, Kovačič S, Lundervold A. Motion correction 
of contrast‐enhanced MRI time series of kidney. In: Proceedings 
of the 16th International Electrotechnical and Computer Science 
Conference, Portoroz, Slovenia, 2007. pp. 191–194.

 10. Melbourne A, Atkinson D, White MJ, Collins D, Leach M, Hawkes 
D. Registration of dynamic contrast‐enhanced MRI using a pro-
gressive principal component registration (PPCR). Phys Med Biol. 
2007;52:5147–5156.

 11. Hamy V, Dikaios N, Punwani S, et al. Respiratory motion correction 
in dynamic MRI using robust data decomposition registration— 
application to DCE‐MRI. Med Image Anal. 2014;18:301–313.

 12. Bultman EM, Brodsky EK, Horng DE, et al. Quantitative hepatic 
perfusion modeling using DCE‐MRI with sequential breath‐holds. 
J Magn Reson Imaging. 2014;39:853–865.

 13. Bamrungchart S, Tantaway EM, Midia EC, et al. Free breathing 
three‐dimensional gradient echo‐sequence with radial data sam-
pling (radial 3D‐GRE) examination of the pancreas: comparison 
with standard 3D‐GRE volumetric interpolated breath‐hold exam-
ination (VIBE). J Magn Reson Imaging. 2013;38:1572–1577.

 14. Reiner CS, Neville AM, Nazeer HK, et al. Contrast‐enhanced free‐
breathing 3D T1‐weighted gradient‐echo sequence for hepatobili-
ary MRI in patients with breath‐holding difficulties. Eur Radiol. 
2013;23:3087–3093.

 15. Feng LI, Grimm R, Block KT, et al. Golden‐angle radial sparse 
parallel MRI: combination of compressed sensing, parallel im-
aging, and golden‐ angle radial sampling for fast and flexible dy-
namic volumetric MRI. Magn Reson Med. 2014;72:707–717.

 16. Lee CK, Seo N, Kim B, et al. The effects of breathing motion on 
DCE‐MRI images: phantom studies simulating respiratory motion 
to compare CAIPIRINHA‐VIBE, radial‐VIBE, and conventional 
VIBE. Korean J Radiol. 2017;18:289–298.

 17. Zhang T, Cheng JY, Potnick AG, et al. Fast pediatric 3D 
free‐breathing abdominal dynamic contrast enhanced MRI 
with high spatiotemporal resolution. J Magn Reson Imaging. 
2015;41:460–473.

 18. Feng L, Axel L, Chandarana H, Block KT, Sodickson DK, Otazo 
R. XD‐GRASP: golden‐angle radial MRI with reconstruction of 
extra motion‐state dimensions using compressed sensing. Magn 
Reson Med. 2015;75:775–788.

 19. Cheng JY, Zhang T, Ruangwattanapaisarn N, et al. Free‐breathing 
pediatric MRI with nonrigid motion correction and acceleration. J 
Magn Reson Imaging. 2015;42:407–420.

 20. Cheng JY, Alley MT, Cunningham CH, Vasanawala SS, Pauly 
JM, Lustig M. Nonrigid motion correction in 3D using auto-
focusing with localized linear translations. Magn Reson Med. 
2012;68:1785–1797.

 21. Prieto C, Uribe S, Razavi R, Atkinson D, Schaeffter T. 3D un-
dersampled golden‐radial phase encoding for DCE‐MRA using 

inherently regularized iterative SENSE. Magn Reson Imaging. 
2010;64:514–526.

 22. Buerger C, Prieto C, Schaeffter T. Highly efficient 3D motion‐
compensated abdomen MRI from undersampled golden‐RPE 
acquisitions. Magma Magn Reson Mater Physics Biol Med. 
2013;26:419–429.

 23. Kolbitsch C, Neji R, Fenchel M, Mallia A, Marsden P, Schaeffter T. 
Fully integrated 3D high‐resolution multicontrast abdominal PET‐
MR with high scan efficiency. Magn Reson Med. 2018;79:900–911.

 24. Pang J, Sharif B, Fan Z, et al. ECG and navigator‐free four‐ 
dimensional whole‐heart coronary MRA for simultaneous 
 visualization of cardiac anatomy and function. Magn Reson Med. 
2014;72:1208–1217.

 25. Lustig M, Donoho D, Pauly JM. Sparse MRI: the application of 
compressed sensing for rapid MR imaging. Magn Reson Med. 
2007;58:1182–1195.

 26. Otazo R, Kim D, Axel L, Sodickson DK. Combination of com-
pressed sensing and parallel imaging for highly accelerated first‐
pass cardiac perfusion MRI. Magn Reson Med. 2010;64:767–776.

 27. Cruz G, Atkinson D, Buerger C, Schaeffter T, Prieto C. Accelerated 
motion corrected three‐dimensional abdominal MRI using total 
variation regularized SENSE reconstruction. Magn Reson Med. 
2016;75:1484–1498.

 28. Rueckert D, Sonoda LI, Hayes C, Hill D, Leach MO, Hawkes DJ. 
Nonrigid registration using free‐form deformations: application to 
breast MR images. IEEE Trans Med Imaging. 1999;18:712–721.

 29. Tsao J, Boesiger P, Pruessmann KP. k‐t BLAST and k‐t SENSE: 
dynamic MRI with high frame rate exploiting spatiotemporal cor-
relations. Magn Reson Med. 2003;50:1031–1042.

 30. Hansen MS, Baltes C, Tsao J, Kozerke S, Pruessmann KP, Eggers 
H. k‐t BLAST reconstruction from non‐Cartesian k‐t space sam-
pling. Magn Reson Imaging. 2006;55:85–91.

 31. Pruessmann KP, Weiger M, Boernert P, Boesiger P. Advances 
in sensitivity encoding with arbitrary k‐space trajectories. Magn 
Reson Imaging. 2001;46:638–651.

 32. DCE MRI Technical Committee. DCE MRI Quantification Profile, 
Quantitative Imaging Biomarkers Alliance. Version 1.0. Reviewed 
Draft. QIBA, July 1, 2012. Available from http://rsna.org/QIBA_.aspx.

 33. Medved M, Karczmar G, Yang C, et al. Semiquantitative analysis 
of dynamic contrast enhanced MRI in cancer patients: variability 
and changes in tumor tissue over time. J Magn Reson Imaging. 
2004;20:122–128.

 34. Rohrer M, Bauer H, Mintorovitch J, Requardt M, Weinmann 
HJ. Comparison of magnetic properties of MRI contrast media 
solutions at different magnetic field strengths. Invest Radiol. 
2005;40:715–724.

 35. de Bazelaire CM, Duhamel GD, Rofsky NM, Alsop DC. MR im-
aging relaxation times of abdominal and pelvic tissues measured in 
vivo at 3.0 T: preliminary results. Radiology. 2004;230:652–659.

 36. Egeland T, Gaustad JV, Galappathi K, Rofstad EK. Magnetic reso-
nance imaging of tumor necrosis. Acta Oncol. 2011;50:427–434.

 37. Brix L, Ringgaard S, Sørensen TS, Poulsen PR. Three‐dimensional 
liver motion tracking using real‐time two‐dimensional MRI. Med 
Phys. 2007;41:042302.

 38. Johansson A, Balter J, Cao Y. Rigid‐body motion correction of the 
liver in image reconstruction for golden‐angle stack‐of‐stars DCE 
MRI. Magn Reson Med. 2018;79:1345–1353.

 39. Johannson A, Balter JM, Cao Y. Abdominal DCE‐MRI reconstruc-
tion with deformable motion correction for liver perfusion quanti-
fication. Med Phys. 2018;45:4529–4540.

http://rsna.org/QIBA_.aspx


1766 |   IPPOLITI eT aL.

 40. Batchelor PG, Atkinson D, Irarrazaval P, Hill D, Hajnal J, Larkman 
D. Matrix description of general motion correction applied to mul-
tishot images. Magn Reson Med. 2005;54:1273–1280.

 41. Wang H, Cao Y. Correction of arterial input function in dynamic 
contrast‐enhanced MRI of the liver. J Magn Reson Imaging. 
2012;36:411–421.

 42. Yang J‐F, Zhao Z‐H, Zhang YU, et al. Dual‐input two‐compartment 
pharmacokinetic model of dynamic contrast‐enhanced mag-
netic resonance imaging in hepatocellular carcinoma. World J 
Gastroeneterol. 2016;22:3652–3662.

SUPPORTING INFORMATION

Additional supporting information may be found online in 
the Supporting Information section at the end of the article.

FIGURE S1 Contrast dynamics of 8 temporal timepoints 
out of the 36 DCE volumes for a patient injected with 
gadobutrol. Note: For visibility, only a part of the FOV is 
shown. Respiratory MC reduces motion‐induced blurring 
(red arrows) of the anatomy
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