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The goal of this study was to quantify the variability of confocal laser scanningmicroscopy

(CLSM) time-lapse images of early colonizing biofilms to aid in the design of future

imaging experiments. To accomplish this a large imaging dataset consisting of 16

independent CLSM microscopy experiments was leveraged. These experiments were

designed to study interactions between human neutrophils and single cells or aggregates

of Staphylococcus aureus (S. aureus) during the initial stages of biofilm formation.

Results suggest that in untreated control experiments, variability differed substantially

between growth phases (i.e., lag or exponential). When studying the effect of an

antimicrobial treatment (in this case, neutrophil challenge), regardless of the inoculation

level or of growth phase, variability changed as a frown-shaped function of treatment

efficacy (i.e., the reduction in biofilm surface coverage). These findings were used to

predict the best experimental designs for future imaging studies of early biofilms by

considering differing (i) numbers of independent experiments; (ii) numbers of fields of

view (FOV) per experiment; and (iii) frame capture rates per hour. A spreadsheet capable

of assessing any user-specified design is included that requires the expected mean

log reduction and variance components from user-generated experimental results. The

methodology outlined in this study can assist researchers in designing their CLSM studies

of antimicrobial treatments with a high level of statistical confidence.

Keywords: microscopy, biofilm, image analysis, statistical confidence, repeatability, experimental design

INTRODUCTION

Biofilms consist of matrix embedded aggregates of microorganisms, are widespread in natural and
engineered environments, and are physiologically distinct from free-living communities. Biofilm
development begins with the loose association of microbes, most often on a surface, followed
by a more robust cellular adhesion and aggregation (Hall-Stoodley et al., 2004). The process of
biofilm development is an active area of research that has been advanced by modeling, imaging,
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and “omic” based approaches (de Beer et al., 1994; Sauer
et al., 2002; Rani et al., 2005; Connolly et al., 2015). One
of the most important developments in the study of biofilm
formation, structure, and dynamics has been the application of
optical imaging, specifically confocal laser scanning microscopy
(CLSM). CLSM has the ability to provide 3D information of
hydrated intact biofilms non-invasively and in real-time (Stewart
et al., 2009; Davison et al., 2010; Franklin et al., 2015). CLSM
studies have provided valuable insight into biofilms including
localization of gene expression (McLoon et al., 2011; Hung
et al., 2013), analysis of extracellular material (Allesen-Holm
et al., 2006; Baird et al., 2012; Gloag et al., 2013), community
organization (Brileya et al., 2014), flow patterns (Martínez-García
et al., 2018), the diffusivity of solutes (Stewart et al., 2009), and
the spatio-temporal patterns of biocide action (Bridier et al.,
2011), making it a powerful tool for any biofilm researcher.
However, when studying developing biofilms, the potential for
increased variability within early stage biofilms in combination
with phototoxicity increases the need for the development of
methodological approaches that carefully consider all steps of
an imaging experiment including experimental design, data
collection, and the reporting of results (Lee and Kitaoka, 2018).

It is standard practice in biological research to establish
the repeatability and reproducibility of a particular technique
or method and this trend has extended into the biofilm field.
There is increasing recognition of the importance of standardized
methods in biofilm research to ensure reproducibility across
labs (Malone et al., 2017). Efforts have been made to develop
standard methods for several biofilm assays (Gomes et al., 2018)
such as the drip-flow reactor (Goeres et al., 2009, 2020), single-
tube method (Goeres et al., 2019), the CDC biofilm reactor
(Goeres et al., 2005), and the 96 well MBEC assay (Parker
et al., 2014). However, studies recommending standard practices
for imaging-based biofilm experiments have not been similarly
reported. A comprehensive review by Magana et al. (2018)
found that biofilm methodology was under-represented as a
percentage of all published papers in the field with only 4.9% of
papers focusing on assay or method development. Conversely,
for the field of genome editing, they found 23.4% of papers
to be related to methodology. We have searched the biofilm
literature for papers on the topic of biofilm imaging methods and
observed that the majority of biofilm imaging methods papers
are dedicated novel image analysis techniques and packages that
assist researchers in quantifying biofilm characteristics such as
volume, structure, and surface coverage (Heydorn et al., 2000;
Yang et al., 2000; Daims et al., 2006; Mueller et al., 2006;
Yerly et al., 2007; Milferstedt et al., 2009; Renslow et al., 2011;
Almstrand et al., 2013; Sommerfeld Ross et al., 2014; Tolker-
Nielsen and Sternberg, 2014; Larimer et al., 2016; Vyas et al.,
2016; Baudin et al., 2017; Luo et al., 2018, 2019; Parker et al.,
2018b, 2020). While these studies are essential to further the field
of biofilm research by improving the quality and accuracy of
data acquired through imaging, we are aware of few papers that
include any recommendations for the design of biofilm imaging
experiments to assure that data are representative, repeatable
across experiments, and reproducible across labs (Korber et al.,
1993; Lawrence and Neu, 1999; Heydorn et al., 2000; Daims
and Wagner, 2011; Menzel et al., 2016). To answer questions

of interest from imaging data with a high level of statistical
confidence, a quantitative assessment of variability in biofilm
imaging data that specifies the requisite number of experiments
and fields of view (FOV) is necessary but currently is lacking.
To achieve statistical confidence, there is often an inclination to
collect as many FOVs as possible. This approach has the potential
to negatively impact data quality in several ways. Excessive
imaging of a sample can result in photosensitivity of fluorophores
and decrease data quality, although next generation imaging
technologies such as light-sheet microscopy are beginning to
mitigate these concerns somewhat (Power and Huisken, 2017;
Qin et al., 2020). Increasing the number of FOVs being imaged
can decrease the temporal resolution for time lapse microscopy,
which can be a large detriment when studying rapid processes.
Furthermore, advancements in imaging technology which have
allowed researchers to generate massive amounts of data by
imaging many FOVs over high temporal resolutions require
a significant amount of time and computational resources
to process and analyze collected images. Thus, identifying
the correct balance between sample number and statistical
confidence can make imaging-based experiments more efficient
while maintaining high quality data and providing confidence in
the downstream interpretation.

This paper provides guidance on designing experiments
and interpreting resulting data from time-lapse visualization
studies with an emphasis on early colonization biofilms.
Recommendations are given for the number of experiments,
FOVs and frames per hour that should be collected for
imaging studies. Data were mined from 16 independent CLSM
microscopy experiments that were designed to study interactions
between human neutrophils (polymorphonuclear leukocytes or
PMNs) and single cells or aggregates of S. aureus during the initial
stages of biofilm formation. These data, including biological
replicates (i.e., independent experiments) and varying inoculum
concentrations, were then analyzed to identify the variability
associated with the different levels of replication. We use the
results to suggest future microscopy experimental designs. Based
on the variability identified with each level of replication, results
presented herein allowed us to recommend how often to take
CLSM images (i.e., the temporal resolution of the sequence of
images), how many FOVs to include, and how many replicate
experiments to perform when studying initial attachment of
biofilms using surface coverage as a quantitative response. While
the presented analysis and results are specific to the data set
described above, any pilot data can readily be analyzed using
the approach that we present to inform experimental designs.
We include our experimental design assessment tool as an Excel
spreadsheet in the Supplementary Materials.

METHODS

Bacteria and PMN Preparation
Staphylococcus aureus strain AH2547 (HG001 + pCM29,
courtesy of Alex Horswill), a known biofilm-forming strain
(Pabst et al., 2016) with constitutive expression of green
fluorescent protein (GFP), was grown overnight in tryptic
soy broth supplemented with 10µg/ml chloramphenicol for
maintenance of the GFP carrying pCM29 plasmid. Overnight
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cultures were centrifuged for 5min at 4,000 rpm, rinsed,
resuspended in phosphate buffered saline (PBS), and serially
diluted. Cells were attached to a 4-chambered glass bottom petri
dish (Cellvis, CA, USA) to facilitate live imaging. To attach
bacteria, 10 µL of diluted bacterial suspension were added to
the surface. After 30min of incubation at 37◦C, unattached
bacteria were gently rinsed from the surface with PBS. Each
chamber of the petri dish was filled with 1ml of 10% fresh
human serum in Hank’s Balanced Salt Solution (HBSS) with
Ca2+ and Mg2+ and incubated at 37◦C for 30min. PMNs were
isolated from multiple heparinized venous blood obtained from
healthy donors following a standard IRB-approved protocol as
described previously (Voyich et al., 2005, 2009). All donors
provided written informed consent to participate in the study.
PMNs were isolated under endotoxin-free conditions (<25 pg
ml−1) and purity (<1% PBMC contamination) and viability
(<2% propidium iodide positivity) of PMN preparations were
assessed by flow cytometry as previously described (Voyich et al.,
2005, 2009). PMNs were kept on ice until stained with LysoBrite
Red (AAT Bioquest, CA, USA) according to the manufacturers
instructions. Stained PMNs were added to the appropriate wells
and interactions between S. aureus and PMNs were imaged for
4 h. Some experiments utilized PMNs from the same donor,
although PMNs from the same donor were always collected and
prepared on different days.

For the antibiotic treatment assay, S. aureus was attached
to the petri dish surface as described above, grown for 3 h in
10% human serum in HBSS, then challenged with 10µg/mL
gentamicin and imaged for 4 h.

Microscopy
A Leica SP5 inverted confocal laser scanning microscope was
utilized for all imaging. GFP-tagged bacteria and PMNs were
excited with the 488 nm and 561 nm laser lines, respectively. A
LiveCell (Pathology Devices, CA, USA) environmental chamber
system was utilized to maintain 5% CO2, 20% O2, 50% humidity,
and 37◦C for sample incubation during imaging. Image stacks
12–20µm in size with 1-µm z-slices were taken sequentially at
2–3min intervals over a 4-h time course using a Leica 20x/0.7 NA
dry objective lens. At least two fields of view from each chamber
of the dish were generally imaged per experiment. FOVs with
large numbers of bacterial objects were selected for imaging to
visualize the highest number of S. aureus—PMN interactions.

Image Analysis
Images were analyzed as maximum projections of z-stacks
at each time point. MetaMorph v 7.8.13 (Molecular Devices)
image analysis software was used to measure change in bacteria
biomass by quantifying the thresholded area of bacterial green
fluorescence in each collected image. Log reductions (LR) in GFP
area for bacteria treated with PMNs were calculated for each time
point using the formula

LR = log10
(

Control
)

− log10(Treated)

where the control area was an average area of the two fields of
view from the control well for a given experiment and the treated
area was of a single field of view of interest.

Repeatability Analysis
A linear mixed effects model (LMM) was fit to each hour of
data [either log10(GFP) area of the controls or LRs] separately,
with FOV nested in Experiment as random effects and time as
a covariate. This LMM estimated the components of variance
due to experiment (Varexp), FOV (VarFOV) and time (Vartime).
To pool the time periods in each approximate phase of growth,
an LMM was fit to data from each phase with fixed effects for
log(Inoculum), time period and the two-way interaction, and
covariates for time as well as all 2 and 3 way interactions with
the fixed effects. The serial correlation over time was modeled
with an autoregressive process of order 1 [AR(1)] by fitting the
LMM and then inflating the variance for the error term using the
approach described in section 15.2 of Ramsey and Schafer (2013).
This variance inflation factor is c =

1 + r
1 − r that depends on the

first serial correlation coefficient r =

∑n
t=2 rest×rest−1

∑n
t=1 rest×rest

where res is

the set of LMM residuals. Quadratic trend was fit to the variances
as a function of the LR as described by Parker et al. (2018b). All
LMMs were fit in R v4.0.1 package lme4 (Bates et al., 2015).

Experimental Designs
The main question of interest is how to use the repeatability
results from the LMM to answer questions about microscopy
experimental design. To answer this question, we focus on the
precision of the mean response [either log10(GFP area) or LR]
given by the standard error of the mean (SEM) and a one-
sided 95% CI of the mean. The equation for the SEM from
an experimental design with nexp experiments, nFOV FOVs per
experiment and ntime per FOV is

SEM =

√

Varexp

nexp
+

VarFOV

nexpnFOV
+

Vartime × c

nexpnFOVntime
(1)

Equation (1) is the standard formula for the SEM when the
data are balanced and there is no serial correlation over time
(i.e., when r = 0 and the variance inflation factor is c = 1).
The variance inflation factor is c > 1 when the data over time
are correlated in which case the SEM is inflated to account for
that correlation. In other words, as the variance inflation factor
c increases due to higher correlation over time, the SEM also
increases through the third term in equation (1). We estimated
the variance components Varexp, VarFOV, and Vartime in equation
(1) from our data using the LMM described above. Our data can
be used to estimate the SEM when the images are collected at
a single time point (i.e., there is no video) by setting ntime =

1 in equation (1). If one wants to use their own data for single
time point image data, then one would fit an LMM with a single
random effect for experiment, retrieve variance components for
Varexp and VarFOV, and plug in values for nexp and nFOV and set
Vartime = 0 in equation (1).

For any growth phase given in Table 1, we can fill in the values
in equation (1) to get the SEM for the mean log(GFP area) for the
untreated control biofilms. For example, for an experiment that
is run to the early exponential phase (see row 2 in Table 1), the
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TABLE 1 | Repeatability standard deviation for each phase of biofilm growth and the proportion (Prop.) of variance attributable to each of experiment, field of view,

and time.

Phase Time Period (h) Prop. Exp Prop. FOV Prop. Time Repeat. SD First serial correlation Inflation factor

Lag [0, 2] 0.3207 0.6707 0.0086 0.4867 0.8313 10.9

Early [2, 4] 0.5831 0.4033 0.0137 0.3186 0.8751 15.0

Late [4, 8] 0.4540 0.5151 0.0309 0.2148 0.9129 22.0

The closer that the serial correlation r is to 1, the more dependent the data are over time. The variance inflation factor indicates how much the serial correlation over time increases the

SEM via equation (1).

SEM is

SEM

=

√

0.583× 0.31862

nexp
+

0.403× 0.31862

nexpnFOV
+

0.0137× 0.31862 × 15

nexpnFOVntime
.

To fill out the previous formula:

• If an image is collected every 3min, then 20 images are
collected in each FOV over an hour-long experiment. So the
number of images inputted into the formula is ntime = 20.

• If 3 FOVs are collected per experiment, then nFOV = 3.
• If there are 2 independent experiments then nexp = 2.

Given this setup, then the SEM in this example is

SEM =

√

0.583× 0.31862

2
+

0.403× 0.31862

2× 3
+

0.0137× 0.31862 × 15

2× 3× 20

= 0.191.

In this example the correlation over time inflates the time
component of the SEM by the variance inflation factor c =

15 (Table 1). For these control data collected from the early
exponential phase the variance component due to time is small
(≤ 1.4%, see Table 1), as is commonly the case, so the SEM
remains about the same size whether or not the correlation due
to time is accounted for [i.e., whether, in equation (1), c > 1 as in
Table 1 or c= 1].

The lower limit for an upper one-sided 95% confidence
interval (CI) for either the mean control response or the mean
LR is calculated by

Mean− t × SEM.

The multiplier t is the 95th percentile from a t distribution
with nexp − 1 degrees of freedom. In our results, we consider
nexp = 1, 2, 3, and 6 and provide the margin of error, MOE
= t ×SEM, for a one-sided 95% confidence interval for each of
these scenarios coupled with specifications for ntime = 10 or 40,
and nFOV = 1, 2, and 6. When nexp = 1, we use a t distribution
with 0.5 degrees of freedom to give an approximate MOE for a
1-sided 95% CI for the mean. For all SEM and MOE calculations
for the mean LR, the inflation factor c = 12 was used. This value
is the maximum possible value observed for our LR data (see
Supplementary Material).

The SEM in equation (1) is closely related to the repeatability
SD that quantifies the variability of the data across time points,
FOV and experiments, by

Repeatability SD =
√

Varexp + VarFOV + Vartime × c (2)

Equation (2) shows that when the data over time are correlated,
then the repeatability is inflated to account for that correlation.
In other words, as the variance inflation factor c increases due to
higher correlation over time, the repeatability SD also increases
through the third term in equation (2).

RESULTS

Experimental Setup and Data Acquisition
Previous and ongoing studies in our lab have utilized a time
lapse imaging system to analyze interactions between human
PMNs and surface adherent S. aureus (Ghimire et al., 2019;
Pettygrove et al., 2021). Data were mined from two types of
experiments that were performed to investigate the effects of
PMN density and S. aureus aggregate size on the overall clearance
of S. aureus from a glass surface. We will refer to these two
experiment setups as “density” and “head start” experiments,
respectively (Figure 1). Extensive time-lapse microscopy data
of bacterial growth spanning an 8-h time frame and several
corresponding treatment conditions were collected for each
of the described experiments (Figures 2, 3). The overarching
results and interpretation of these experiments will not be
discussed at length here but are the subject of a separate
manuscript (Pettygrove et al., 2021). For density experiments it
was observed that a high concentration of PMNs was required
to clear adherent S. aureus with the “medium” and “high”
treatment conditions resulting in significant clearance of bacteria
(Figures 3A–C). Head start experiments demonstrated that
aggregated S. aureus becomes highly resilient to PMN clearance
and bacteria will persist through PMN challenge (Figure 3D).
The relative contributions of inter-experimental, inter-FOV, and
inter-timepoint variances at distinct phases in the bacterial
growth cycle (namely during lag phase, early exponential phase,
and late exponential phase) were all calculated from the collected
time lapse microscopy data.

Analysis of Untreated Biofilm
Variability of Early S. aureus Biofilm Colonization
Variability in observed GFP area, a surrogate for viable biomass
(Schwartz et al., 2009), was analyzed over time for experiments
at two inoculation concentrations for 4 h time periods (Figure 2).
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FIGURE 1 | Experimental setup for probing PMN-S. aureus interactions. Two FOVs were imaged in each well unless otherwise noted. (A) S. aureus cells were

attached to the dish surface at an initial inoculum of ∼103 CFUs/cm2. A single well-contained S. aureus only (green dots, well I) while all other wells received S. aureus

and PMNs (pink circles, wells II - IV). S. aureus—PMN interactions were then imaged for 4 h. N = 10 independent experiments producing n = 20 fields of view (FOV)

(control wells), n = 8 FOVs (“low” PMN concentration), n = 18 FOVs (“medium” PMN concentration), n = 14 FOVs (“high” PMN concentration). The data are

unbalanced for the different neutrophil concentrations. (B) S. aureus cells were attached to the dish surface at an initial inoculum of ∼102 CFUs/cm2. To aggregate

cells, S. aureus was incubated for 4 h after initial attachment (wells I and II). Single S. aureus cells were attached in control wells (wells III and IV) at the 4 h time point

for comparison to non-aggregated cells. PMNs were then added to treatment wells (wells II and III) and imaged for 4 h. One well per condition (wells I and IV) was not

treated with PMNs. N = 6 independent experiments with 12 FOVs per condition.

FIGURE 2 | Measured growth of surface adherent S. aureus without an antimicrobial treatment. Each line represents the average of two FOVs from a given

experiment. (A) Bacterial growth measured in density experiments (as in Figure 1A, well I). The initial inoculum was measured to be 1.83 ± 1.59 × 103 CFUs/cm2.

(B) Bacterial growth measured in head start experiments (as in Figure 1B). Solid lines indicate control wells in which single cells were attached and observed for 4 h

(well IV in Figure 1B). Dashed lines indicate wells in which bacteria were given 4 h to grow prior to the start of imaging, then observed for 4 h (hours 4–8, well I in

Figure 1B). The initial inoculum was measured to be 1.93 ± 0.70 × 102 CFUs/cm2.

Bacterial growth was consistent between experiments, containing
a lag phase, early exponential phase, and in the case of the
“head start” experiments (Figure 2B), a late exponential phase.
The repeatability standard deviation (SD) was calculated (data
from Figure 2) for each hourly period from 0 to 8 h (hours
4–8 from experiments with a head start only), broken out by
the inoculation level (Supplementary Table S1). Although the
biomass area increases dramatically over time as the biofilm

aggregates grow (Figure 2), the repeatability SDs and the
proportions of variance were similar for the two inoculum levels
within the lag or early exponential phase. The observed variance
was also similar for each of the hourly periods within each
phase, regardless of inoculation concentration (i.e., in Figure 2,
the spread in the curves for the experiments is about the same
over time). Thus, the data were pooled across inoculum levels
and hours for each phase of growth. A single repeatability SD
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FIGURE 3 | Log reduction in surface attached S. aureus biomass during PMN challenge compared to the average of the two corresponding control FOVs (no PMNs).

Each line represents the average of two FOVs from a given experiment unless otherwise noted. Data shown from (A) density experiments with a low number of PMNs

(2.39 ± 1.13 × 103 PMNs/cm2, 8 FOVs, depicted in Figure 1A, well II) and (B) density experiments with a medium number of PMNs (1.53 ± 1.25 × 104 PMNs/cm2,

18 FOVs, depicted in Figure 1A, well III). (C) Data shown from density experiments with high PMNs (Exps 1–5, 2.57 ± 1.18 × 104 PMNs/cm2, 14 FOVs, depicted in

Figure 1A, well IV) and control wells from head start experiments containing single cells and PMNs (Exps 6–11, 1.09 ± 0.31 × 104 PMNs/cm2, 12 FOVs, depicted in

Figure 1B, well III). Except for experiment 5, which contains 6 FOVs of the same condition, each line represents the average of two FOVs from a given experiment.

(D) Data shown from head start experiments where aggregated bacteria were challenged with PMNs (1.72 ± 0.93 × 104 PMNs/cm2, 12 FOVs, depicted in

Figure 1B, well II).

and components of variance of the log(area) were calculated
for each phase of growth (Table 1). Overall, variation decreased
as cells progressed through exponential phase. Thus, seeding
and culture conditions may affect variation more during the
early periods of biofilm colonization. It is crucial to have side-
by-side controls in all experiments that are highly repeatable,
otherwise the log reductions can be affected (Stewart, 2015).
The level of variability of the untreated controls from our
experiments is acceptably small (a repeatability SD of untreated
controls <½ log is acceptable) compared to other methods
in the peer reviewed literature that have been standardized
with AOAC International (Tilt and Hamilton, 1999) or ASTM
International (Parker et al., 2014; Goeres et al., 2019, 2020;
Allkja et al., 2021).

Design Recommendations
After calculating the variation in S. aureus biomass during
different phases of growth (Table 1), the improvement in the
standard error of themean log10(GFPArea) (SEM)was estimated
under different experimental designs using the formula for SEM
outlined in equation (1) in the methods. Given the SEM, we

then predicted the margin of error (MOE) for a 95% confidence
interval for the mean log(GFP Area) of untreated biofilms under
varied numbers of replicate experiments (1–6), FOVs (1, 2, 6)
and time rates of acquisition (10, 40 images per hour) (Table 2).
Larger SEM and MOE values indicate more imprecision when
estimating biomass from an image. Unsurprisingly, results
for early exponential phase data indicate that at least three
experiments should be performed to reach a MOE below 1
log(GFP area). While one FOV may be acceptable, exceeding
two FOVs per experiment yields only mild returns with regards
to increasing precision, suggesting two FOVs may be optimal.
Additionally, increasing the temporal resolution only negligibly
increases precision, so utilizing fewer timepoints per hour for
temporal studies may be advantageous to reduce fluorophore
photosensitivity or phototoxicity, especially when exciting with
ultraviolet light. Assessments of different experimental designs
for lag and late exponential phase growth data produced similar
conclusions (Table 2). Overall, the improvement in precision
diminishes with increased numbers of experiments or FOVs in
each experiment. However, there is a much greater decrease
in MOE when more experiments are performed, even when
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TABLE 2 | Expected margin of error for a one-sided 95% confidence interval for the mean log10(GFP area) at different phases of growth and a variety of experimental

parameters for untreated controls.

Lag FOV 1 1 2 2 6 6

Frames 10 40 10 40 10 40

Experiment number 1 20.0167 19.9466 16.2652 16.2221 13.1839 13.1661

2 2.1765 2.1689 1.7686 1.7639 1.4335 1.4316

3 0.8211 0.8182 0.6672 0.6654 0.5408 0.5401

4 0.5723 0.5703 0.465 0.4638 0.3769 0.3764

5 0.4639 0.4623 0.377 0.376 0.3056 0.3051

6 0.4016 0.4002 0.3264 0.3255 0.2645 0.2642

Early exponential FOV 1 1 2 2 6 6

Frames 10 40 10 40 10 40

Experiment number 1 13.1355 13.0347 11.6722 11.6156 10.5849 10.5641

2 1.4283 1.4173 1.2692 1.263 1.1509 1.1487

3 0.5388 0.5347 0.4788 0.4765 0.4342 0.4333

4 0.3755 0.3726 0.3337 0.3321 0.3026 0.302

5 0.3044 0.3021 0.2705 0.2692 0.2453 0.2448

6 0.2636 0.2615 0.2342 0.2331 0.2124 0.212

Late exponential FOV 1 1 2 2 6 6

Frames 10 40 10 40 10 40

Experiment number 1 8.9894 8.7664 7.6221 7.4911 6.554 6.5035

2 0.9774 0.9532 0.8288 0.8145 0.7126 0.7071

3 0.3687 0.3596 0.3126 0.3073 0.2688 0.2668

4 0.257 0.2506 0.2179 0.2142 0.1874 0.1859

5 0.2083 0.2032 0.1767 0.1736 0.1519 0.1507

6 0.1804 0.1759 0.1529 0.1503 0.1315 0.1305

The table shows that when quantifying untreated biofilms with a mean log10 (GFP Area) during lag phase, at least 4 experiments with 2 FOVs each must be performed to get the error

bars less than one half log. For early exponential phase, at least 3 experiments with 2 FOVs in each or 4 experiments must be performed while at least 3 experiments must be performed

for late exponential phase.

fewer FOVs are imaged in each experiment compared to
fewer experiments with a large number of FOVs in each. For
example, when estimating the mean log10(GFP area) of the
untreated control biofilms during the early exponential phase
at 95% confidence, consider a design utilizing two replicate
experiments, two FOVs, and ten images per hour. Tripling the
number of FOVs to six only yields a 9.3% reduction in the
margin of error, while performing an additional experiment
with two FOVs in each experiment results in a 62.3% reduction
in the margin of error (Table 2). Conversely, performing six
experiments with two FOVs and 10 images per hour reduces
the margin of error by 81.5%, but requires a 3-fold increase
in effort. Thus, our results suggest minimal benefit to utilizing
a large number of FOVs with fewer experiments and instead
recommend increasing the number of experiments performed
when observing untreated biofilms during the early stages
of colonization and development. However, the improvement
in precision from performing more experiments must be
weighed against the time and resource commitment required for
those repetitions.

Analysis of Treated Biofilm
Variability of PMN Clearance of Nascent S. aureus

Biofilm
By analyzing the results of experiments where surface attached
S. aureus cells were challenged by human PMNs, we can make
experimental design recommendations for studying the effect
of an antimicrobial treatment on the viability of early biofilms.
The two experimental setups (Figure 1) allowed us to analyze
two different treatment scenarios. Experiments where the PMN
density was varied (Figure 1A) can serve as an analog to changing
the concentration of an antimicrobial treatment while the “head
start” experiments (Figure 1B) can be modeled as application of
a treatment at two different stages in biofilm development (in
this case, lag and late exponential phase). It is important to note
that discovery and subsequent killing of sparsely seeded S. aureus
cells on a surface is a stochastic process that is highly dependent
on the PMN concentration, unlike an antibiotic treatment that is
comparatively homogenously applied (Ghimire et al., 2019). We
calculated LRs in GFP area within each treatment FOV compared
to the average of the two corresponding control FOVs at each
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FIGURE 4 | Repeatability standard deviation increases with the observed log

reduction. Symbol shapes correspond to the observation time period (h) while

colors indicate the concentration of PMNs that were used to challenge S.

aureus. Black symbols indicate low PMN concentration (Figure 3A), red

symbols indicate medium PMN concentration (Figure 3B), and green symbols

indicate high PMN concentration (Figures 3C,D). Solid line represents the

quadratic trend in the repeatability variance. Brackets indicate that the value is

included in the given time range while parentheses indicate that the value is

excluded.

time point. For PMN challenges against single cell S. aureus, as
PMN density was increased, we observed higher LRs in GFP area,
but increasing variability as the magnitude of the LR increased
(Figures 3A–C). We similarly observed higher variability in LR
in the efficacious “high PMN treatment” against single cells as
compared to the relatively ineffective “high treatment” against
aggregated cells (Figure 3D). Repeatability SD did not change
markedly over time, but did increase with the observed LR,
regardless of the experimental setup (Density vs. Head Start)
(Figure 4). Intuitively, a treatment that is poorly efficacious
(Figures 3A,D) will consistently result in small reductions and
be more repeatable (Parker et al., 2018a). On the other hand,
for a treatment that is highly efficacious and consistently kills
all attached cells, we would expect a high level of repeatability
as well (such a highly efficacious treatment was not tested in
our experiments). Here, we observe that treatments of middling
efficacy are highly variable. Thus, experiments where a treatment
is expected to be highly efficacious or very ineffective will require
fewer repetitions while moderately effective treatments require
more. Our statistical model for the LRs explicitly accounts
for differences among experiments. Because multiple donors
contributed PMNs, the repeatability variance in Figure 4 may
be larger than what would be expected if all PMNs were
collected from the same donor. Nonetheless, the repeatability
SDs for LRs that were observed in our system were <1 log and
hence acceptable according to ASTM International and AOAC
international (Parker et al., 2018a).

Design Recommendations
In our experiments measuring killing of attached S. aureus cells
by human PMNs, we observed that the variance changes as
a function of the LR regardless of inoculation level and time

(Figure 4 and Supplementary Table S2). As with the data from
control wells, we used these results to evaluate how frequently
to image, how many experiments to conduct, and how many
FOVs to utilize per experiment in order to generate estimates
of the mean LR with statistical confidence. The first step was to
calculate the SEM for the mean LR using equation (1) from the
estimated variance components for experiment, FOV and time
(Supplementary Figure S1). Using these values, the expected
MOE was assessed for experimental designs for treatments that
have a mean LR = 0.5, 1, or 2 over a wide range of experiment
numbers, FOV numbers, and temporal resolutions (Table 3).
Because the variance increases as the mean LR increases
(Figure 4), the SEM increases as the LR increases. Nevertheless,
this does not translate into more experimental effort to precisely
estimate the mean LR for moderately efficacious treatments (with
mean LR = 2) compared to less efficacious treatments (with
mean LRs ≤ 1) because the magnitude of the LR is less for
less efficacious treatments. For an expected LR = 0.5, at least 4
experiments are required to detect a significant kill, while for LR
= 1 or 2, only 3 experiments are necessary (Table 3). While the
minimum number of experiments required to detect a significant
kill does not change based on the number of FOVs (except
when using 6 FOVs when LR = 0.5), modest improvements in
the MOE are expected when at least 2 FOVs are utilized and
may provide considerable benefit to the researcher. Providing an
expected LR is a standard input for sample size calculations. The
only difference in our approach from the standard approach is
that in addition to using the expected LR as the margin of error
input into the sample size calculator, we also use the expected
LR to look up the variability of the LR (via Figure 4). Using the
standard sample size calculator approach, the variability would be
assumed to be the same for all LR values, which clearly is not the
case for these efficacy data (see Figure 4 and the review in Parker
et al., 2018a).

Validation of Design Recommendations
To determine how well Table 3 predicts the margin of error,
we assessed a second dataset utilizing a 10µg/mL gentamicin
treatment rather than PMN treatment. Similar to the previously
described experiments, S. aureus was grown for 3 h, then treated
with gentamicin for 4 h and imaged via confocal microscopy.
We expected a LR of around 1 after 4 h of contact time and
a repeatability SD of around 0.5 (Figure 4). Table 3 suggests
that 3 independent experiments with 1 FOV each would be
sufficient to detect a significant kill. The dataset that we
analyzed contained 3 independent experiments with 3 control
FOVs and 3 treated FOVs in each experiment, allowing us
to assess the MOE for many possible combinations of 3
experiments with 1 control FOV and 1 treated FOV (27 possible
control FOV combinations and 27 possible treatment FOV
combinations yielding 729 possible LRs). We simulated 1,000
studies with this design via bootstrap sampling and calculated
the mean LR, MOE, and lower 95% confidence limit for each
experimental design (Supplementary Figure S2). Overall, the
gentamicin treated data was less variable (mean LR = 0.80,
repeatability SD = 0.12) than the neutrophil treated data
(repeatability close to 0.5 according to Figure 4), resulting in
MOEs much smaller than the predicted value of 0.91 (Table 3).
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TABLE 3 | Expected margin of error (MOE) for a 1-sided 95% confidence interval for the mean log reduction in GFP area at a variety of experimental parameters and

when LR = 0.5 (i.e., when percent reduction is 68%), when LR = 1 (i.e., when percent reduction is 90%), and when LR = 2 (i.e., when percent reduction is 99%).

LR = 0.5 FOV 1 1 2 2 6 6

Frames 10 40 10 40 10 40

Experiment number 1 16.2871 16.2155 13.872 13.83 11.9948 11.9786

2 1.7681 1.7604 1.506 1.5014 1.3022 1.3004

3 0.6681 0.6651 0.569 0.5673 0.492 0.4913

4 0.4656 0.4636 0.3966 0.3954 0.3429 0.3425

5 0.3775 0.3758 0.3215 0.3205 0.278 0.2776

6 0.3268 0.3254 0.2783 0.2775 0.2407 0.2403

LR = 1 FOV 1 1 2 2 6 6

Frames 10 40 10 40 10 40

Experiment number 1 22.1521 22.1521 18.9751 18.9751 16.5211 16.5211

2 2.4048 2.4048 2.06 2.06 1.7935 1.7935

3 0.9086 0.9086 0.7783 0.7783 0.6777 0.6777

4 0.6333 0.6333 0.5425 0.5425 0.4723 0.4723

5 0.5134 0.5134 0.4398 0.4398 0.3829 0.3829

6 0.4445 0.4445 0.3807 0.3807 0.3315 0.3315

LR = 2 FOV 1 1 2 2 6 6

Frames 10 40 10 40 10 40

Experiment number 1 29.3802 28.4735 24.0585 23.5071 19.7287 19.5059

2 3.1895 3.0911 2.6118 2.5519 2.1418 2.1176

3 1.2051 1.1679 0.9868 0.9642 0.8092 0.8001

4 0.8399 0.814 0.6878 0.672 0.564 0.5577

5 0.6809 0.6599 0.5576 0.5448 0.4572 0.4521

6 0.5895 0.5713 0.4827 0.4717 0.3959 0.3914

The MOE was calculated from equation (1) using the variance components from Supplementary Figure 1 for each LR value. The table shows that when studying a treatment with a

mean LR = 0.5, at least 3 experiments, each with 6 fields of view; or 4 experiments with any number of fields of view must be performed to be able to detect a statistically significant

kill. When studying a treatment with a mean LR = 1 or LR = 2, at least 3 experiments must be performed to be able to detect a statistically significant kill. Because the variance due to

time is 0 for LR = 1 (Supplementary Figure 1), there is no effect on the margin of error due to differences in the number of images acquired.

In 100% of the simulations, the design produced a statistically
significant kill (Supplementary Figure S2C). This indicates that
the recommendation of 3 experiments and 1 FOV, while
conservative, was sufficient for detecting the mean LR with 95%
confidence using this experimental setup (gentamicin treatment
rather than PMN treatment).

DISCUSSION

Real-time CLSM non-invasively provides quantitative insight
into the dynamics of living biofilms (Stewart et al., 2009; Davison
et al., 2010; McLoon et al., 2011; Hung et al., 2013; Franklin et al.,
2015; Ghimire et al., 2019; Pettygrove et al., 2021). Continued
exploration in this area by our lab has yielded an abundance of
time-lapse microscopy data that can inform the proper design of
microscopy studies (Ghimire et al., 2019; Pettygrove et al., 2021).
The data included are particularly suitable for assisting with
the experimental design of studies investigating initial bacterial
attachment, early biofilm formation, and biocidal treatments of
bacteria in this stage. However, the development of criteria for

selecting the appropriate number of FOV that are required to
produce representative quantitative results have been overlooked
for this type of data collection. In this paper, we aimed to
retrospectively utilize time-lapse data to provide quantitative
guidance on the aspects of experimental design such as the
numbers of experiments, fields of view, and images over time to
provide an acceptable level of precision when estimating biomass
on a surface.

In the presented data, variance for untreated controls
representative of early biofilm formation (i.e., early colonization),
depended on the growth phase of interest (lag or exponential in
our data). The repeatability SD tended to decrease as cells entered
exponential phase (Table 1). Thus, when designing an imaging
experiment to study biofilm colonization, the user should
primarily consider which phase of growth will be monitored and
adapt the number of experiments, FOVs, and time points to
include in the experimental design accordingly. The increased
repeatability SD observed during the lag phase compared to early
and late exponential is likely in part due to the high amounts of
heterogeneity in the initial observed growth. S. aureus cells were
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seeded onto the surface in PBS, rather than a nutrient rich media,
resulting in differential recovery from lag phase for individual
colonies, leading to high intra-FOV variation during lag phase
as attached cells began to readjust to the media conditions.
Thus, initial seeding conditions may affect variability as well and
must be assessed for each system. For experiments where the
measured output is a reduction in viable bacteria (GFP area in
these experiments), the expected LR is required to estimate the
appropriate number of experiments, FOVs, and time points. It
is to be expected that the variability will be markedly different
for different laboratory systems (Parker et al., 2018a; Stewart and
Parker, 2019). Nonetheless, here we present a methodology for
others to follow to estimate the variance in their systems and
allow experimental design assessments.

As it pertains to repeatability, experimental bias is a significant
obstacle for imaging studies. Sources of bias in imaging
experiments can include the selection of representative regions
of interest, image collection parameters, and the number of
visualized FOVs (Lee and Kitaoka, 2018). Relatively arbitrary
recommendations have been made for approaches to minimize
bias such as visualizing a greater number of FOV, increasing
the size of the visualized area, and imaging multi-well plates
(Patel and McGhee, 2013; Lee and Kitaoka, 2018). There is
limited suitability of some of these recommendations as it
pertains to real-time biofilm imaging due to phototoxicity and
the need for rapid image acquisition. As is common, the
fields of view that we analyze here were not randomly chosen
since the bacterial attachment was not homogenous across the
surface. Statistical predictions and confidence intervals from
hypothetical experimental designs, as we do here, presume that
the data collected are representative of some population of all
possible fields of view that could have been selected. Usually,
representative data are assured by random sampling, in this
case randomly selecting fields of view, wherein the population
of interest is all possible fields of view. True random sampling
is not typically performed in imaging studies as many fields of
view are empty, especially during attachment or early biofilm
formation. For the data collected here, the population of interest
was all fields of view that contained some population of PMNs
and biofilm aggregates, as determined by the microscopist. Fields
of view were selected to maximize the number of PMN-S. aureus
interactions that could be imaged, thus most fields of view were
selected because of a high number of S. aureus aggregates present.
While FOV selection is subjective and often dependent on the
microscopist, our results are a starting point for estimating the
sources contributing to the variance in observed biomass and
designing microscopy experiments. There are methods, however,
to reduce bias due to the subjective selection of fields of view. For
example, in the ecological literature, there are adaptive sampling
techniques that begin by randomly selecting locations for
observation, i.e., randomly selecting a FOV (Thompson, 1990).
When the ecologist (or microscopist) moves and encounters
a new location (or FOV) of interest, the resulting statistics
can be “adapted” to account for this deviation in sampling.
Implementation of adaptive sampling that adjusts the image
statistics is a matter for future research. Our lack of random
sampling is a potential weakness of our work. We recommend

adaptive sampling of FOVs to minimize bias due to subjective
FOV selection, but until the tools for CLSM have been developed,
the next best approach to alleviate bias is to randomly select fields
of view from the surface being imaged.

Our results, not surprisingly, point to the need to perform at
least three experiments in most scenarios. For a given growth
phase or expected LR, a substantial contribution to variance in
biomass is due to differences between experiments (Table 1 and
Supplementary Figure S1). Furthermore, our results indicate
that a single FOV in each experiment may be sufficient, as the
resulting reduction in variance from increasing FOVs is small.
Most experimenters will want to collect at least two FOVs,
but our results suggest that there is only minimal benefit to
using more than two in most cases. Furthermore, as neutrophil
challenge is a relatively heterogeneous antimicrobial treatment
as compared to antibiotic therapy, it is plausible that the
inter-FOV variance in our system is higher than might be
observed in an antibiotic treated system. Lastly, our results
demonstrate that there is not substantial increase to precision
by increasing the temporal resolution of the acquired images in
the video. In our variance predictions, little difference was seen
between conditions utilizing 10 images per hour compared to
40 images per hour, suggesting an experimenter should utilize
the temporal resolution that is best for their sample as the effect
on their data quality will be minimal, barring phototoxicity.
For visualizing rapid processes, high temporal resolution has an
obvious benefit, however lower temporal resolution can both
decrease phototoxicity and downstream image analysis burden.
We observed little phototoxicity or fluorophore bleaching in
our system despite a frequent image capture rate, however each
experimenter should decide how rapidly to image based on
the organism, fluorophores, and conditions necessary for their
work. It is to be expected that a study of a different organism,
even when using the same method, will produce results that
have different levels and sources of variation than S. aureus.
For example, a motile organism may enter and leave a FOV,
while other organisms may have less predictable attachment
mechanics. Similarly, different growth or treatment conditions
would introduce different levels and sources of variability. These
factors could lead to different inter-experimental, inter-FOV, or
inter-timepoint variance compared to the values measured in
our study. Therefore, we strongly recommend that researchers
generate their own pilot data using their own methods and
organisms and use the resulting variance component estimates
to complete equation (1) via the included Excel tool to generate
study designs. However, in the absence of available pilot data,
which unfortunately is many times the case, the study designs
(in Tables 2, 3) calculated from our data can serve as a
starting point, with the understanding that there are likely
differences between the system we present here and systems
used by other researchers. Regardless of the data used, the
analysis framework presented in this manuscript can help other
researchers design statistically sound experiments based on a
quantitative understanding of the contributors to variance in
their system. Put another way, while the laboratory methodology
may vary, the same statistical approach can be utilized to assess
study designs.
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The Supplementary Materials contains an Excel tool that
allows the user to predict the number of experiments, FOVs,
and images per hour (i.e., an experimental design) to estimate
experimental parameters calculated from images of early biofilms
at 95% confidence. The two parameters we focus on are the log
transformed surface coverage [i.e., log10(GFP area)] of untreated
control biofilms or the LR measure of treatment efficacy. The
tool requires estimates of the variance components due to
experiments, FOVs and time for different experimental setups.
For untreated control biofilms, the variance estimation will
depend on the growth phase of interest. For treated biofilms, the
variance estimation will depend on the expected LR.

As the field of quantitative imaging progresses there is a
growing need for increased reporting on imaging acquisition
parameters, processing, figure generation, and statistical analysis.
The results reported here provide a statistical approach for
deciding on appropriate replication to perform in imaging-
based experiments during early biofilm colonization. Results
from the presented approach also provide an efficient way for
communicating methodology and statistical rigor from imaging
experiments to the scientific community. While the variance
observed will depend on one’s specific experimental setup, these
results do demonstrate the value of prioritizing experimental
repetitions over high numbers of FOVs. The results (Tables 2, 3)
also demonstrate the diminishing returns gained from increasing
experimental repetitions and FOVs, which can help researchers
decide how best to balance workload and the expected quality
of data. The data mined for these analyses is derived from
experiments examining sparsely seeded surfaces, thus future
experiments should examine densely seeded surfaces and other
measurable outputs such as volume rather than just area or
surface coverage. In addition to early colonization studies there
is a large component of biofilm research that is conducted
on mature biofilms, hence future work should investigate the
variability observed in imaging mature biofilms. Nonetheless,
the statistical approach presented herein could be applied to
biofilms at different life stages or different organisms and assays.
We intend for this method to serve as a framework to be
utilized with any pilot data examining biofilm growth to better
inform the experimental design. Together, the results described
in this paper can act as a roadmap to assist researchers in the
design of microscopy-based studies of biofilm colonization to

ensure that acquired data is representative of the sample and
statistically robust.
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