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ABSTRACT Tumor movements should be accurately predicted to improve delivery accuracy and reduce
unnecessary radiation exposure to healthy tissue during radiotherapy. The tumor movements pertaining
to respiration are divided into intra-fractional variation occurring in a single treatment session and inter-
fractional variation arising between different sessions. Most studies of patients’ respiration movements deal
with intra-fractional variation. Previous studies on inter-fractional variation are hardly mathematized and
cannot predict movements well due to inconstant variation. Moreover, the computation time of the prediction
should be reduced. To overcome these limitations, we propose a new predictor for intra- and inter-fractional
data variation, called intra- and inter-fraction fuzzy deep learning (IIFDL), where FDL, equipped with
breathing clustering, predicts the movement accurately and decreases the computation time. Through the
experimental results, we validated that the IIFDL improved root-mean-square error (RMSE) by 29.98% and
prediction overshoot by 70.93%, compared with existing methods. The results also showed that the IIFDL
enhanced the average RMSE and overshoot by 59.73% and 83.27%, respectively. In addition, the average
computation time of IIFDL was 1.54 ms for both intra- and inter-fractional variation, which was much smaller
than the existing methods. Therefore, the proposed IIFDL might achieve real-time estimation as well as better
tracking techniques in radiotherapy.

INDEX TERMS  Fuzzy deep learning, intra-fractional variation, inter-fractional variation, breathing
prediction, tumor tracking.

I. INTRODUCTION

Lung cancer is the most deadly cancer disease with an esti-
mated 27% of all cancer deaths [1], [2]. A large part of
patients with lung cancer undergoes radiotherapy. Track-
ing tumor motion poses a significant challenge for precise
dose delivery in lung cancer radiotherapy, due to respiratory
motion of up to 3.5 cm for primary lung tumors [3]-[9].
If the patient’s breathing motion is not correctly predicted,
tumor miss might occur, or sensitive normal tissue might
be undesirably exposed resulting in unwanted treatment
toxicity [10]-[12]. Advanced technologies of radiotherapy,
intensity modulated radiotherapy and image guided radio-
therapy, may offer the potential of precise radiation dose

delivery for moving objects. However, they still need an
additional function to predict the precise position of the tumor
against subtle variations in real-time [5], [13]-[16].
Radiation dose is typically delivered in 3 to 5 frac-
tions over 5 to 12 days for early stage lung cancer
using stereotactic radiotherapy or 30 to 33 fractions over
6 to 7 weeks for more advanced disease with each frac-
tion lasting between 10 and 45 minutes. The patient’s
breathing motions during these fractions are broadly divided
into two categories [17]-[19]: 1) intra-fractional and
2) inter-fractional variations. Intra-fraction motion indi-
cates changes where the patient is undergoing the radia-
tion therapy, which turns up on a time scale of seconds to
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minutes [17], [18], [20]-[23]. Each individual shows different
breathing patterns. On the other hand, inter-fraction motion
is the variation observed between different treatment ses-
sions. It covers breathing motion as well as external factors
such as baseline shifts. Inter-fractional variation is typically
shown in a time scale of minutes to hours or a day-to-day
level [17], [18], [21]-[24].

Inter-fractional motion is distinguishable from intra-
fractional movement because the inter-fractional varia-
tion covers even baseline shifts and weight gain or
loss [21], [22]. However, most studies of breathing
prediction so far have focused on respiratory motions
within the single treatment session, i.e., intra-fractional
variation [6]-[8], [13], [20]-[35]. Recently, several
studies [10]-[12] have pointed out the difference between
intra-fractional and inter-fractional movements and have
discussed the importance of inter-fractional variation in radi-
ation treatment or related imaging techniques. Table 1 sum-
marizes the comparison between intra- and inter-fractional
movements.

TABLE 1. Comparison between intra- and inter-fractional variations.

Variation Type Intra-fraction Inter-fraction

Time of During a single fraction Between different fractions
Occurrence [17], [19]{23] [19], [20], [22],[23]

. . H day-to-day level
TimeScale | Seconds to minutes [18] ours[ ;);]’ [TS](,) 2 l}], eve

. Internal organ motion, Position changes of patients, patient
Motion . . . . . .
Coverage breathing, swallowing  [weight gain/loss, internal organ motion,
N 211, [22] breathing, swallowing [21], [22]

Prediction methods for intra-fractional variation have been
addressed in many studies [6], [9]-[11], [13], [15], [20],
[26]—[38] as illustrated in Table 2. However, inter-fractional
variation has not been actively studied as much as intra-
fractional motion yet despite its necessity in radiotherapy
[9]-[11], [13], [20], [25]-[35]. Intra- and inter-fractional
variation of breathing motion can raise many challenges for
respiratory prediction [6]-[8], [20], [22], [23], [25]-[35]:
Firstly, prediction accuracy should be high. Secondly, com-
puting time should be short enough for real-time prediction.
Thirdly, the novel method should be able to handle any
unpredictable breathing variation.

In this paper, we propose a new prediction approach
for intra- and inter-fraction variations, called Intra- and
Inter-fractional variation prediction using Fuzzy Deep Learn-
ing (IIFDL). The proposed IIFDL clusters the respiratory
movements based on breathing similarities and estimates
patients’ breathing motion using the proposed Fuzzy Deep
Learning (FDL). To reduce the computation time, patients
are grouped depending on their breathing patterns. Then,
breathing signals belonging to the same group are trained
together. Future intra- and inter-fractional motion is estimated
by the trained IIFDLs.

The contribution of this paper is threefold. First, this is
the first analytical study for modeling multiple patients’
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breathing data based on both intra- and inter-fractional
variations. Secondly, the proposed method has a clinical
impact for enhanced adjustment of margin size because it
achieves high prediction accuracy for respiratory motion,
even for inter-fractional variation. Thirdly, this study shows
the clinical possibility of real-time prediction by largely
shortening computing time. Furthermore, the training process
can be shortened, by training breathing signals with similar
patterns together in the proposed IIFDL.

Il. FUZZY DEEP LEARNING

The proposed FDL is a combination of fuzzy logic and a
NN with more than two hidden layers, i.e. deep learning
network. Due to the NN architecture of FDL, it has a self-
learning feature, setting network parameters by training itself
according to input and desired output values. FDL also has
a fuzzy logic feature of reasoning capability for uncertainty.
In FDL, a few fuzzy parameters, i.e. prediction parameters
of FDL, determine weight values between nodes in the net-
work, and weight values are considered as the prediction
parameters in other methods. Consequently, the number of
prediction parameters is much less than that of other mutated
NN methods and parametric nonlinear models. This reduces
the computation time substantially and makes suitable for to
real-time and nonlinear estimation.

Fuzzy Deep Learning
Input I, I
L ayer 2 Layer1
= {my g 5, my 5
- {mzv 5 mz,:s}
M 5 13}
4 % My 5y 1 0y Ty 5
. Layer 3 .
Hidden Membership
Layers 40 Function
Paramefer M
Layerd 2~ fy le-oe iy FipTia}
@) — T {rop oo 123}
Ii R o
Ouiput Parameter R
Layer f

FIGURE 1. FDL architecture including Layer 1 through Layer 4 in the
hidden layers: Layer 1 provides membership functions, Layer 2 applies

a T-norm operation, Layer 3 computes linear regression functions, and
Layer 4 finally yields an output of FDL according to all fuzzy if-then rules.

Fig. 1 exemplifies a simple architecture of FDL, including
Layer 1 through Layer 4 in the hidden layers. The functions
of four hidden layers can be summarized as follows: Layer 1
provides membership functions which are determined by a
Membership Function (MF) parameter set M = {m; 1, m; 2,
m; 3}, Layer 2 applies a T-norm operation, Layer 3 com-
putes linear regression functions by normalized weights and
a Linear Regression (LR) parameter set R = {r; 1, ri2, ri3},
and Layer 4 finally yields an output of FDL f by summing
outcomes according to all fuzzy if-then rules.
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TABLE 2. Previous prediction methods for intra- and inter-fractional variations.

Engineering in
Health and Medicine

Method Description Drawback Variation
Margin-based [25] | Compensated locational changes of the tumor in a primitive way, adding| e High possibility of over/under-dose since the margin is determined| Intra-/inter-
extra margins by motion range of the tumor without knowing its variation fraction
Linear Predictive | o Estimated the future state based on functions comprised of linear ° i)nferig;};redjcﬁon aceuracy for 1:;»: a.tltlsing sligr‘1a15 with:a long latency Intra-/inter-
1(LP\(15].126 . . .  Poor performance improvement by its exclusive usage fracti
model (LP)[15],[26]|  combination of input data, proper coefficients, and constants + Assumption that the nonlinear respiratory movement i lincar ction
Adaptive Filter (AF)
6L oLsLR7- | ® Combined modified LPs and additional filters that adjust coefficients off @ No guarantee of its superb performance in most cases because if ~ Intra-
i LPs highly depends on adaptation intervals fraction
[31],[36]
Kalman Filter (KF) | ® Efficient recurrent filter which has been utilized in various forms: Kalman| e Only adaptable to linear or nearly linear estimation Intra-
261,129} [32], [33] constant velocity, Kalman constant acceleration, an interacting multiple e High computation complexity of KF-based models combined with| fraction
e model, and Hybrid implementation based on the Extended KF (HEKF) other prediction tools
Artificial Neural
Network (NN)-based| ® Showed outstanding accuracy for irregular patterns and abrupt changes,
A : . Intra-
10L[11L[13L[15), | ® Extended approaches: back propagation NN, feed-forward NN, recursive] Lo - ¢
{20} {2 6} {27} E’O} NN, wavelet NN, Customized prediction with multiple patient interactions * Long caleulation time for prediction parameters and results fraction
oo using NN , and HEKF
[32H35], [37], [38] g NN (ENN)
i i Inter-
Cubic model [23 . . . . -y . . o Same drawback of low accuracy as LP because the cubic model i :
ic [23] | e Estimated respiratory variance by using a third-order polynomial equation also one of the mathematic approaches like LP fraction
Stochastic Fluence | o Extended deterministic FMO model, which assumes that a patient is static Inter-
Map Optimization | e Solved observed problems by employing convex penalty functions and| ® Unpredictable method for other disregarded scenarios fraction
(FMO)model [22] | numerous scenarios to characterize inter-fractional uncertainties

For the training algorithm of FDL, we use the hybrid
learning algorithm [36] which is a combination of a gradi-
ent descent back-propagation algorithm and a least squares
estimate algorithm. The MF parameter and the LR parameter
are identified by this training algorithm [36].

In Fig. 1, the number of fuzzy if-then rules is equivalent to
that of nodes in Layer 2 and 3, which are given as follows:

Rulel:1fIyis Ay and I is By, thenfi = ri1l1+r120+71 3,

Rule2:1fI1is Az and L is By, thenfo = ra 111+ 20+1 3
where /1 and I, are inputs of FDL, and A; and B; are fuzzy
sets, which are linguistic labels.

The output Oy ; in Layer 1 is described as follows:

ma; () = 1/[1 + [(I = mi3)/mi, |2m['2],
1<i<2

g (1) = 1/ [V (1 = i) fmia [ ],
3<i<4

ey

01,=

where ua;(I1) and wp;—2(l2) are MFs of inputs for each
fuzzy set of A; and B;. Also, m; 1, m;2, and m; 3 are the
MEF parameters chosen by the training algorithm.

The functions of Layer 2 multiply all the values coming
from Layer 1, as follows:

Ori=wi=pua (1) - up (), 1<i<2 ()

where multiplication acts as the T-norm operator in the fuzzy
system, and the output indicates the firing strength for the
rule.

In Layer 3, the linear regression function is applied to a
ratio of the ith rule’s firing strength to the summation of all
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rules’ firing strengths, and its result can be calculated by

w
03 = Z—l (riih +riah +ri3), 1<i<2 (3)

_ Wi
J
where r; 1, r; 2, and r; 3 are the LR parameters, derived from
the training algorithm.
The output of Layer 4 is
follows:

aggregate of (3) as

i
S

Our = = ZZW )
J

The output of FDL is computed by its weights and regres-
sion functions as (4).

IIl. INTRA- AND INTER-FRACTIONAL VARIATION
PREDICTION USING FUZZY DEEP LEARNING

The proposed IIFDL is designed to reduce the computa-
tional complexity of prediction for multipatients’ breathing
motion, which occurs during the single treatment session and
between treatment sessions. To achieve this, the proposed
IIFDL clusters multiple patients based on their breathing
feature similarities and trains their respiratory signals for each
group. We illustrate the process of IIFDL in Fig. 2. Before
the detailed explanation of IIFDL, a summary of its whole
process is given as follows:

1) Patient Clustering: Patients’ breathing feature metrics
are computed from the respiratory signals, and then
patients are clustered according to their breathing fea-
ture similarities.

2) Prediction Using FDL: For each patient group, the
training procedure of the hybrid learning algorithm
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| Breathing Signal Extraction from Multiple Patients |

Breathing Signals

{ Patient Clustering
i Feature Extraction, Xy v |
¥
| K-means Clustering, c |
¥
Objective Function Computation,

J(XParientN, i cN)a Eq' (5)7 EQ- (6)') and EQ- (7)
K 2

Optimal Feature Combination Selection,
YPatienlN9 E‘I- (8)
k 2

| Grouping Patient Data

! Prediction using FDLV‘ <

Hybrid Learning Algorithm for the
Patient Class ¢

Prediction Results

ITFDL End

FIGURE 2. IIFDL procedure including two main parts: patient clustering
and prediction using FDL.

is conducted, and then breathing signals with intra-
fractional variation or inter-fractional variation are pre-
dicted using FDL.

We describe the specific clustering procedure in Subsec-
tion A first, and we explain FDL for intra- and inter-fractional
variation prediction in Subsection B.

A. PATIENT CLUSTERING BASED ON

BREATHING FEATURES

From patients’ respiratory signals, we extract breathing
features as clustering criteria: Autocorrelation Maxi-
mum (AMYV), ACCeleration variance (ACC), VELocity
variance (VEL), BReathing Frequency (BRF), maximum
Fourier Transform Power (F7P), Principal Component Anal-
ysis coefficient (PCA), STandard Deviation of time series
data (STD), and Maximum Likelihood Estimates (MLE).
Table 3 summarizes features extracted from the signals
and their formula. In Table 3, AMV is an indicator of the
breathing stability, and ACC, VEL, and STD are directly
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TABLE 3. Features extracted from the signals.

Used form in | Used form in
IIFDL [33]

1
AMV max(ﬁ J:T X(t)x(t - T)df) DPamv

P Formula

| Py |
(1x3 vector) (Scalar)
(T: period of observations)
ACC VaI(A)C/Atz ) Pacc | pace |
(x: observed respiratory data) (13 vector) (Scalar)
PVEL ‘ PVEL ‘
VEL Var(Ax/ At) (1x3 vector) (Scalar)

1 1
BRF Il(l) Z [ BCz J Porr PBRF

] (1x1 vector)
(n(7): number of breathing cycles,

and BC;: ith breathing cycle range)

max| 3 x(n)e

FTP n=1

L e1)o-1)

Prrp \ Prrp \

(1x3 vector) (Scalar)
(N: number of breathing signal
samples, 1 <k <N)
PrinComp (Z.)
PCA . . Prca | Prcal
(PrinComp(+): PCA function, Z: (3%3 vector) (Scalar)

data matrix (NxM, M=3))

1 N
7 z (xi - )C,>2
STD N3 Dsto [ psmo |

(x;: ith breathing signal sample, and| (1x3 vector) | (Scalar)
x’: average of breathing signal
samples)
arg max ) (9’x1 yeees xN),
MLE ~ 1 & PuLe | Py |
1(6’|x)= WZIH f(xl_ ’0) (1x3 vector) |  (Scalar)
i=1

(f(*|0): normal distribution)

relevant to respiratory signals [16], [33], [37]. In addition,
we use the typical vector-oriented features PCA and MLE
as well as other breathing characteristics such as BRF and
FTP [16], [33], [38]. There are two improvements in the
proposed patient clustering: the removal of unnecessary
breathing feature metrics, and the use of clustering criteria
with vector forms.

Firstly, previous studies in [16], [27], [33], [35], [37],
and [38] chose two additional feature metrics, i.e. autocor-
relation delay time (ADT) and multiple linear regression
coefficients (MLR), in addition to those eight in Table 3
for respiratory pattern analysis. However, ADT depends
on the length of breathing signal samples, rather than
the individual respiration characteristics. The use of MLR
assumes that breathing signals are linear, fixed values,
and homoscedasticity. This does not correspond to the
respiratory signals [33]. For these reasons, we do not
select ADT and MLR as breathing features for patient
clustering.
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Secondly, the existing study [33] clustered patients based
on the magnitude values of their respiratory feature vectors.
However, the proposed method uses breathing feature vec-
tors for patient clustering, not their magnitude values.
For example, the proposed IIFDL analyzes the similarities
among patients’ PCA by comparing each component of
3x3 vector ppca, but the previous method in [33] calcu-
lates the similarities based on the scalar value of |ppcal.
Accordingly, the previous method clusters patients as the
same group when the breathing signals have the approximate
magnitude of the breathing feature vector, even though they
do not show the similar breathing features. Thus, the pro-
posed IIFDL compares each component of breathing feature
vectors, so that it can provide better clustering of breathing
signals than existing methods.

As shown in Fig. 2, respiratory signals are randomly
selected from multiple patients and used for the breathing
feature extraction. Let us define P={payv,pacc,PvEL, PBRF»
PFTP> PPCA» PSTD> PMLE } as a feature selection metrics set, X
as an arbitrary feature combination vector based on P, and Y
as an optimal feature combination vector. The total number
of possible Xs in the given data is 247 (X;gC;, 1< i <8).
Among these Xs, Y is selected using a criterion function J(-),
which is determined by within-class scatter Sy and between-
class scatter Sp values. The within-class scatter Sy is defined
as follows [16]:

mi=l XX (%)

n; Xec;

C
Sw=Y ¥ X—m) X—m),
i=1 Xec¢;
where C is the number of classes less than the total number
of patients N, ¢; and m; indicate the ith class and its mean,
and n; is the number of patients of Class i.
The between-class scatter Sp is defined as:

1
Sg =Y ni(mi—m) (mi—m)', m=-3X (6)
i=1 n-x
where m is the mean of all feature combination vectors.
With Sw and Sp, the criterion function J(-) is given as
follows:

JX €)= 22 ™
Sw
This implies that the larger J(-) allows, with low in-class
and high inter-class dispersion, the more obvious distinction
between classes. After criterion function values are calculated
for all Xs and all possible numbers of clusters C, Y can be
decided with the following condition:

= {X|max J (X, C) and C < N} (3)

After choosing Y by (8), the final number of clusters Ciyq;
is set, and patients are clustered as Cj,y classes depending
on selected principal features of Y.

B. PREDICTION USING FDL
After multiple patients are clustered, we can train patients’
data for each group. For intra-fractional variation, FDL trains
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parameters based on input data in a single session and
predicts future intra-fractional variation. For inter-fractional
variation, FDL predicts breathing motion by training the
FDL network for multiple datasets of previous sessions.
Here, datasets of inter-fractional variation already include the
patient’s intra-fractional variation, as described in Section I.
Training datasets consist of the initial data and the target data.
We train the datasets with the hybrid learning algorithm [36].
During the training procedure, two prediction parameter sets
of FDL, i.e., MF parameter set M and LR parameter set R,
are obtained and applied to the proposed FDL.

For estimating intra- and inter-fractional variation from the
CyberKnife data, FDL has a similar structure to Fig. 1, but
the number of nodes is variable. Here, the input datasets con-
sist of three-Dimensional (3D) coordinates for each channel.
Thus, we designed the proposed prediction method to have
three FDLs for each x, y, and z coordinate, so that we can
obtain all 3D coordinates of the estimated breathing signal.
Each FDL has three inputs corresponding to three different
channels. The total number of nodes in Layer 2 and 3 is 27,
based on the number of fuzzy if-then rules, which are given
as follows:

Rulel:1fI1isAyand I is By and I3 is Cq, thenf] = ry 111+
ripl +ri 303 +ry 4,

Rule27: If I} is A3z and I is B3 and I3 is C3, then
o1 =roadi + 72 + 27303+ 1274
where I, I, and I3 correspond to inputs from three channels
of CyberKnife machine, and A;, B;, and C; are fuzzy sets.

The output Oy ; in Layer 1 is computed as follows:

pa; () = 1/[1 +](1 - mi,3)/mi,1|2mi’2],
1<i<3
o = {1 ()= 1/[1 + (1 = mi3)/mi |2m’72], o)
4<i<6
Heig (I13) = 1/[1 +](1 - mi,3)/ﬂ1i,1|2mi'2],
7<i<9

where a;(-), upi—3(-), and pci—e(-) are three kinds of
the membership functions, which are calculated using the
MF parameter set M ={m; 1, m; 2, m;3}.

In Layer 2 and 3, outputs Oz ; and O3 ; are defined as the
following (10) and (11), respectively:

1<i<?27 (10)
1<i<?27

02 =w;
03,;=

= pa, (1) p, (2) e, (13)
(riih+rioh+risls +rig),

Wi
(1)

where 7; 1, 12, 1 3, and r; 4 are the LR parameter set R.
The output of Layer 4 is as follows:

2w
DI

1

O41=f= ZZW i =
i
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The equation (12) produces a single coordinate of the
predicted respiratory signal, i.e., x, y, or z estimation.
As mentioned above, the proposed IIFDL uses three FDLs
for x, y, and z coordinates, so that we can derive estimated
3D coordinates of breathing signals from those FDLs.

IV. EXPERIMENTAL RESULTS

We describe the experimental data for intra- and inter-
fraction motion, in Subsection A. The experimental result of
patient clustering based on breathing features are presented in
Subsection B, and we evaluate the prediction performance of
the proposed IIFDL in Subsection C.

A. INTRA-AND INTER-FRACTION MOTION DATA

Breathing data of 130 patients were collected in Georgetown
University medical center using the CyberKnife Synchrony
(Accuray Inc. Sunnyvale, CA) treatment facility. The col-
lected data contained no personally identifiable information,
and the research study was approved by the Georgetown
University IRB. During data acquisition, three sensors were
attached around a target position on the patient’s body. Indi-
vidual patient’s database contains datasets recorded through
three channels by LED sensors and cameras. Fig. 3 illustrates
patient distribution for breathing databases according to a
record time.

25 < Intra-fraction motion >
Minintra =25.18 min
" 20 Maximra =132.79 min
= Mean. _— 64.67 min
15} ntra
s SD.  =16.36 min
- mt'ra .
o 15 Median. . = 65.21 min
° intra
=
—é Inter-fraction motion >
5 10 Min_ = 60.20 min
Z inter
) Max. . =132.79 min
= inter
= 5 Mean, = 73.94 min
SD, ., = 11.19 min
Median, . =72.67 min
I nter
0
0 50 100 150 200 250 300

Recording Time (min)

FIGURE 3. Patient distribution of CyberKnife data. Each database
contains a record time, 3D coordinates, and rotation data of three
channels. The intra-fractional variation dataset had 130 databases,
and the inter-fractional variation dataset consisted of 32 databases
with at least 1-hour time difference in-between.

Sampling frequencies for patients’ variation data were
5.20, 8.67, and 26Hz, corresponding to the measurement
intervals, 192.30, 115.38, and 38.46ms. The recording time
was distributed from 25.13 to 132.52min. Each database
contains calibrated datasets of a record time, 3D coordinates,
and rotational data of three channels. During the training pro-
cedure, we randomly extracted 1000 samples for each patient.
The obtained samples regarding the measurement intervals
were about 0.63min for 38.46ms, 1.92min for 115.38ms, and
3.2min for 192.30ms.
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TABLE 4. Experimental data.

Data Type Intra-fractional Variation | Inter-fractional Variation
Patient # 130 32
Measurement

Intervals (ms) 38.46, 115.38, and 192.30

Inputs Estimated tumor location

Outputs Next tumor position in the current fraction

Previous tumor location data| tumor location data in the

Training Data| . . .
g in the current fraction previous fractions

Current tumor location data |current tumor location data in

Test Data in the current fraction the current fraction
—a— JIFDL (Combination of BRF and MLE)
=¥ CNN (Combination of ACC, VEL, and PCA)
- 30
]
S 5 20
335
==t
3 5 10
0

2 3 4 5 6 7 8 9
The Number of Clusters

(a)

10 [i1] [1i2] 13

< >< >< ><
— 655 \ $C3 sC sCs sCe
=
284 BRF and MLE by IIFDL (J,_=5.825) > <
23 87
SE 2 4~ ACC, VEL, and PCA by CNN 88
0 ¥
28 84 154 210 247
Breathing Feature Combination
(b)
30 < 8C3 >
-
§ £ 20 ACC, VEL, and PCAby CNN (J,_ =19.857) —>7
235
= g v
oe ! .
0 v vv vy v
10 20 30 40 50 56
Breathing Feature Combination
(©

FIGURE 4. Criterion function values J of the proposed IIFDL and CNN:

(a) J of IIFDL and CNN according to the number of clusters, (b) J of IIFDL
according to the breathing feature combination, and (c) J of CNN
according to the breathing feature combination. In IIFDL, the number

of cluster Cg;,q; was 11 and the optimal breathing feature combination Y
was chosen as BRF and MLE by (8). In CNN, Cf;,qo Was 12 and its Y was a
combination of ACC, VEL, and PCA.

Table 4 shows experimental data of intra- and inter-
fractional variation. In the intra-fractional variation dataset,
all of 130 databases were used, and training and test
data were randomly selected within 1-hour time range.
In the inter-fractional variation dataset, however, we selected
32 databases. Training and test data were selected with at
least 1-hour time difference in-between them for the inter-
fractional variation dataset. This time scale is not on the day-
to-day level as the standard definition of the inter-fractional
variation, but it meets the inter-fractional time scale condition
of [18]. Actual inter-fractional motion data might be larger
than data we chose because changes occurred in fractions on
different days such as weight gain or loss were not contained
in experimental data.
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B. PATIENT CLUSTERING BASED ON

BREATHING FEATURES

We present the patient clustering results with the calculated
criterion function values J. Fig. 4(a) shows criterion function
values J regarding the number of clusters, where we repre-
sented the proposed IIFDL as a red line with a ‘A’ maker,
and the alternate CNN [33] as a blue dotted line with a ‘¥’
marker. Fig. 4(b) and 4(c) show criterion function values J of
IIFDL and CNN with regard to the possible breathing feature
combination.

The proposed IIFDL selected the number of cluster Crina;
as 11 with the maximum J of 5.825 as shown in Fig. 4(a).
The optimal breathing feature combination Y was chosen
with BRF and MLE by (8) as shown in Fig. 4(b). The alter-
nate CNN [33] selected the number of cluster Cri,q; as 12,
and its Y was chosen with ACC, VEL, and PCA as shown
in Fig. 4(a) and 4(c). The reason of their different clustering
results is that [IFDL uses respiratory feature vectors, whereas
CNN uses the magnitude values of respiratory feature vectors.
Considered all possible 247 combinations from 8 features
(%; 8Ci, 1 < i < 8), the combination chosen by CNN had
a local maximum value of J, as shown in Fig. 4(b). Thus, the
combination of ACC, VEL, and PCA cannot be Y that has the
maximum J.

Therefore, CyberKnife patient databases were grouped
into 11 classes using the proposed IIFDL, and the cluster-
ing results for intra- and inter-fractional variation data are
presented in Table 5.

TABLE 5. Patient database clustering.

Class Number 1{2|13(4(5]|6[7|8]|9/(10]|11|Total

4 of | Mra-fractional |\ ¢ 3515 1070061 1 | 9 |2 ] 1(18]130
Variation
Data-br e actional

ases | ertracuonal |y gl 15 6 Al 2 Al 1| 5| 32
Variation

In Table 5, 130 databases of the intra-fractional varia-
tion and 32 databases of the inter-fractional variation were
grouped into 11 and 9 classes, respectively. Each class
showed the similar breathing features regardless of the vari-
ation type. In the intra-fractional variation, some classes
(e.g. Class 1, 4, 7, 9, and 10) have only one or two patients.
They are most likely considered as the irregular respira-
tory signals, due to their less feature similarities with other
patients’ breathing signals. Class 2 and 8 for the inter-
fractional variation also have highly few patients, but we do
not consider these classes as the irregular breathing signals.
It is difficult to judge the scarcity of Class 2 and 8 based
on the few number of intra-fractional variation databases,
also these two classes were already considered as regular
breathing groups for the intra-fractional variation.

C. PREDICTION USING FDL
In this subsection, we compare the prediction performance
of the proposed IIFDL with existing methods. Especially,
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previous methods for the inter-fractional movement are
mathematical models depending on predefined scenarios of
patients’ variation, without the self-learning feature. The
prediction performance of these methods is susceptible to
how many potential scenarios were considered. In other
words, there is a practical limitation to get decent perfor-
mance results in the experiment with those mathematical
models. Accordingly, we chose the existing methods for intra-
fractional prediction, CNN and HEKF, as the comparison
targets, and we applied the selected methods to the case of
the inter-fractional variation. The predictors used in CNN and
HEKEF are NN and a combination of NN and KF, respectively,
as mentioned in Section I. Thus, these methods have the
self-learning feature. Furthermore, CNN is the prediction
approach designed for multiple patients’ motion like the pro-
posed IIFDL.

We evaluate the prediction performance of IIFDL
using by the following three criteria: Root-Mean-Square
Error (RMSE), overshoot, and prediction time.

1) ROOT-MEAN-SQUARE ERROR

We compared IIFDL with CNN and HEKF regarding pre-
diction results and RMSE. Fig. 5 shows prediction results of
two databases by IIFDL, CNN, and HEKF, with 115.38ms
interval as a median of [38.46, 192.30ms]. These predic-
tion results were randomly chosen in the given databases.
Fig. 5 (a) and 5 (b) present the prediction results of the intra-
and inter-fractional variation datasets. Here, a horizontal axis
is the time index extracted from CyberKnife data. A black
line is a measurement, a red line with a ‘A’ marker illustrates
predicted values by the proposed IIFDL, a blue dotted line
with a ‘¥’ marker is the estimated results of CNN, and an
orange dotted line with a ‘»’ marker represents the estimation
results of HEKF. Also, two green dotted lines are upper
and lower boundaries of target data, respectively. These two
boundaries were decided based on 95% prediction interval.

As shown in Fig. 5, the estimated points of the proposed
method IIFDL were closer to the target values than those of
CNN and HEKF. In Fig. 5, many points of CNN were dis-
tributed near or out of the boundaries, and most of the points
of HEKF were out of the range between upper and lower
boundaries. However, the predicted values of IIFDL were
within the boundaries in most cases. The RMSE comparison
of the intra-fractional variation of each patients’ class showed
that the proposed IIFDL, CNN, and HEKF had the similar
RMSE values overall, and IIFDL outperformed CNN and
HEKEF particularly in Class 4 considered as irregular breath-
ing signals. For the inter-fractional variation of each patients’
class, the experimental result also validated that the proposed
IIFDL is less vulnerable to the breathing irregularity.

In Table 6, we summarized the average RMSE and standard
deviation values of IIFDL, CNN, and HEKF for each different
measurement interval. Based on those results, we also derived
improvement rate of IIFDL, determined by the following
formula: (RMSE average of CNN/HEKF - RMSE average of
IIFDL)/RMSE average of CNN/HEKF % 100%.
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FIGURE 5. Prediction results for (a) intra- and (b) inter-fractional variation by IIFDL, CNN, and HEKF: (a) DB47 and (b) DB121 with 115.38ms interval.
The estimated values of the proposed IIFDL were closer to the target values, i.e. measurements, than those of CNN and HEKF.

TABLE 6. RMSE comparison.

Variation Intra-fractional Variation Inter-fractional Variation
l;fl‘::f;‘arfznnfg 3846 | 115.38|192.30|Average] 38.46 [115.38|192.30|Average
TIFDL (mm) 0.19 | 029 | 051 | 033 | 0.12 | 028 | 0.73 | 0.38

+0.21 | £0.41 | £0.75 | £0.46 | £0.28 | £0.73 | £2.06 | £1.02

Imp. Rate®
over CNN | 90.54 | 1247 | 11.81 | 3827 | 88.74 | 69.59 | 18.74 | 59.02

[33] (%)

Imp. Rate®
over HEKF | 54.36 | 17.57 | -6.86 | 21.69 | 90.07 | 61.32 | 29.93 | 60.44

[32] (%)

“Improvement Rate (Imp. Rate) = (Average of CNN/HEKF — Average of
IIFDL) / Average of CNN/HEKF * 100%.

For given the measurement intervals of the intra-fractional
variation in Table 6, the RMSE results presented that all the
average RMSE and standard deviation values of IIFDL were
lower than those of CNN and HEKEF, except the interval of
192.30ms. Although IIFDL was worse than HEKF in com-
parison on the average RMSE result for the time interval of
192.30ms, the average RMSE of IIFDL was 0.03mm larger
than that of HEKF, which is a relatively small difference.
With decreased time interval from 192.30 to 38.46ms,
the proposed IIFDL had the more improvement rate from
11.81 to 90.54% for CNN and —6.86 to 54.36% for HEKF.
In the total results, the proposed method had the standard
deviation of 0.46mm, whereas CNN and HEKF had fluctuat-
ing RMSE values with the standard deviation of 6.16mm and
0.92mm. In comparison to the existing methods, the proposed
IIFDL improved 38.27% and 21.69% of the average RMSE
values, for each CNN and HEKEF, in the experiment of the
intra-fractional variation.

As show in Table 6, the experimental results for the inter-
fractional variation represent that all RMSE values of [IFDL
were lower than those of CNN and HEKF. The proposed
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IFDL improved RMSE more when the time interval was
smaller, which is the same as the experimental results of
the intra-factional variation. The proposed IIFDL with the
overall standard deviation of 1.02mm showed higher error
stability than CNN and HEKF with the overall standard
deviation of 3.86mm and 3.53mm. Moreover, IIFDL
enhanced 59.02% and 60.44% of RMSE in comparison to
CNN and HEKF as shown in Table 6. Therefore, we can
expect that the proposed method contributes to the radio-
therapy by providing higher prediction accuracy and error
stability.

2) PREDICTION OVERSHOOT

The prediction overshoot rate is also one of the criteria that
enable to assess prediction accuracy of RMSE, and it can be
defined as a ratio of the estimated points are out of the bound-
ary ranges to the total ones, here the range was determined by
the 95% prediction interval of target data.

Fig. 6 presents the overshoot results by IIFDL, CNN,
and HEKF for the intra-fractional variation. The measure-
ment interval was 115.38ms, which is a middle interval
of [38.46, 192.30ms]. A horizontal axis is the patient database
number, and a red, blue, and orange bar indicate the overshoot
value of IIFDL, CNN, and HEKEF, respectively. Additionally,
a black dotted line separates patient classes.

As shown in Fig. 6, the proposed IIFDL had less variation
of the error values only up to 9.1%, but CNN and HEKF
showed occasionally huge overshoot results almost 100%.
In the same vein with the experiment of RMSE, the proposed
method improved overshoot performance with higher stabil-
ity in databases we utilized.

In Fig. 7, we show the overshoot results of IIFDL, CNN,
and HEKEF for the inter-fractional variation to demonstrate the
stability of the proposed IIFDL.
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FIGURE 6. Overshoot results for intra-fractional variation. The measurement interval is 115.38ms, which is a middle interval [38.46, 192.30ms]. The
proposed IIFDL had less variation of the error values only up to 9.1%, but CNN and HEKF showed occasionally huge overshoot results almost 100%.
The proposed method improved overshoot performance with higher stability in databases we utilized.

200 30100 200 TABLE 7. Overshoot comparison.
X
§100 20 50 - I 11FDL Variation Intra-fractional Variation (%) | Inter-fractional Variation (%)
< I C\N Measurement
£ 10 HEKF Interval (ms) 38.46 |115.38(192.30| Average|38.46(115.38[192.30| Average
3 I B l 465 | 390 | 369 | 408 | 420 | 372 | 355 | 382
IIFDL
0 0 0 0 244 | £2.12 | 4229 | +228 |+2.53 | 4233 | £2.27 | +2.38
1 1 12345678910 1 Tmp. Rate® over
Class 1 Class 2 Class 3 Class 4 CNN [33] 5797 | 6374 | 79.00 | 6690 |8567| 83.61 | 71.81 | 80.37
Patient Patient Patient Patient a
Imp. Rate® over
78.16 | 74.12 | 7259 | 7496 | 9048 | 8397 | 8406 | 86.17
200 200 60 100 HEKF [32]
60 “Improvement Rate (Imp. Rate) = (Average of CNN/HEKF — Average of

Overshoot (%)

100 40
0

IIFDL) / Average of CNN/HEKF * 100%.

inter-fractional variation. Furthermore, standard deviation
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Class 5 Class 6 Class 8 Class 10 Class 11 values of the overshoot rate had remarkable differences
Patient Patient  Patient Patient Patient in between IIFDL and two other methods. For the intra-

FIGURE 7. Overshoot results for inter-fractional variation. The
measurement interval is 115.38ms, which is a middle interval

[38.46, 192.30ms]. The maximum overshoot value of the proposed
1IFDL was 8.4%. However, CNN and HEKF had large overshoot results
up to 100% and wider variance of the overshoot rates than the
proposed IIFDL. There was no overshoot value in Class 10.

As the experimental results of intra-fractional variation,
CNN and HEKF had wider variance of the overshoot rates
than the proposed IIFDL. As shown in Fig. 7, the existing
methods, CNN and HEKF had large overshoot results up
to 100%. However, the maximum overshoot value of the
proposed IIFDL was 8.4%.

In Table 7, we summarized average overshoot rates and
their standard deviation values of IIFDL, CNN, and HEKF
for each measurement interval.

As shown in Table 7, all average overshoot rates of the
proposed IIFDL are considerably lower than those of CNN
and HEKEF, in both experimental results for the intra- and
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fractional variation, the total standard deviation values of
IIFDL, CNN, and HEKF were 2.28%, 26.78%, and 28.26%,
respectively. Overall results for the intra-fractional variation
showed that the proposed method improves the overshoot
percentage by 66.90% for CNN and 74.96% for HEKF. For
the inter-fractional variation, also, IIFDL markedly reduced
not only the average overshoot percentage but also the stan-
dard deviation. The overall improvement rates of IIFDL was
80.37% for CNN and 86.17% for HEKF in the experiment for
the inter-fractional variation.

3) COMPUTING TIME

To evaluate and compare effects on the computational com-
plexity by the proposed IIFDL, we measured average CPU
time of each prediction method using a PC with Intel Core i7
3.07 GHz and 16.0 GB RAM.

Table 8 compares the computing time of I[IFDL, CNN, and
HEKEF for each measurement interval used in the experiment,
where time difference represents the difference of the com-
puting time between the previous methods and IIFDL.
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TABLE 8. Computing time comparison.

Variation Intra-fractional Variation (ms) Inter-fractional Variation (ms)
Measurement
Interval (ms) 38.46 |115.38]192.30|Average| 38.46 |115.38{192.30|Average
IIFDL 132 | 1.61 | 1.70 | 1.54 | 1.32 | 1.61 | 1.70 | 1.54

+4.91 [£5.06 | £5.07 | £5.01 [ +4.91 | £5.06 | £5.07 | +5.01

Time Diff:* from
CNN [33]
Time Diff* from|
HEKF [32]

*Time Difference (Time Diff.) = computing time average of CNN/HEKF
— computing time average of IIFDL.

252.60 | 25099 | 254.74 | 252.78 | 253.16 | 24994 | 251.32 | 25147

251.76 | 25147 | 252.82 | 252.02 | 250.72 | 25336 | 249.85 | 25131

In the experimental results for the intra-fractional varia-
tion of Table 8, IIFDL had the average computing time of
1.54ms and the standard deviation of 5.01ms, for all databases
and intervals. The average computing time and the stan-
dard deviation were 254.32ms and 11.68ms for CNN and
253.56ms and 10.74ms for HEKF. Thus, the total average
of the time difference reduced by IIFDL was 252.78ms for
CNN and 252.02ms for HEKF. For the inter-fractional varia-
tion, the average computing time of the proposed IIFDL was
1.54ms and its standard deviation was 5.01ms throughput all
databases and measurement intervals. The average computing
time and its standards deviation were 253.01ms and 9.17ms
for CNN, and 252.85ms and 6.17ms for HEKF. In the experi-
ment for the inter-fractional variation, the total average of the
time difference reduced by IIFDL was 251.47ms for CNN
and 251.31ms for HEKF.

As we mentioned in Section II, the proposed FDL, requires
less prediction parameters than CNN and HEKF. Accord-
ingly, the proposed IIFDL could reduce the computing time
immensely as shown in the experimental results in Table 8.
Moreover, [IFDL and CNN train the multiple breathing sig-
nals simultaneously based on the respiratory feature similar-
ities. This leads to lower the number of training process. For
instance, there were 35 intra-fractional variation databases
of patients in Class 2, and HEKF needed to train the res-
piratory signals 35 times more than IIFDL and CNN, to
acquire the prediction results. Thus, the proposed IIFDL is
expected to improve the prediction speed maintaining the pre-
diction accuracy during the treatment session in the clinical
perspective.

D. COMPARISON OF INTRA- AND

INTER -FRACTION MOTION

We evaluate experimental results of intra- and inter-fractional
variation. Table 9 compares the two kinds of variation regard-
ing RMSE, overshoot, and computing time.

For RMSE and overshoot of the previous methods CNN
and HEKEF, results of the inter-fraction variation were worse
than those of the intra-fractional variation as shown in
Table 9. This is because the respiration variability for the
inter-fraction is larger than that for the intra-fraction. On the
other hand, IIFDL showed similar RMSE and overshoot
results for both intra- and inter-fractional variation. Due to the
reasoning capability of IIFDL for uncertainty, the proposed
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TABLE 9. Experimental result comparison of intra- and inter-fractional
variations.

Variation Intra-fractional | Inter-fractional
variation variation
IIFDL Average (mm) 0.33 0.38
CNN Average (mm) 0.97 0.98
RMSE HEKF Average (mm) 0.42 1.01
Improvement Rate
(CNN (%)/HEKF (%)) 38.27/21.69 59.02/60.44
IIFDL Average (%) 4.08 3.82
CNN Average (%) 13.14 21.54
Overshoot | HEKF Average (%) 16.62 29.89
Improvement Rate
(CNN (%)/HEKF (%)) 66.90/74.96 80.37/86.17
IIFDL Average 1.54 1.54
Computin CNN Average 254.32 253.01
omputing HEKF Average 253.56 252.85
Time (ms) Time Difference
(CNN/HEKF) 252.78/252.02 | 251.47/251.31

TABLE 10. Error comparison with previous methods.

AF |SISOAF/ .
CNN|HEKF KF NN LP [Cubic
Method |HEDL| (33" 35y | LISk |MISOAF) 51 161115 6] 23] | [23]
el | [6]
Intra-
fractionall 33 1 00n| 058 | <20 | 138 | <25 | <25 | 12 [NA
Variation| 1.71
()
Inter-
ﬁaCFIOPa] 038 (098] 1.01 NA N/A N/A NA | 46 | 47
Variation|
(inm)

IIFDL achieved the similar level of the prediction results with
the intra-fractional variation in the experiment for the inter-
fractional variation.

In particular, average computing time was remarkable.
The proposed IIFDL reduced it less than 2ms, which were
over 250ms in the previous methods, CNN and HEKF.
Additionally, this implies that IIFDL can be used in real-
time applications as the proposed method can estimate
the next respiratory signal before it comes. Specifically,
the next breathing signal will come with the interval of
38.46ms to 192.30ms, and IIFDL can calculate the estimated
value within 2ms on average that is before termination of the
time interval.

We provide more comparison with other previous
methods [6], [15], [23], [26], [32], [33] in Table 10, to verify
the accuracy performance of IIFDL. The previous methods in
Table 10 were referred to in Section I. As shown in Table 10,
the proposed IIFDL had the lowest error results among
9 methods. However, comparability is limited as experiments
were not conducted in the identical environment.

V. DISCUSSION

In a curative setting, high radiation doses need to be delivered
with high precision, and safety margines need to be added
to the target to ensure sufficient dose coverage. However,
safety margins and resulting side effects of radiotherapy com-
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promise the ability to deliver tumoricidal treatment doses.
As a result, local tumor reccurences occur in 30% of con-
ventionally fractionated treatments [39] and less than 10%
of stereotactic applications [40]. Respiratory tumor motion
range and consistency vary with patient, within one fraction
and between repeated fractions with change in tumor motion
range >3 mm in 20% of fractions [12]. In addition to address-
ing intra-fractional variation, this paper also investigated pre-
diction for inter-fractional variation that might be larger than
intra-fractional variation and therefore more challenging to
address [41].

Compared to currently applied population-averaged mar-
gins between 3 and >10 mm in motion-inclusive treatment,
margins can be significantly reduced according to the resid-
ual prediction error for the individual patient using motion-
tracking and IIFDL. The proposed IIFDL can contribute to
treatment planning to improve delivery accuracy, by adjusting
the treatment field position according to the predicted intra-
and inter-fractional variation. Based on the experimental
results above, we have validated that the proposed IIFDL can
estimate the next breathing signal before the next incoming
signal arrives. Therefore, IIFDL is expected to achieve real
time prediction in a stream computing environment if the
prediction system tolerates measurement delay of respiratory
signal.

Future studies may seek to identify correlations between
tumor location in the lung, as well as patient-related
parameters and comorbidities and predicted intra- and inter-
fractional variation to even further improve prediction accu-
racy. In addition, further study can be conducted on prediction
with other machine learning methods to improve prediction
accuracy of tumor motion, which have not been introduced
yet for estimating intra- and inter-fractional variation, such
as support vector machines [42], [43].

VI. CONCLUSION

In this paper, we proposed the new prediction algorithm,
called FDL. Based on this algorithm, we also proposed the
specific estimation method for intra- and inter-fractional vari-
ation of multiple patients, called IIFDL. Our approach has
three main contributions to prediction of patients’ motion dur-
ing a single treatment session and between different fractional
sessions. First, the proposed method is the first study on the
modeling of both intra- and inter-fractional variation for mul-
tiple patients’ respiratory data, collected from the Cyberknife
facility. Second, the proposed IIFDL might enhance tumor
tracking techniques due to its high prediction accuracy. Third,
the proposed FDL, the predictor used in IIFDL, has a much
shorter computation time than other methods, so that the
proposed IIFDL shows the optimistic perspective on real-time
prediction.

The experimental results validated that the RMSE value
of the proposed IIFDL was improved by 38.27% of CNN
and 21.69% of HEKF for the intra-fractional variation. For
the inter-fractional variation, IIFDR improved the average
RMSE values by 59.02% for CNN and 60.44% for HEKF.
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The IIFDL also improved the prediction overshoot by 66.90%
for CNN and 74.96% for HEKF for the intra-fractional vari-
ation. In a case of the inter-fractional variation, the overshoot
improvement was 80.37% for CNN and 86.17% for HEKF.
For the average computing time, the previous methods spent
over 250ms for computation, but the proposed IIFDL con-
sumed less than 2ms. The outcomes of RMSE and prediction
overshoot demonstrate that the proposed method has more
of a superb prediction performance than existing approaches.
Particularly, computation time results showed that [IFDL can
be considered as a suitable tool for real-time estimation.
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