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Abstract: Excess and sustained endoplasmic reticulum (ER) stress, paired with a failure of initial
adaptive responses, acts as a critical trigger of nonalcoholic fatty liver disease (NAFLD) progression.
Unfortunately, there is no drug currently approved for treatment, and the molecular basis of patho-
genesis by ER stress remains poorly understood. Classical ER stress pathway molecules have distinct
but inter-connected functions and complicated effects at each phase of the disease. Identification of
the specific molecular signal mediators of the ER stress-mediated pathogenesis is, therefore, a crucial
step in the development of new treatments. These signaling nodes may be specific to the cell type
and/or the phase of disease progression. In this review, we highlight the recent advancements in
knowledge concerning signaling nodes associated with ER stress and NAFLD progression in various
types of liver cells.

Keywords: ER stress; unfold protein response; nonalcoholic fatty liver disease; hepatocytes; hepatic
stellate cells; Kupffer cells

1. Introduction

The endoplasmic reticulum (ER) is a central organelle that plays a critical role in a
variety of fundamental biological processes, including protein synthesis and folding, lipid
and cholesterol synthesis, xenobiotic metabolism, calcium storage and utilization, and
providing a source of membrane for biogenesis of autophagosome and peroxisome [1,2].
Accumulation of misfolded or unfolded proteins in the ER lumen and disturbance of ER
homeostasis overriding its capacity to handle this, a condition referred to as ER stress,
induces the activation of unfolded protein response (UPR) in the cells [2–4]. UPR reduces
the load of protein synthesis, but increases protein folding by chaperones with clearance
capacity by promoting ER-associated degradation (ERAD) and autophagy [5–7]. Thus,
while UPR is an adaptive physiological process that allows cells to maintain cellular
homeostasis for survival, excess and sustained UPR can lead to pathological changes.

ER stress is closely associated with various disease conditions, including metabolic
disorders, neurodegenerative diseases, and cancers [8–11]. In particular, pandemic situa-
tion of obese populations and the importance of obesity as a key risk factor for metabolic
diseases allow us to pay attention on the potential role of ER stress and UPR in metabolic
dysfunction. The liver is one of the main metabolic organs that regulate energy home-
ostasis via its metabolic and secretory functions [12]. Hepatocytes are the most prevalent
parenchymal cell-type in the liver (comprising 70–80% of total liver mass), which are
enriched with ER due to liver functions such as protein synthesis and secretion. Indeed,
numerous hepatotoxic challenges (e.g., hepatitis viruses, alcohol, drugs, and metabolic
stress such as obesity and diabetes) can disturb ER homeostasis and ultimately lead to liver
disease progression [13–15].
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Nonalcoholic fatty liver disease (NAFLD) comprises a series of chronic liver disease
ranging from simple steatosis to nonalcoholic steatohepatitis (NASH), which can progress
to cirrhosis as more advanced stages and may ultimately lead to hepatocellular carci-
noma (HCC) or liver failure [16,17]. Although NAFLD is recognized as a leading cause
of liver-related morbidity and mortality, there are currently no drugs approved for its
treatment [18,19]. Achieving a greater understanding of the cellular and molecular basis
for the complex pathogenesis of NAFLD is a prerequisite for the discovery of novel thera-
peutic targets and strategies. In addition to the classical concept that lipid accumulation is
the first hit and oxidative stress acts as the second hit for the disease progression, and it is
now widely accepted that heterogeneous “multi-hits” are involved in the development of
NAFLD [16,20,21]. Accumulating evidences enlightened ER stress as a major cause of multi-
hits of NAFLD progression in multiple aspects such as hepatocyte injury, hepatic stellate
cell (HSC), and immune cell activation [13,14,22]. Over the past decade, researchers have
rigorously examined the effects of ER stress on liver pathophysiology and have collected
strong evidence for a close relationship between ER stress and NAFLD. Unfortunately, the
cellular and molecular mechanisms by which the body’s adaptive response failure to ER
stress results in detrimental NAFLD progression are still largely unknown, particularly
in aspects of downstream effectors and upstream regulators that may be involved. ER
stress-mediated signaling pathways are distinct but complexly inter-connected with a
dynamic regulation [23,24]. Moreover, the ER stress response also seems to play a critical
role in various other non-parenchymal liver cells, supporting that precise understanding
of UPR biology in a cell- and context-dependent manner is important. As general ER
stress pathways have multifaceted effects on disease progression and resolution, targeting
the specific effectors and/or regulators involved in NAFLD would be preferable. In this
paper, we review recent advances in identifying the molecular basis for ER stress-mediated
NAFLD and provide a summary of key signaling nodes in each cell type found in the liver.

2. Unfolded Protein Response Signaling: A Myriad of ER Stress Effectors

UPR is mediated by three canonical ER-resident stress sensors, protein kinase RNA-
like ER kinase (PERK), inositol-requiring enzyme 1 (IRE1), and activating transcription
factor (ATF6) [1]. When in their resting condition, these molecules bind to glucose-regulated
protein 78 (GRP78) and keep it in an inactive state. However, all of these pathways can be
activated after being dissociated from GRP78 in ER stress conditions, which affects diverse
downstream events [2] (Figure 1).

PERK, a transmembrane protein with an N-terminal sensing domain and a cytosolic
kinase domain, has eukaryotic translation initiation factor eIF2α as its major substrate [25].
eIF2α phosphorylation pauses general translation to reduce ER protein overload, but
also increases protein translation elsewhere, including translation of ATF4 [26]. As a
transcription factor, ATF4 induces gene expression of CCAAT-enhancer-binding protein
(C/EBP) homologous protein (CHOP), a well-known downstream molecule of PERK-
ATF4 [26,27]. CHOP and ATF4 redundantly and distinctly regulate the transcription of
their target genes, which are involved in protein folding, redox homeostasis, autophagy,
and apoptosis [27–29].

IRE1, the most conserved ER stress transducer, is unique in its possession of dual
enzymatic activities as an endoribonuclease (RNase) and as a serine/threonine kinase [24].
As a consequence of the RNase activity of IRE1, the unconventional spliced form of X-box
binding protein 1 (XBP1s) mRNA is produced [30]. This is a key transcription factor for
the regulation of genes that encode for adaptive UPR, such as chaperones and ERAD [1].
In mice, the loss of either IRE1 or XBP1 causes embryonic lethality with severe defects
in the liver [31,32]. Where ER stress is chronic, IRE1′s RNase activity also leads to the
degradation of other mRNAs through regulated IRE1-dependent decay [33], which may
contribute to pro-apoptotic signals by reducing the levels of several microRNAs [34]. IRE1
also activates the c-Jun N-terminal kinase (JNK) pathway downstream from tumor necrosis
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factor receptor (TNFR)-associated factor-2 (TRAF2)-apoptosis signaling kinase 1 (ASK1),
which is associated with cell death and insulin resistance [13,30].
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regulated IRE1α-dependent decay (RIDD), which results in reduced nascent protein load. Simi-
larly, phosphorylation of eIF2α by PERK induces global attenuation of translation to slow down 
protein synthesis. Each of the three arms is capable of changing cellular transcriptome by distrib-
uting respective transcription factor(s) into the nucleus. 
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Figure 1. “Canonical” arms of endoplasmic reticulum (ER) stress signaling and unfolded protein
response (UPR). The most upstream transmembrane kinases activated by ER stress. Although there
is a myriad of signaling network triggered by ER stress, protein kinase RNA-like ER kinase (PERK),
inositol-requiring enzyme 1 (IRE1α), and activating transcription factor (ATF6) ignite most of the
downstream effector pathways. IRE1α degrades multiple mRNAs in a process called regulated IRE1α-
dependent decay (RIDD), which results in reduced nascent protein load. Similarly, phosphorylation
of eIF2α by PERK induces global attenuation of translation to slow down protein synthesis. Each of
the three arms is capable of changing cellular transcriptome by distributing respective transcription
factor(s) into the nucleus.

ATF6, an ER-resident transmembrane protein, is cleaved by proteases in the Golgi
apparatus upon ER stress, and releases its cytosolic fragment that functions as a transcrip-
tion factor with a basic leucine zipper motif [35]. The cleaved ATF6 then moves to the
nucleus to regulate gene transcription for UPR [36]. While PERK and ATF6 are unessential
for development of the liver, studies using global knockout mice suggested that they are
required for rescue from pharmacological or dietary challenges [13].

While a number of researchers have focused on individual UPR pathways, these
pathways are coordinately regulated, and thus have complex modes of action. From
a pathological perspective, the numerous molecules involved in the UPR processes, as
well as the associated upstream and downstream mediators, affect the presentation or
progress of the disease at various stages. This highlights the importance of determining the
specific molecular targets to understand and control the myriad of ER stress signaling on
different diseases.

3. Clinical Association of ER Stress in NAFLD Patients

It has been observed that experimental ER stress inducers influence hepatocyte sur-
vival as well as intrinsic functions of hepatocytes such as de novo lipogenesis and glucose
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production. This realization recently prompted clinical researchers to perform liver biopsies
on non-alcoholic and alcoholic fatty liver disease patients to examine the extent of ER stress.

In a study involving a small cohort of patients, mRNA and protein levels of GRP78
and CHOP were significantly elevated in livers of NASH patients [37]. Another study
observed similar results in the livers of massively obese patients with simple steatosis or
with NASH, which measured the ratio between CHOP and GRP78 mRNA expression as a
readout of deleterious UPR [38]. Notably, in the studies hepatic ER stress was not induced
in simple steatosis patient without apparent hepatocyte damage. These results suggest that
ER stress plays a role in the phase transition from steatosis to steatohepatitis or fibrosis, but
not in initial lipid accumulation per se.

While many of the signaling molecules in the UPR pathways are, by nature, Janus-
faced, such that a change in ER stress marker expression may reflect either adaptive
protection in the liver or disease progression, CHOP expression so far seems to be the
most robust marker of detrimental direction. In a study using all serial stages of NAFLD,
namely simple steatosis, NASH, fibrosis/cirrhosis, and HCC, hepatic CHOP expression
was tightly correlated with progression of the disease [39]. Moreover, the contribution
of CHOP in NAFLD progression has been proven by genetically deleted models using
mice [39]. Prior to the recent reports, a previous study on NAFLD patients also has found
increased PERK and IRE1α phosphorylation upon NASH progression. What remains
unclear, however, is the process by which a signal propagates downstream as a result of ER
stress, since changes in UPR molecules were not fully consistent to each other. To wit, eIF2α
was phosphorylated, but ATF4 was unchanged, and JNK was activated but XBP1 splicing
was unchanged [40]. Ultimately, the specific signaling molecule(s) that play a critical role in
liver disease will need to be carefully evaluated for further therapeutic target development.

It is now clear that ER stress is clinically associated with NAFLD progression. In
addition, considering that simple steatosis generally does not recruit ER stress and that lipid
accumulation does not necessarily recruit hepatocyte death, there is mounting evidence
from animal and human studies to suggest that ER stress plays a role in pushing the disease
to advance from the fatty liver stage to inflammation or fibrosis.

4. Experimental Models Depicting ER Stress as the Key Trigger of NAFLD

The development of animal models that reflect the symptomatic and molecular pat-
terns of human disease is necessary to facilitate the identification of therapeutic targets [41].
There have been a number of attempts to establish an ideal animal model that mimics each
stage of human NAFLD. Widely used experimental models include dietary, chemical, or
genetic interventions in mice [14,42]. Several models of NAFLD involved in increased ER
stress, discussed as follow, are summarized in Table 1.

Models based on amino acid deficiency such as methionine-choline deficient (MCD)
and choline-deficient, amino acid defined (CDAA) diets have long in use, and have the
advantage of promptness and robustness. However, these models only partially reflect
the stepwise progressive pattern of human NAFLD, in that early metabolic dysregulation
observed in the disease is not accompanied in the experimental models even when fibrotic
lesions begin to appear [41,42]. For this reason, recent research has tended to rely on
obesogenic diets, including high-fat, high-carbohydrate (sucrose or fructose), or high-
cholesterol diets. Obesogenic diets readily develop fatty liver and metabolic dysregulation
(e.g., insulin resistance) and mirror the initial phases of human NAFLD. Unfortunately,
these dietary modifications are often too mild, and it has proven difficult (or impossible)
to induce severe symptoms such as fibrosis, cirrhosis, and HCC in models [41–43]. To
circumvent this, several attempts have made to diversify dietary lipid composition to more
closely reflect the so-called “western diet”. Accordingly, the American lifestyle-induced
obesity syndrome (ALIOS) model was developed. It adds trans-fatty acids (45% fat) and
cholesterol (2%) to the diet and induces steatosis and lobular inflammation with hepatocyte
ballooning at 30 weeks of feeding [44]. While it imitates more physiological setting in terms
of diet composition and symptomatic pattern, relatively slower onset is a limitation.
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Table 1. Experimental nonalcoholic fatty liver disease (NAFLD) models with ER stress activation.

Model Altered ER Stress Marker Human NAFLD Reflection Effect of UPR Intervention

MCD diet
p-eIF2α↑
CHOP↑
GRP78↑

NASH and fibrosis, without steatosis
TUDCA administration (500 mg/kg/day)

prevented liver injury
CHOP KO reduced NASH progression

High-fat diet
(20 weeks)

p-PERK↑
CHOP↑ Steatosis, NASH, and mild fibrosis

High-fat, high-sucrose diet
XBP1s↑
CHOP↑

ER free cholesterol/phospholipid ratio↑
Steatosis and mild NASH and fibrosis

Atherogenic diet CHOP↑ Steatosis, NASH, and fibrosis

High-cholesterol diet ER morphological disruption
p-PERK↑ Steatosis, NASH, and mild fibrosis

ALIOS model CHOP↑ Steatosis, NASH, and fibrosis
DIAMOND mice CHOP↑ Steatosis, NASH, and fibrosis

ob/ob (in combination with LPS)
GRP78↑
XBP1s↑

p-eIF2α↑
Steatosis, NASH, and fibrosis

TUDCA administration (500 mg/kg/day)
prevented steatosis, hepatocyte death

and inflammation

MUP-uPA (in combination with HFD)

GRP78↑
p-eIF2α↑
CHOP↑

p-IRE1α↑
p-JNK1/2

Steatosis, NASH, and fibrosis TUDCA administration (250 mg/kg/day)
reduced steatosis and hepatocyte death

Chronic CCl4
GRP78↑

p-PERK↑
CHOP↑

NASH and fibrosis, without steatosis Targeted lentiviral delivery of GRP78 in
hepatic stellate cells reduces fibrosis
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There also have been attempts to use chemical stimulation or genetic diversification
to boost the relatively slow pathogenesis by dietary modifications. For example, strepto-
zotocin administered neonatal mice (STAM) in addition to a high-fat diet (HFD), receive
a single injection of streptozotocin 2 days after birth. STAM mice develop hepatic lipid
accumulation and hepatocyte inflammation at a short time period (week 7) and promptly
show fibrosis nodules (week 11–12) [45]. More recently, a western diet rich in fat, fructose,
and cholesterol was combined with a weekly injection of low-dose CCl4 (0.2 µL/g) [46].
In this model, both the dose and frequency of the injection are less than half of what is
typically used as a hepatotoxicant to induce hepatitis and fibrosis in mice. However, this
combined model successfully induces stage 3 fibrosis at 12 weeks and development of
cancer at 24 weeks. In addition, an inbred isogenic mouse strain produced by breeding
129S1/SvImJ strain with C57BL/6J strain has been developed to show age-dependent
NASH and fibrosis, and termed the diet-induced animal model of nonalcoholic fatty liver
disease (DIAMOND) model [47]. When the mice are fed with high-carbohydrate plus HFD,
robust steatohepatitis with mild fibrosis appears at 16 week followed by bridging fibrosis
at 52 week. Most importantly, large portion of DIAMOND mice eventually develop HCC.
These newly developed models markedly resemble human NAFLD progression in their
histological, metabolic, and transcriptional patterns, but studies are still needed to achieve
consensus as to whether these new models are more suitable for translational research than
their classically used counterparts.

MCD and obesogenic diets have also been widely relied on to study the link between
ER stress and NAFLD. MCD diet feeding significantly increased eIF2α phosphorylation
and CHOP expression in mouse liver, showing preferential activation of the PERK down-
stream signaling [48]. Progression to steatohepatitis was efficiently blocked by genetic
ablation of CHOP [39]. Another study has found that high-fat high-sucrose diet feeding
changes the ratio between phospholipid and free cholesterol in ER, which also correlated
well with increased ER stress markers such as CHOP [49]. Increased CHOP expression
was also implicated in an atherogenic diet model of NASH [50]. A separate study using a
high-cholesterol diet showed morphological disruption of ER along with PERK phospho-
rylation [51]. In a similar context, a model ob/ob mice challenged with lipopolysaccharide
(LPS) demonstrated that activation of both IRE1α and PERK and the resultant synergistic
induction of CHOP coincided with NASH progression [38]. In sum, NAFLD experimental
models reflect a strong concurrence between ER stress and disease progression. Alleviating
ER stress by targeting downstream signaling molecule(s) can be effectively interrogated for
NAFLD treatment using animal models.

Chemicals and genetic modifications that alleviate ER stress are being actively studied
for liver disease treatment and prevention. Representative chemical chaperones that lessen
ER burden against misfolded proteins include 4-phenyl butyric acid (4-PBA), a short-chain
fatty acid, and taurine-conjugated ursodeoxycholic acid (TUDCA), a bile acid derivative.
Administration of 4-PBA (1 g/kg/day; p.o.) or TUDCA (500 mg/kg/day; i.p.) alleviated
hepatic steatosis development in ob/ob mice [52]. Liver injury and regeneration failure
following partial hepatectomy and ischemia-reperfusion are also prevented by 4-PBS and
TUDCA in rats [53]. Another mouse model using ob/ob mice injected with LPS has also
proven the efficacy of TUDCA administration against NASH [38]. MUP-uPA mice that
exhibit transient ER stress with high expression of urokinase plasminogen activator (uPA)
specifically in the hepatocytes, were protected from HFD-induced steatosis and hepatocyte
injury by TUDCA [54]. Most importantly, both 4-PBA and TUDCA have been approved by
the Food and Drug Administration for the treatment of liver-related diseases (urea cycle
disorder and primary biliary cirrhosis respectively), and following clinical trials for various
disease are currently undergoing. Although the specific molecular mechanism how these
chemicals act as chaperones is not fully understood, the studies have successfully proven
that ER stress is one of the major potential therapeutic targets for NAFLD. Nonetheless,
the molecular chaperones require high concentrations to lower ER stress, compromising
suitability as a therapeutic agent.



Biomolecules 2021, 11, 242 7 of 15

5. Cell-Type Dependent Effects of ER Stress in Liver

There is new evidence to suggest that the effects of ER stress vary by cell types. As
a general rule, prolonged ER stress impairs parenchymal cells in each organ, leading to
organ dysfunction or failure. However, some of the specialized cells that comprise non-
parenchymal fraction of the tissues, namely hepatic stellate cells (HSCs) and macrophages
in the liver, seem to be differentially regulated. These cells often secrete large amounts of
protein and are sensitive to ER disturbance. Accordingly, ER stress has been regarded as an
activating signal of non-parenchymal cells in the liver. In this section, we introduce some
recently discovered ER stress signaling molecules that are involved in NAFLD progression,
and which may be potential therapeutic targets (Figure 2).
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5.1. Hepatocytes
5.1.1. BAX/BAK

BCL-2-associated X (BAX) and BCL-2 homologous antagonist/killer (BAK) are pro-
apoptotic members of the BCL-2 protein family [55]. Palmitic acid increased the expression
of BH3-only proteins, BCL-2-like protein 11 (BIM) and p53 upregulated modulator of
apoptosis (PUMA), through JNK and CHOP activation, leading BAX activation, and cell
death in primary hepatocytes [56]. From this, we may discern that the mitochondrial
apoptosis pathway, including BAX activation, can mediate fatty acid-induced lipotoxicity.
However, in the livers of mice with double knockout of BAX and BAK, ER stress-induced
tissue damages increased while IRE1 signaling decreased [57]. Similarly, a BAX chemical
inhibitor (BI-1 or transmembrane BAX inhibitor motif containing 6 (TMBIM6)) acted as a
negative regulator of IRE1 signaling [58,59]. While no inhibitor of BAX/BAK has yet been
made available clinically, many attempts are being made [60–62], which may offer their
use as a potential strategy for NAFLD treatment.
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5.1.2. ASK1

ASK1 is a serine/threonine kinase that links IRE1 to the JNK signaling pathway and
is important for the regulation of cell survival and death [63,64]. Inhibiting ASK1 pro-
hibited JNK activation and protected against hypoxia/reoxygenation injury in steatotic
hepatocytes [65]. Based on the potential role of ASK1 in hepatic injury, inflammation, and
fibrosis as determined by animal models, recently the safety and efficacy of selonsertib as a
selective ASK1 inhibitor were evaluated in patients with NASH and stage 2 or 3 fibrosis.
In this multicenter phase 2 trial, selonsertib improved the hepatic fibrosis of a consider-
able portion of the participants [66], raising the value of this target for potential NAFLD
treatment. These results were consistent with multiple mouse model studies, in which
ASK1 inhibition attenuated cell death and liver fibrosis in mouse models with liver injury
caused by NACHT, LRR, and PYD domains-containing protein 3 (NLRP3) inflammasome
activation [67]. A careful approach towards ASK1 inhibitors is needed; however, as it
has also been reported that liver-specific ASK1 overexpression ameliorated hepatic steato-
sis and liver fibrosis through the induction of autophagy in mice [68]. Furthermore, the
contribution of JNK signaling pathway as a downstream effector of ASK1 modulation in
hepatocytes should be evaluated with caution, since multiple reports have pointed out
hepatic stellate cells as the main place of deteriorative JNK signaling in the liver (also
discussed in Section 5.2.2).

5.1.3. PHLDA3

Pleckstrin homology-like domain, family A, member-3 (PHLDA3), is a unique protein
with only a single PH domain, was initially proposed as a new target gene of p53 and
a negative regulator of Akt signaling [69]. Accordingly, PHLDA3 has been considered
as a tumor suppressor in primary lung cancers, pancreatic neuroendocrine tumors, and
esophageal squamous cell carcinoma [69–72]. In a recent study, the novel role of PHLDA3
in liver pathophysiology was demonstrated. Hepatic expression levels of PHLDA3 were
elevated in patients with liver diseases (e.g., HCV-infected hepatitis, HBV-associated acute
liver failure, and liver fibrosis), which was validated in mice models with liver injury [73].
Interestingly, treating mice with an ER stress inducer increased PHLDA3 protein levels,
especially in injured hepatocytes, and ER stress-augmented PHLDA3 gene transcription
was mediated by the IRE1 and Xbp1s pathway in hepatocytes. PHLDA3 induction was
account for Akt inhibition, which ultimately contributed to hepatocyte death and liver
injury. The fact that PHLDA3 can be found in urine [74] raises its value as a potential
diagnostic and/or prognostic biomarker, and suggests that it has potential as a new
therapeutic target for liver diseases that are exacerbated by ER stress. It is noteworthy
that, in extrahepatic conditions, PHLDA3 deficiency improved cell viability during early
islets transplantation [75], but its silencing also potentiated cytokine-induced apoptosis of
beta-cells [76]. Additional investigation may reveal further details concerning the role of
PHLDA3 in various liver diseases associated with ER stress.

5.1.4. DUSP5

Phosphorylation is one of the key post-translational modifications (PTMs) responsible
for the regulation of signal transductions including UPR. The phosphorylation status of
the proteins is regulated by balance between kinases and phosphatases; thus, deregulation
of the actions of phosphatases as a fine-tuner can lead to pathological conditions. Dual-
specificity phosphatases (DUSPs) mediate dephosphorylation of their targets at sites of
serine/threonine and tyrosine residue [77]. The substrates of DUSPs include mitogen-
activated protein kinases, which are involved in the regulation of oncogenic transformation
and immune responses [77–79]. Recently, DUSP5 was proposed as a potential target for
ER stress-mediated hepatocyte injury [80]. DUSP5 expression was upregulated in patients
and mice with liver fibrosis, and induced by ER stress via the PERK–CHOP pathway in
hepatocytes. The DUSP5 induction reduced ERK activity and facilitated hepatocyte death.
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In vivo validation of these effects is needed, but these initial results are certainly worth
following up.

5.1.5. FXR

Farnesoid X receptor (FXR, NR1H4) is a nuclear receptor with bile acids as an endoge-
nous ligand, which regulates the metabolism of bile acids, lipid, and glucose [81,82]. In a
study of aged mice, ER stress repressed hepatic FXR expression levels via the inhibition
of hepatocyte nuclear factor 1α [83]. Recently, FXR was identified as a negative regulator
for ER stress-mediated NLRP3 inflammasome activation [84]. NLRP3 inflammasome acti-
vation by ER stress contributed to hepatocyte death, inflammation, and ultimately liver
fibrosis [38,85]. The hepatic expression of FXR was reciprocally changed to NLRP3 compo-
nents and interleuckin-1β as a key product of the inflammasome activation in patients with
liver disease including NAFLD [84]. In mice, FXR deficiency exacerbated NLRP3 inflamma-
some activation and exaggerated subsequent liver damage from ER stress challenges, while
treatment with an FXR agonist had a protective effect [84]. Mechanistically, FXR suppresses
microRNA-186, an inhibitor of the non-catalytic region of tyrosine kinase adaptor protein 1
(NCK1) translation, leading to the inhibition of the PERK pathway [84]. It supports the
role of FXR as an upstream regulator of the ER stress pathway. As a number of studies
have reported the beneficial effects of FXR on liver and metabolic diseases, it has become
an attractive target for potential drug development. Obeticholic acid, a semi-synthetic FXR
agonist, is one of many promising candidates for the treatment of NAFLD, although there
are some concerns over the cardiovascular effects of the drug [82,86].

5.2. Hepatic Stellate Cells

The activation of HSCs into proliferative, fibrogenic myofibroblasts is well-established
as the central driver of hepatic fibrosis in both experimental models and humans [87,88].
ER stress increases expression of fibrogenic genes in HSCs and stimulates myofibroblastic
conversion [89,90]. For example, XBP1 induces expression of collagen type I in HSCs down-
stream of IRE1 arm, which is inhibited by knockdown of ATG7 [91]. In contrast, reducing
the ER burden placed on misfolded proteins by HSC-specific overexpression of GRP78
under the α-SMA promoter effectively reduced CCl4-mediated fibrosis [89]. Similarly,
partially inhibiting UPR signaling by dominant-negative mutant IRE1α in HSCs also pre-
vented their activation [90]. During the initial phase of myofibroblastic conversion, acute
ER stress induction was briefly observed [92], but the exact mechanism remains unclear.

5.2.1. SMAD2

The PERK arm of the ER stress downstream signaling pathway is a major contributor
to HSC activation. Specifically, ER stress in HSCs promotes liver fibrosis by inducing
fibrogenic gene expression through PERK-mediated induction of SMAD2 [89], a powerful
driver of fibrogenesis downstream of TGFβ. PERK directly phosphorylates and destabilizes
RNA-binding protein HNRNPA1. HNRNPA1 binds to unprocessed miRNA, preferentially
to pri-miR-18A, to promote its splicing and maturation. The PERK-induced decrease
in HNRNPA1 subsequently decreases miR-18A levels, resulting in derepression of its
mRNA counterpart, SMAD2. Importantly, lentiviral delivery of HNRNPA1 in HSCs
alleviates fibrosis progression in a murine model using CCl4 [89]. While this result is
promising, additional efforts are needed to identify and establish a druggable target
capable of controlling this pathway.

5.2.2. JNK1/2

JNK1/2 are activated downstream of PERK and IRE1α, and have long been implicated
in the mediation of ER stress-related hepatocyte death and steatohepatitis [93]. The kinase
activity of IRE1α contributes to JNK activation through TRAF2-mediated ASK1 recruitment,
and PERK is capable of activating JNK [94–96]. JNK1/2, however, mainly acts on HSC, not
on hepatocytes, at least during the fibrosis stage [97]. In a mouse study, chemical inhibition
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of JNK1/2 did not reduce hepatocyte death, but did prevent fibrosis. JNK1 knockout
mice were more resistant to fibrosis development while this effect was not observed in
JNK2 knockout, identifying JNK1 as a determinant HSC-activating kinase. Moreover,
genetic ablation of JNK1 in mice rescued from fibrosis development. Notably, the dominant
contribution of JNK1 in HSCs was further confirmed by tests of hepatocyte-specific JNK1
deletion in mice [98].

5.2.3. NOX1/NOX4

A manageable level of reactive oxygen species (ROS) are produced during physiologi-
cal ER activity. Stressed ER amplifies ROS production through transmembrane NADPH
oxidases (NOXs). In addition, another contributor of ROS generation under ER stress
condition is ERO1 as an ER oxidase. CHOP induces the expression of ERO1 and thereby in-
creases abnormal oxidized proteins [99]. In rats, chronic arsenic (NaAsO2) ingestion paired
with ER stress induced oxidative stress and HSC activation [100]. In HSCs, IRE1α-mediated
activation of NOX1/NOX4 and excessive ROS production induced fibrogenic activation.
Conversely, the inhibition or deficiency of either NOX1 or NOX4 effectively reduced inflam-
mation and fibrosis in mice [101]. At present, an orally available NOX1/NOX4 inhibitor
(GKT137831) is undergoing clinical trials for pulmonary fibrosis [102,103]. Therefore, NOX
inhibition may be one of the most feasible strategies.

5.3. Kupffer Cells

Kupffer cells (KCs), inherent hepatic immune cells, play pro- and anti-inflammatory
role in the liver, and contribute to the progression of steatohepatitis. KCs are divided into
interchangeable subtypes; pro-inflammatory (M1) and anti-inflammatory (M2). ER stress
in KCs was activated during NAFLD [14,104]. Moreover, it has been suggested that simple
steatosis as well as palmitate treatment in vitro recruits ASK1 activation downstream of
IRE1α only in KCs, but not in hepatocytes [65]. Specifically, the populations of M1 KCs
as well as inflammatory cytokines such as interleukin (IL)-6, IL-1β and tumor necrosis
factor (TNF)-α were increased by ER stress [105]. Conversely, inhibiting UPR signaling by
treating chemical chaperone 4-PBA or inhibiting IRE1α by genetic knockdown or chemical
inhibition increased M2 population and decreased M1 population. While these results are
interesting and justify further investigation, it must be noted that the signaling molecules(s)
downstream of ER stress that are responsible for specifically regulating inflammatory
activity of KCs during NAFLD are not well understood.

6. Conclusions

ER stress is a significant trigger of NAFLD progression, which follows hepatic lipid
accumulation. Therapies designed to inhibit ER stress by interfering with its associated
signaling, such as broad-spectrum ER stress-reducing agents (4-PBA or TUDCA) and
targeting canonical UPR branches (PERK or IRE inhibitors), have been tested as potential
treatments for liver diseases [106,107]. Other agents that directly interfere with UPR
signaling may provide potential therapeutic benefits, though most remain to be evaluated
in the context of NAFLD. What is clear is that given the protective nature of UPR signaling,
the redundant inhibition of ER stress in non-diseased cells or tissues may compromise the
benefits. Ultimately, achieving the targeted regulation of the key molecule(s) that drive
pathogenesis is a more desirable solution. While many possible approaches to reaching
this goal have been briefly covered in this review, careful translational validation is needed
to extrapolate the data to clinical trials. Identification of the novel signaling molecules that
link ER stress and the disease pathogenesis is of equal importance. Finally, further in-depth
characterization of the cell-type specific or context-specific regulatory mechanisms of UPR
and key molecules will provide information valuable to the efforts of researchers to develop
new means of controlling and treating diseases.
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