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Abstract: Dynamic remodeling of the actin cytoskeleton plays a central role in the elongation of
cotton fibers, which are the most important natural fibers in the global textile industry. Here, a
high-resolution mapping approach combined with comparative sequencing and a transgenic method
revealed that a G65V substitution in the cotton actin Gh_D04G0865 (GhACT17D in the wild-type) is
responsible for the Gossypium hirsutum Ligon lintless-1 (Li1) mutant (GhACT17DM). In the mutant
GhACT17DM from Li1 plant, Gly65 is substituted with valine on the lip of the nucleotide-binding
domain of GhACT17D, which probably affects the polymerization of F-actin. Over-expression of
GhACT17DM, but not GhACT17D, driven by either a CaMV35 promoter or a fiber-specific promoter
in cotton produced a Li1-like phenotype. Compared with the wild-type control, actin filaments in Li1
fibers showed higher growth and shrinkage rates, decreased filament skewness and parallelness, and
increased filament density. Taken together, our results indicate that the incorporation of GhACT17DM
during actin polymerization disrupts the establishment and dynamics of the actin cytoskeleton,
resulting in defective fiber elongation and the overall dwarf and twisted phenotype of the Li1 mutant.

Keywords: cotton; Ligon lintless-1; gene mapping; transgenic cotton; F-actin

1. Introduction

Cotton is an important economic crop, providing most of the natural fibers used in
the textile industry. High fiber yield and good quality are always the ultimate goals in
the conventional breeding of upland cotton, which is a challenge for scientific researchers,
because of the complex genetic basis of these plants. Gossypium hirsutum Ligon lintless-1
(Li1) is a fiber mutant [1], which has been used frequently to study the genetic mechanisms
associated with fiber development in cotton. Li1 not only has seeds with very short lint
fibers, but also displays other abnormal phenotypes such as twisted stems, curled leaves,
and short plants, which have been confirmed to be caused by a dominant gene and result
in a low level of survival in the homozygote [2,3]. The Li1 locus has been mapped to Chr.22
(D) [4–6], and the candidates for the Li1 gene vary among different studies [4,7–9] or lack
supportive evidence of their roles in causing the mutation [10–12].

Actin proteins are required to construct the cell skeleton, maintain normal develop-
ment, and undertake almost all activities in eukaryotic cells [13]. In higher plants, actin
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is encoded by a multigene family, whose members are involved in many aspects of plant
growth and development. In poplars, the actin family consists of eight members that
are differentially expressed in various tissues, but preferentially expressed in the stem
phloem and xylem, suggesting that poplar actins are involved in wood formation [14]. In
Arabidopsis, the actin gene family contains eight functional members. They are grouped
into two ancient classes, a vegetative class that is expressed in leaves, stems, roots, petals,
and sepals and a reproductive class that is expressed in pollen, ovules, and embryonic
tissues [15–17]. The mis-expression of the Arabidopsis ACT1 (AtACT1) iso-variant in vegeta-
tive tissues affects the dynamics of actin and actin-associated proteins, in turn, disrupting
the organization of the actin cytoskeleton and normal development in Arabidopsis [18]. The
actin cytoskeleton, through interaction with the ARP2/ARP3 complex, plays a crucial role
in controlling the shape of several cell types, especially trichome cells in Arabidopsis [19,20].
Arabidopsis ACT2 (AtACT2) functions in cell elongation and root formation, and an AtACT2
dominant-negative mutation disturbs F-actin polymerization, causing aberrant cell mor-
phology [21]. Another actin mutant (AtACT8) with a single nucleotide substitution also
has dominant-negative effects on actin polymerization, resulting in functional defects of
actin filaments, including frizzy filaments containing many kinks and severe curling and
coiling-up of lateral shoots [22]. Taken together, the actin cytoskeleton is essential for cell
elongation and tip growth and may be involved in the transportation of organelles and
vesicles carrying membrane and cell wall components to the site of cell growth, as is the
case in root hairs, trichomes, and fibers [23].

In cotton, 15 actin genes (GhACT1-15) have been cloned and characterized. Some
evidence indicates that actin is important in maintaining the normal morphology of cotton
fibers [23]. Upland cotton actin genes are differentially expressed in different tissues, and
GhACT1 is known to play a critical role in fiber elongation [23]. In other studies, a number
of cytoskeletal genes have been found to be expressed specifically or preferentially in
developing fiber cells. A comparative proteomic analysis between Li1 and its wild-type
revealed that numerous cytoskeleton-related proteins are decreased remarkably in the
fibers of Li1. Accordingly, the architecture of the actin cytoskeleton is severely deformed
and the microtubule organization is moderately altered, while vesicle trafficking is dramat-
ically disrupted [24]. Using sequencing-mapping and virus-induced gene silencing (VIGS),
Thyssen et al. [11] and Sun et al. [12] recently indicated that the actin molecule encoded by
Gh_D04G0865 could be the best candidate for producing the Li1 mutant. Thyssen et al. [11]
proposed “Poison subunit” model based on structural modeling of actin monomer and
polymer, whereas Sun et al. [12] experimentally proved that model by in vitro polymer-
ization of defective actin unit. However, there is no direct transgenic evidence available.
More genetic and cellular evidence still needed to revealing the mechanism for F-actin
polymerization in vivo.

We previously reported fine mapping of the Li1 locus in a gene-sparse region of about
0.3 cM and 1.2 Mb in length, where 36 genes have been annotated [10]. As candidate gene
expression studies indicated that Gh_D04G0865 is a promising candidate, we immediately
constructed a larger F2 population to further fine map this gene and carried out transgenic
verification of Gh_D04G0865 in Arabidopsis and cotton. In the present work, the Li1 gene
was further mapped to a narrower region, which co-segregated with Gh_D04G0865. Based
on comparative sequencing, analysis of expression patterns, transgenic evidence, and
filament array analysis, Gh_D04G0865, named GhACT17D in our experiments, mutated
in Li1 plant. We named this mutant as GhACT17DM, the G65V substitution of which was
found to affect F-actin elongation, causing the abnormal development of the Li1 mutant.

2. Results
2.1. Fine Mapping and Sequence Analysis Indicated That GhACT17D Was a Promising Candidate
Gene for the Li1 Mutation

Compared with the wild-type, the Li1 mutant not only exhibited short-lint on the seeds
but also presented obvious differences in all morphological characteristics throughout its
development (Figure 1D). The mutant demonstrated delayed growth with smaller and
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twisted stems, leaves, and flowers. Fewer and shorter trichomes were observed on the
stems of the homozygote (li1li1), in which the plant height was less and seed setting lower
than those of the heterozygote (Li1li1) (Table S4).Int. J. Mol. Sci. 2018, 19, x FOR PEER REVIEW  4 of 13 
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previous paper (Jiang et al., 2015). (B), The physical map of the Li1 gene, based on the published TM-1 reference genome 
(Zhang, et al., 2015). (C), The genetic map of Li1 and the candidate genes constructed using all segregating data from 
current research. The lines connect the same DNA sequence in different maps. (D), The varied phenotypes from different 
genotypes of Li1. Scale Bars, 1 cm. (E), Gene structure of GhACT17D. Boxes represent exons; filled parts of boxes represent 
the coding region. The position of the point mutation in GhACT17DM is indicated by a black arrow. 
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into two subgroups, A and D, and each group included eight cultivar sequences. 
GhACT17D sequences varied slightly either between different species or different culti-
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Figure 1. Genetic and physical maps of the Li1 mutant and the candidate genes. (A), The fine map of the Li1 gene from a
previous paper (Jiang et al., 2015). (B), The physical map of the Li1 gene, based on the published TM-1 reference genome
(Zhang, et al., 2015). (C), The genetic map of Li1 and the candidate genes constructed using all segregating data from current
research. The lines connect the same DNA sequence in different maps. (D), The varied phenotypes from different genotypes
of Li1. Scale Bars, 1 cm. (E), Gene structure of GhACT17D. Boxes represent exons; filled parts of boxes represent the coding
region. The position of the point mutation in GhACT17DM is indicated by a black arrow.

We had previously mapped the Li1 locus to a 0.3 cM region using two populations con-
sisting of 1166 F2 plants, which was about 1.2 Mb in the published G. raimondii genome [10].
When the previously mapped markers around Li1 were aligned in the TM-1 reference
sequence [25] (Figure 1B), most of the homologous loci of the single-strand conformation
polymorphism (SSCP) markers were found, except for a few including P095, P257, and P191.
They also appeared in the same order as before, except for P251 (Figure 1A,B). To further
narrow the Li1 region, a total of 80 microsatellite markers (Table S2) were selected from the
TM1 genome sequence to screen for the polymorphic ones. After analyzing 2316 F2 plants,
including 1111 used in our previous paper, 603 new F2 plants from the same cross combi-
nation and 602 F2 plants from E24-3583 × Li1, a genetic map containing 19 markers was
constructed. Following this effort, Li1 was found to co-segregate with D04_1111, D04_1117,
and D04_1118, which narrowed the search to a 0.04 cM region flanked by D04_1108 and
D04_1124, corresponding to 392 kb of the TM-1 reference genome (Figure 1C, Supple-
mental data 1). According to the gene annotation, this region contained eight genes, in
which a beta-tubulin 7 (Gh_D04G0862) and an actin (Gh_D04G0865) gene (Figure 1C) were
predicted to be two of the most-promising candidates to be the Li1 mutation (Jiang, et al.,
2015). However, no expression of the beta-tubulin 7 gene was found in the stem and ovules
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of 0 DPA wild-type plants or Li1 mutants [10]. Therefore, we isolated the Gh_D04G0865
sequences from the Li1 mutant and wild-type plants, and a single nucleotide substitution of
G by T at the 194th base of the ORF from Li1 was detected (Figure 1E). According to these
results, we deduced that Gh_D04G0865 was the most-promising candidate gene causing the
Li1 mutation and named it GhACT17D. The mutant from Li1 was named as GhACT17DM.

Using the SMART-RACE approach, the full-length cDNA of GhACT17D containing
1532 was cloned, and deposited in GenBank (accession numbers: MG132060). Sequence
analysis revealed that the cDNA of GhACT17D contained a single ORF from nucleotides 63
to 1196, which was flanked by a 62-bp 5′-UTR and 336-bp 3′-UTR. The gene structure of
GhACT17D showed that three introns split the coding region between the start and stop
codons (Figure 1E). Furthermore, a 397-bp intron interrupted the 5′-UTR at -10 nucleotides
upstream of the ATG initiation codon (Figure 1E). The splicing sites of all introns obeyed
the GT-AG rule.

The GhACT17D ORF was 1134 bp in length and encoded a peptide containing 377
amino acid residues, comprising 38 strongly basic (+), 50 strongly acidic (−), 129 hy-
drophobic, and 86 polar amino acids. In a search against the NCBI protein sequence
databases, the putative protein sequence of GhACT17D showed homology with actin
proteins from other plants and contained the conserved nucleotide-binding domain (NBD)
of the sugar kinase/HSP70/actin superfamily, which forms a deep cleft in which the
nucleotide sits [26]. Eleven residues that compose this conserved feature were mapped
to GhACT17D (Figure 2A). The GhACT17DM protein from the Li1 mutant had a single
residue substitution (Gly to Val) at the 65th amino acid in the NBD region, which was the
result of a single nucleotide mutation (G to T) at the 194th base in the ORF (Figure 1).

2.2. Gly65 Is Highly Conserved and Crucial to GhACT17D

We investigated the sequence variation of GhACT17D in eight cultivars of five tetraploid
cotton species. The coding regions of GhACT17D from these cultivars were sequenced,
aligned, and used to construct a phylogenetic tree. All sequences were divided into two
subgroups, A and D, and each group included eight cultivar sequences. GhACT17D
sequences varied slightly either between different species or different cultivars, but no
single nucleotide polymorphism (SNP) was found at the mutation site of GhACT17DM
in the genome (Figure S2). We also analyzed the G65 position in GhACT17D of 36 cotton
actin families with complete NBDs in the TM-1 genome [25] and eight Arabidopsis actin
sequences, which showed that none of them varied in the position of G65 (Figure S3,
Table S5). These results indicated that the G65 in GhACT17D was highly conserved in
paralogs and orthologs.

The physicochemical properties of the putative proteins showed that GhACT17D and
GhACT17DM were stable, but the instability index and molecular weight of GhACT17DM
were slightly higher than those of GhACT17D (Table S6). The analysis of intolerant amino
acid substitutions sorted by SIFT revealed that the change of G65 to V65 was deleterious
(p = 0.00), which indicated that the GhACT17DM protein was altered phenotypically and
functionally. The three-dimensional structure of the GhACT17D/GhACT17DM monomer
was modeled with Swiss-Model Workspace using a major actin (SMTL id: 3ci5.1.A) with
a Global Model Quality Estimation (GMQE) of 0.99 as the template, and G65 was found
to be at the entrance of the NBD cleft (Figure 2B, labeled by box 1). When using another
actin (SMTL id: 1nmd.1.A) with a GMQE of 0.98 as the template, a site for ligand SO2,
in contact with R64, T204, T205, and A206, was found to be adjacent to the 65th amino
acid (Figure 2C). Furthermore, the GhACT17D/DM homo-dimer was modeled with a
cytoplasmic actin (SMTL id: 2oan.1.A) as the template (Figure 2D). These simulated protein
structures indicated the importance of the position of G65 in GhACT17D. Compared to
G65 in GhACT17D, the V65 in GhACT17DM emerged as a derivative of three branches
(Figure 2C,D, labeled by box 1), which was attributed to the fact that valine is a non-polar
branched-chain amino acid, while glycine is a small amino acid. The substitution of G65V
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would result in spatial change in the structure of the GhACT17DM molecule (Figure 2D),
most likely affecting the polymerization of actin filaments.
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2.3. Over-Expression of GhACT17DM in Transgenic Upland Cotton Results in the Li1
Mutant Phenotype

Considering that actin is a constitutive cytoskeletal protein, the heterologous expres-
sion of GhACT17DM in Arabidopsis seemed insufficient to prove its function, although
the over-expression of GhACT17DM resulted in more severely deformed morphology
than the over-expression of GhACT17D (data not shown). Therefore, over-expression
transgenic cotton lines were produced (Figure 3 and Table S7). GhACT17DM sequences,
containing an 1134-bp ORF along with a 48-bp 3′-UTR, were inserted into over-expression
vectors driven by CaMV35s or GbEXPA2 promoters (pGbEXPA2), respectively. CaMV35s
is a constitutive promoter and pGbEXPA2 is the preferential promoter for quickly elon-
gating cotton fibers [27]. Twenty-five independent transgenic over-expression lines of
pGbEXPA2::GhACT17DM were obtained and all the lines generated short fibers, without
obvious changes in plant morphology. After screening by Southern blotting, the transgenic
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lines with low copy numbers (EM4, EM10, and EM24) were selected for further analysis
(Figure S4). With GhACT17D-specific primers, the GhACT17DM expression levels were
found to be significantly increased in fibers (10 DPA) of EM4, EM10, and EM24, compared
to the wild-type and nulls (Figure S6). The expression level was closely related to the
mature fiber lengths of the transgenic lines and the fibers were shorter when the expression
level was higher (Figure 3A, Figures S5 and S6A). Only two CaMV35s::GhACT17DM trans-
genic lines (3M3-1 and 3M3-6) were obtained, because the constitutive strong expression of
GhACT17DM affected somatic embryogenesis, which resulted in the same phenotype as the
Li mutant, with dwarf plants, curly leaves, and much shorter fibers (Figure 3A,C,D). Similar
to the result obtained from the pGbEXPA2::GhACT17DM transgenic lines, the GhACT17DM
transcript levels of 3M3-6 were significantly higher than those of 3M3-1, and the leaves of
3M3-6 were more heavily crinkled than those of 3M3-1.
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In order to further confirm that GhACT17DM over-expression, and not that of GhACT17D,
resulted in the mutant phenotype, transgenic lines (3W7 and 3W46) over-expressing
GhACT17D driven by CaMV35 were also obtained. There was no obvious phenotype
difference, although the expression levels were much higher than those in the wild-type
(Figure 3C, Figure S6F).

2.4. An Abnormal F-actin Structure Results in Defective Growth and Development of the
Li1 Mutant

To gain further insight into the cellular mechanisms underlying the severely dys-
functional growth phenotype of the Li1 mutant, we performed live cell imaging of the
actin cytoskeleton in both elongating cotton fibers at 2 DPA and expanding leaf epider-
mal cells. Remarkably, F-actin architectures in both the Li1 fiber cells and leaf epidermal
cells had shorter F-actin fragments, along with long F-actin cables, compared with the
wild-type control. The defective F-actin organization in the Li1 mutant resembled that of
the dominant-negative Arabidopsis act2-2D mutant, which displays actin polymerization
defects [21]. Moreover, we monitored and measured the parameters of the F-actin dynamics
in rapidly elongating fiber cells at 2 DPA. Both the growth and shrinkage rates of F-actin
in Li1 fibers were about twice those of the wild-type control (Figure 4 and Supplemental
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movies 1 and 2). The F-actin density was significantly higher in the Li1 fibers than the
wild-type control. On the contrary, the skewness and parallelness of F-actin decreased
in the Li1 fibers. Taken together, these results indicated that actin polymerization may
be disturbed in the Li1 mutant, resulting in defective F-actin assembly with more short
fragments offering less stability.
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3. Discussion
3.1. Dominant-Negative Mutation of the Gh_D04G0865 Gene Causes the Li1 Phenotype

The Li1 mutant has attracted extensive attention since its discovery in 1929 [1] and
much effort has been put into cloning the gene responsible [2,4]. Many possible candidate
genes and related pathways have been suggested, but most of the results, especially those
from gene expression analyses, vary considerably [28–30]. In 2015, we proposed that
Gh_D04G0865 (numbered as P258) was one of the most promising candidate Li1 mutant
genes, based on fine genetic mapping and gene expression analysis [10]. Thyssen et al.
also identified Gh_D04G0865 as the Li1 candidate, labeled by a SNP marker, CFB11927
(23,783,515 bp in G. hirsutum Chr D04), using sequencing-mapping and VIGS [11]. The
experiment carried out by Thyssen et al. used a 354-bp fragment from the conservative
domain of actin C-terminal sharing high similarity among actin members that would
not discriminate the actin families in VIGS, which resulted in a Li1-like phenotype but
in a different mechanism [12]. Benefiting from the whole genome sequencing of upland
cotton [25], we now know that 37 actin genes with complete NBDs sharing high identity
occur in the TM-1 genome, including Gh_D04G0865 (Figure S3, labeled by black square).
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Therefore, Sun et al. used a 3′UTR of Gh_D04G0865 for VIGS to show that it caused little
change in wild-type seedlings and partially recovered the curled leaves to be normal in
Li1 seedlings after specifically inhibiting Gh_D04G0865 expression [12]. Sun et al. also
discovered that the G65V substitution in Gh_D04G0865 disturbed filament polymerization
in vitro but failed to generate gene-overexpression cotton.

In this study, the Li1 locus was further narrowed to a region of 392 kb, in which
only eight genes exist. According to nucleotide variation and gene expression studies,
Gh_D04G0865 was believed to be the most promising candidate for the Li1 mutation.
Further stable transgenic validation confirmed that the overexpression of GhACT17DM,
driven by either the CaMV35 or the pGbEXPA2 promoter in cotton caused the Li1-like
phenotype. Therefore, our results directly support the conclusion that Gh_D04G0865 is
the mutant gene associated with Li1 and its G65V substitution results in the abnormal
phenotype of the Li1 mutant.

3.2. Incorporation of the Mutated Version of GhACT17DM Impaired Actin Polymerization and
Cotton Growth with a Dosage-Related Effect

Actin is one of the most conserved proteins in eukaryotes. Structural predictions sug-
gested that the G65V substitution would affect the polymerization capability of GhACT17DM,
as confirmed by previous in vitro assays [12]. Importantly, our live-cell observations
revealed that Li1 cells showed defective dynamic behavior of the actin cytoskeleton, com-
pared with that of the wild-type control (Figure 4). Actin is one of the most abundant
proteins in cells and numerous actin encoding genes show redundant roles. Thus, knocking
out the function of a single actin gene usually gives rise to no obvious change in phenotype.
However, a point mutant in an important domain of the actin molecule that often produces
a dominant-negative effect. It should be noted that F-actin networks could still form in
Li1 cells, because GhACT17DM only accounts for a small portion of actin proteins in the
abundant actin pool. The incorporation of the mutated version of GhACT17DM impaired
actin polymerization, thus generating a defective actin cytoskeleton with short F-actin frag-
ments in Li1 cells (Figure 4 and Supplemental movies 1 and 2). Integrating more defective
actin variants resulted in more severe defects of the actin cytoskeleton, showing a dosage
effect. Accordingly, the homozygous Li1 presents a more twisted and dwarf phenotype
than the heterozygote and does not often survive, which causes a lower number of mutant
plants than expected in the F2 offspring [3,6,10]. In our transgenic cotton lines, the higher
the GhACT17DM expression, the shorter the mature fiber length or more crinkled the plant.
These results indicated that more copies of GhACT17DM, or more transcripts, made plants
more severely abnormal, which revealed the positive dosage effect of GhACT17DM.

4. Materials and Methods
4.1. Plant Materials and Fine Genetic Mapping

A total of 12 varieties of five tetraploid cotton species, G. barbadense, G. darwinii,
G. hirsutum, G. mastelinum, and G. tomentosum, were used in this study (Table S1) to produce
mapping populations and transgenic plants for sequence analysis. Li1 is a G. hirsutum
Ligon-lintless-1 mutant provided by Dr. Xiongming Du from the Cotton Research Institute
of China. Three mapping populations were developed by crossing the Li1 mutant with
G. barbadense var. Hai7124 and E24-3583 (Totally 2316 F2 plants, including 1111 plants from
Hai7124 × Li1 in 2012, 603 new F2 plants from the same cross combination in 2016 and
602 F2 plants from E24-3583 × Li1). G. hirsutum acc. YZ1 was used to produce transgenic
cotton. The plants were grown in a greenhouse at Huazhong Agricultural University in
Wuhan using standard farm management practices, according to relevant approvals for
biotechnology research. The other four tetraploid cotton species were used to study gene
expression, sequence similarity, and copy number.

The generation of ABD2-GFP marker lines was produced using G. hirsutum (accession
R15) as the recipient of the 35S::ABD2-GFP construct [31]. Crosses were made between Li1
mutants and ABD2-GFP marker lines. In the segregated F2 progeny, Li1 homozygous lines
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and wild-type lines expressing the ABD2-GFP marker were used for live cell imaging, and
subsequent comparative analysis on F-actin dynamics was performed between Li1 fibers
and the wild-type control. Images of elongating fibers were obtained from cotton fibers at
2 days-post-anthesis (DPA), and images of leaf epidermal cells were obtained from the first
true leaf of 2-week-old cotton seedlings.

Genomic DNA was extracted from fresh leaves using the CTAB method [32], which
was slightly modified, as described by Ding [7]. DNA from the F2 populations was used to
map Li1. In order to narrow the map of Li1, 19 simple sequence repeat (SSR) markers were
selected from those reported in the targeted region [25], based on a previously published
map [10] (Table S2). The bordering SSRs were used to screen the recombinant F2 plants.
Further, SSR markers were applied to determine the location of the recombinant events
and finally to narrow the location of the Li1 mutation.

4.2. Gene Cloning and Sequence Analysis

The DNA extracted from different genotypes and species was used to amplify the
candidate gene for sequence analysis. Total RNA was extracted from fresh young leaves
with a TianGen RNAprep pure kit (Tiangen, China). The full-length cDNA was obtained
using SMART-Rapid Amplification of cDNA Ends (RACE) approaches (SMARTer® RACE
5′/3′ Kit, Clontech, USA). The gene-specific primers (Table S3) for 5′ and 3′ RACE were
designed from the coding regions. Approximately 2 µg of high-quality total RNA was used
for the 5′ and 3′ SMART-RACE protocols, strictly following the manufacturer’s instructions.
The PCR products obtained from the cDNA and genomic DNA amplification were ligated
into the pMD 18-T vector (Takara, China) and transformed into E. coli cells (DH5α), before
sequencing at BGI (Shenzheng, China).

4.3. cDNA Preparation and RT-PCR

To conduct reverse transcription (RT)-PCR analysis, approximately 1 µg of total RNA
from each sample was used to synthesize the first-strand cDNAs in a 20-µL reaction volume
using Moloney-Murine Leukemia Virus reverse transcriptase (Takara) with Oligo d(T)18
primer. The synthesized cDNAs were used as templates in the following PCR reactions.

For each target gene, PCR amplification was performed using Taq polymerase (Takara)
with gene-specific primer pairs (Table S3). The PCR was conducted in a thermal cycler
(Bio-RAD, Singapore), using the following procedure: pre-denaturation at 94 ◦C for 3 min,
followed by 30 cycles of 30 s at 94 ◦C, and 60 s at 68 ◦C, for each gene. The cotton gene
ChUB7 (DQ116411) was used as an internal control [33].

4.4. Quantitative Real-Time PCR (qRT-PCR)

Quantitative PCR was carried out to analyze GhACT17D/GhACT17DM expression in
the Li1 mutant and wild-type, the primers were listed in Table S3. The cDNAs used to detect
gene expression were the same as those used in the RT-PCR analysis. The reaction was
conducted on a BioRad CFX connect™ real-time PCR System (BioRad, USA) using Takara
TaqTM (Takara) with EvaGreen (Biotium), according to the manufacturer’s instructions. The
amplification of the target gene was monitored with an EvaGreen fluorescence signal on
every cycle. The relative expression level was standardized to the expression level of ChUB7
(DQ116411) (Table S3). The cycle threshold value (Cq) was used as a measure of the starting
copy number of the target gene, and gene relative expression level =1/2ˆ(CqGene-CqUbq7),
error value = S/sqrt(3), S=standard deviation [33].

Quantitative PCR was carried out to analyze gene expression in the transgenic cotton.
Flower buds were marked on the day of anthesis (0 DPA), 10 DPA bolls were harvested,
hulls were stripped, and fibers and ovules were frozen immediately in liquid nitrogen and
stored at−70 ◦C until use. Total RNA was extracted using the thiocyanate method and 3 µg
of total RNA were reverse-transcribed to cDNA using SuperScript II reverse transcriptase
(Invitrogen, USA). Quantitative RT-PCR was performed as previously described [34] on a
7500 Real-Time PCR system (Applied Biosystems).
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4.5. Phylogenetic Analysis

The sequence data used here were retrieved from GenBank databases using BLASTN/P
programs (http://blast.ncbi.nlm.nih.gov (accessed on 1 February 2021)) on the National
Center for Biotechnology Information (NCBI) database. Multiple alignments of the nu-
cleotide and deduced amino acid sequences were performed using ClustalW [35], and the
results were manually adjusted with GeneDoc 2.7 [36]. A phylogenetic tree was constructed
by the neighbor-joining method with 1000 bootstrap replications, using MEGA 5 [37]. The
ExPASy ProtPara program (http://web.expasy.org/protparam/ (accessed on 1 February
2021)) was used to analyze the physicochemical properties. The SIFT tool was used to
predict the effects of amino acid substitutions on proteins, with probabilities of <0.05
considered deleterious [38]. The Swiss-Model Workplace was used to carry out protein
structure homology modeling [39].

4.6. Vector Construction and Genetic Transformation in Cotton

To obtain an over-expression construct, an 1134-bp ORF fragment, along with the
48-bp 3′-untranslated region (UTR) of GhACT17DM and GhACT17D was amplified by
the primers with attB1 and attB2 adaptors and ligated into the over-expression vectors
pGWB408 (driven by the CaMV35s promoter) and pGWB407-GbEXPA2 (driven by the
PGbEXPA2 promoter) using Gateway technology [40].

Agrobacterium tumefaciens (EHA105) was used to infect the hypocotyls of G. hirsutum
YZ1, according to methods described previously [41,42].

4.7. Southern Blotting in Transgenic Cotton

The genomic DNA was extracted using a Plant Genome Extracting kit (TIANGEN,
China) and 20 µg DNA were digested completely with HindIII, separated by 0.8% gel
electrophoresis, transferred into a nylon membrane (Amersham, UK), and hybridized
with digoxin-labeled DNA fragments of NPII at 42 ◦C overnight. The membrane was
incubated with anti-AP in 20 mL blocking solution at 37 ◦C for 40 min and washed three
times. The CSPD was added and signaling was detected in a darkroom. Detail procedures
were as described in the DIG High Prime DNA Labelling and Detection Starter Kit II
(Roche, Switzerland).

4.8. Analyzing the Dynamic Behavior of F-actin

Live-cell imaging and video were carried out under a spinning disk confocal mi-
croscope (UltraView VoX, Perkin Elmer) equipped with the Yokogawa Nipkow CSU-X1
spinning disk scanner, the Hamamatsu EMCCD 9100-13 and the Nikon TiE inverted mi-
croscope containing the Perfect Focus System. Acquired images were analyzed using
Volocity (Perkin Elmer), ImageJ (http://rsbweb.nih.gov/ij (accessed on 1 February 2021)),
as described previously [31]. The F-actin severing frequency was defined as the number
of severing events per 100 µm2 per second. The elongation and shrinkage rates (µm/s)
were measured as previously described [43,44]. F-actin skewness and density (%) were
measured according to an established approach [45]. Parallelness, which was defined as
the mean angular difference, was applied to evaluate the F-actin orientations as described
previously [46].

5. Conclusions

In conclusion, our findings revealed that the G65V substitution in GhACT17DM is
responsible for the Li1 mutation, and incorporation of GhACT17DM during actin poly-
merization disturbs the establishment and dynamics of the actin cytoskeleton, resulting in
defective fiber elongation and the overall dwarf and twisted phenotype of the Li1 mutant.

http://blast.ncbi.nlm.nih.gov
http://web.expasy.org/protparam/
http://rsbweb.nih.gov/ij
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