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Abstract
Background: Hepatocellular carcinoma (HCC) is the most common malignant dis-
ease worldwide. Although the diagnosis and treatment of HCC have greatly improved 
in the recent years, there is still a lack of accurate methods to predict the prognosis of 
patients. Evidence has shown that Hippo signaling in tissues adjacent to HCC plays 
a significant role in HCC development. In the present study, we aimed to construct a 
model based on the expression of Hippo- related genes (HRGs) in tissues adjacent to 
HCC to predict the prognosis of HCC patients.
Methods: Gene expression data of paired normal tissues adjacent to HCC (PNTAH) 
and clinical information were obtained from Gene Expression Omnibus (GEO) and 
The Cancer Genome Atlas (TCGA) databases. The HRG signature was constructed 
using four canonical Hippo- related pathways. Univariate Cox regression analysis was 
used to screen survival- related HRGs. LASSO and multivariate Cox regression analy-
ses were used to construct the prognostic model. The true and false positive rates of 
the model were confirmed using receiver operating characteristic (ROC) analysis.
Results: The prognostic model was constructed based on the expression levels of 
five HRGs (NF2, MYC, BIRC3, CSNK1E, and MINK1) in PNTAH. The mortality 
rate of HCC patients increased as the risk score determined by the model increased. 
Furthermore, the risk score was found to be an independent risk factor for the survival 
of patients. ROC analysis showed that the prognostic model had a better predictive 
value than the other conventional clinical parameters. Moreover, the reliability of the 
prognostic model was confirmed in TCGA- LIHC cohort. A nomogram was generated 
to predict patient survival. An exploration of the predictive value of the model in HCC 
tissues indicated that the model is PNTAH- specific.
Conclusions: We developed and validated a prognostic model based on the expres-
sion levels of five HRGs in PNTAH, and this model should be helpful in predicting 
the prognosis of patients with HCC.
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1 |  INTRODUCTION

Hepatocellular carcinoma (HCC), the most frequent primary 
liver cancer, is ranked sixth among all cancers worldwide.1 
The 5- year survival rate for HCC is only 18%, making it the 
fourth leading cause of cancer- related deaths.2 Although 
etiological agents responsible for most HCC cases, such as 
alcoholism and HBV and HCV infection, are well known, 
the molecular pathogenesis of HCC is not clear.3- 5 Currently, 
the best treatment for early HCC is surgical excision or liver 
transplantation.6 However, most patients are already in the 
advanced stages of the tumor when they receive treatment.7 
Approximately 60% of the patients experience recurrence or 
distant metastasis after surgery.8 Therefore, establishing an 
effective model to predict the prognosis of patients with HCC 
can provide new guidance for clinical management.

Currently, the gene expression profiles of not only the tu-
mors of all major types but also of the paired normal tissues 
adjacent to the tumor, from tens of thousands of patients, are 
available, such as those in TCGA and GEO. Paired normal 
tissues adjacent to tumor (PNTAT) are often used as a normal 
control for cancer research because of the shortage of healthy 
samples. However, whether PNTAT is truly “normal” is con-
troversial. Recent studies have shown that the transcriptomic 
profiles of PNTAT are distinct from those of healthy and 
tumor tissues.9 The interaction between PNTAT and tumor 
may help shape the tumor's microenvironment, indicating an 
important role of PNTAT in cancer progression.10

Hippo signaling was primarily discovered for its control 
of organ size in Drosophila and is highly conserved in mam-
mals.11,12 It has been reported that Hippo signaling is a criti-
cal regulator of normal and malignant liver development.13 A 
recent study demonstrated that Hippo signaling was activated 
in peritumoral hepatocytes to induce tumor regression when 
primary liver tumors and metastases were present.14 Thus, 
we were interested in determining whether Hippo signaling 
in paired normal tissues adjacent to HCC (PNTAH) can be a 
potential molecular prognostic marker.

In this study, we first constructed a Hippo- related gene 
(HRG) signature using four canonical Hippo- related path-
ways. We then identified 14 prognostic HRGs based on 
PNTAH expression profiles from GSE14520 using univariate 
Cox regression analysis. In addition, we screened out five key 
HRGs (NF2, MYC, BIRC3, CSNK1E, and MINK1) to con-
struct a prognostic model using least absolute shrinkage and 
selection operator (LASSO) and multivariate Cox regression 
analyses. We further confirmed that the model is good at pre-
dicting prognosis through survival and ROC curve analysis 
and found that the risk score calculated by the model formula 
was an independent risk factor through univariate and multi-
variate Cox regression analyses. Finally, we generated a no-
mogram to provide clinicians with a quantitative method for 
predicting survival. Moreover, the reliability of this model 

was validated by analyzing the PNTAH expression profiles 
from TCGA- LIHC. Exploration of the predictive value of 
these five HRGs and the constructed model in HCC tissues 
demonstrated that the model is PNTAH- specific. In sum-
mary, the present study may help reveal the underlying role 
of Hippo signaling in PNTAH and provide a useful prediction 
tool for HCC survival.

2 |  METHODS

2.1 | Data acquisition

Expression profiles from the GSE14520 dataset (232 HCC 
samples, 232 PNTAH samples, and corresponding clinical 
data), GSE10 2079 dataset (14 normal liver samples, NL 
samples), and GSE11 2790 dataset (15 NL samples) were 
downloaded from the GEO database (www.pubmed.com/
geo). The ComBat function from the sva package in R was 
used to remove the batch effects of the three datasets. TCGA- 
GTEx cohort was downloaded from the UCSC Xena browser 
(http://xena.ucsc.edu/), among which 110 normal liver sam-
ples of GTEx, 50 PNTAH samples, 371 HCC samples, and 
the corresponding clinical data of TCGA liver cancer hepa-
tocellular carcinoma (TCGA- LIHC) were selected for the 
next analysis. To make data from different sources more 
compatible, the UCSC Xena project recomputed all expres-
sion raw data based on a standard pipeline to minimize dif-
ferences from distinct sources. Principal component analysis 
(PCA) was applied using the PCA function implemented in 
the FactoMineR package. The 232 PNTAH samples from 
GSE14520 were used to construct the prognostic model, 
and 50 PNTAH samples from TCGA- LIHC were used for 
validation.

2.2 | Construction of HRG signature and 
function enrichment

Four Hippo- related canonical pathways, GO_HIPPO_
SIGNALING, KEGG_HIPPO_SIGNALING_PATHWAY, 
REACTOME_SIGNALING_BY_HIPPO and WP_
HIPPOYAP_SIGNALING_PATHWAY, were obtained 
from the Molecular Signature Database (MsigDB, http://
softw are.broad insti tute.org/gsea/msigd b/). After merging 
the four canonical pathways, a Hippo- related signature was 
constructed. The heatmap was plotted using the pheatmap 
package in R to show the expression levels of the HRG sig-
nature in different samples. The protein– protein interaction 
(PPI) of the HRGs was predicted using STRING (https://
strin g- db.org/) and visualized using Cytoscape (v3.7.2). 
Gene Ontology (GO) and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathway analyses were carried out using 

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE14520
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE14520
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE102079
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE112790
http://www.pubmed.com/geo
http://www.pubmed.com/geo
http://xena.ucsc.edu/
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE14520
http://software.broadinstitute.org/gsea/msigdb/
http://software.broadinstitute.org/gsea/msigdb/
https://string-db.org/
https://string-db.org/
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the R clusterProfiler package. Enrichment results were visu-
alized using the enrichment plot package. A p- value <0.05 
was set as the cutoff criterion for both GO and KEGG func-
tional analysis.

2.3 | Construction and 
validation of prognostic model using PNTAH 
expression profiles

To screen out the prognostic HRGs, the association be-
tween PNTAH HRG expression and overall survival (OS) 
was evaluated using univariate Cox regression. Genes with 
a p- value < 0.05 were considered prognosis- related HRGs. 
The differential expression of the prognostic HRGs among 
NL, PNTAH, and HCC was determined using the Kruskal– 
Wallis test. Then, LASSO and multivariate Cox regression 
analyses were conducted to identify key prognostic HRGs. 
Finally, a prognostic model was constructed, and the risk 
score formula was as follows: risk score = (the expression 
of gene1 in PNTAH ×regression coefficient of gene1) + (the 
expression of gene2 in PNTAH ×  regression coefficient of 
gene2) + … + (the expression of genen in PNTAH × regres-
sion coefficient of genen).

Based on the median risk score calculated using the 
PNTAH expression profiles, the patients were divided into 
low-  or high- risk groups. The difference in OS between the 
two groups was analyzed using the Kaplan– Meier method 
and log- rank test. The risk score distribution, number of pa-
tients examined, and the heatmap of the prognostic HRGs in 
different risk groups were displayed. Univariate and multi-
variate Cox regression analyses were performed to explore 
whether the risk score could be an independent indicator of 
OS. The true and false positive rates of the prognostic model 
were analyzed using the receiver operating characteristic 
(ROC) and the area under the curve (AUC). A nomogram 
was constructed to estimate the 1- , 3- , and 5- year survival 
rates of HCC patients using the rms package in R, and cal-
ibration of the nomogram was measured using calibration 
curves. Moreover, the predictive value of the constructed 
model was further confirmed using independent data from 
TCGA- LIHC.

2.4 | Verification of key 
HRGs and the prognostic model using HCC 
tissue expression profiles

To investigate whether the prognostic model built using 
PNTAH also had prognostic value in HCC tissues, the expres-
sion profiles of HCC tissues were extracted from GSE14520. 
HCC patients were divided into high-  or low- expression 
groups based on the median expression of the key HRGs in 

HCC tissues. Moreover, the risk score was calculated with 
the established formula for PNTAH, using the HCC tissue 
expression profiles, and the patients were divided into high-  
or low- risk groups based on the median risk score. The sur-
vival curve was drawn using the Kaplan– Meier method, and 
the difference in the survival rate between different groups 
was verified by the log- rank test. Similarly, the prognostic 
value of the key HRGs and the constructed model for the 
HCC tissues of TCGA- LIHC cohort were also analyzed.

2.5 | Statistical analysis

Statistical analysis was carried out using R 4.0.1 (https://
www.r- proje ct.org). Univariate Cox regression analysis 
was conducted to estimate prognosis- related HRGs. The 
Kruskal– Wallis rank sum test was used to determine whether 
the HRGs were differentially expressed among NL, PNTAH, 
and HCC. LASSO regression analysis was used to prevent 
overfitting. Multivariate Cox regression analysis was per-
formed to construct a prognostic model. An independent t- 
test was performed to analyze the association between the 
risk score and conventional clinical characteristics. A nomo-
gram was created using the rms package in R. ROC analysis 
was performed to test the true and false positive rates of the 
model. The survival curve was plotted using the survival and 
survminer package of R. Forest maps were plotted using the 
forsetplot package of R. The survivalROC package was used 
to generate the ROC curves, and the AUC values were calcu-
lated according to the ROC curves. All tests were two- tailed 
and considered significant when p < 0.05.

3 |  RESULTS

3.1 | Differential gene expression pattern of 
NL, PNTAH, and HCC

A total of 29 NL samples, 232 PNTAH samples, and 232 
HCC samples with mRNA expression profiles were obtained 
from the GEO database. The available clinical characteris-
tics of 232 HCC patients, including age, gender, tumor stage, 
tumor size, recurrence status, survival time, and survival sta-
tus, are presented in Table 1. A diagram presenting the work-
flow of the prognostic model starting from data acquisition 
to statistical analysis strategies is given in Figure  1. After 
removing the batch effect, PCA was performed to analyze 
the expression patterns of the different samples. The first 
principal component (PCA1) and the second principal com-
ponent (PCA2) explained 25.66% and 5.97% of the variation 
in the data, respectively. The mRNA expression profile was 
scattered into three different clusters, which revealed striking 
differences among the genes in NL, PNTAH, and HCC in the 

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE14520
https://www.r-project.org
https://www.r-project.org
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GEO cohort (Figure 2A), and this pattern was also observed 
in TCGA- GTEx cohort (110 NL samples, 50 PNTAH sam-
ples, and 371 HCC samples) (Figure 2B).

3.2 | Construction of HRG signature and 
functional enrichment

To construct an HRG signature, four Hippo- related 
canonical pathways GO_HIPPO_SIGNALING, 
KEGG_HIPPO_SIGNALING_PATHWAY, REACTOME_
SIGNALING_BY_HIPPO and WP_HIPPOYAP_
SIGNALING_PATHWAY, were downloaded from MsigDB 
(Table  2). The above gene sets were mainly curated from 
pathway databases, biomedical literature, and individual 
domain experts. Finally, a total of 76 genes were identified 
as HRGs after removing duplicates and missing probes in 
the expression profiles. The PPI network of these 76 HRGs 
visualized using Cytoscape is shown in Figure S1. The heat-
map of these 76 HRGs indicated that Hippo signaling may 

be differentially regulated among NL, PNTAH, and HCC 
(Figure 3A). The GO functional enrichment analysis of the 
76 HRGs is presented in Table 3. These HRGs were related 
to Hippo signaling, regulation of Hippo signaling, regulation 
of canonical Wnt signaling pathway, stress- activated MAPK 
cascade, and stress- activated protein kinase signaling cascade 
(Figure 3B). The KEGG pathways were mainly enriched in 
the Hippo signaling pathway and tight junction and MAPK 
signaling pathways (Figure 3C).

3.3 | Construction of the HRG- based 
prognostic model using PNTAH expression 
profiles of GEO cohort

To identify prognostic HRGs expressed in PNTAH, univari-
ate Cox regression analysis was applied with the criteria of 
p- value < 0.05. Subsequently, 14 genes in PNTAH were se-
lected and found to be significantly related to the OS of pa-
tients (Figure  4A). Meanwhile, hazard ratio (HR) and 95% 

GEO (N = 232) TCGA (N = 50) Overall (N = 282)

Gender

Male 200 (86.2%) 28 (56.0%) 228 (80.8%)

Female 27 (11.6%) 22 (44.0%) 49 (17.4%)

Unknown 5 (2.2%) 0 (0%) 5 (1.8%)

Age (years)

Median [Min, Max] 51.0 [21.0, 77.0] 61.7 [20.0, 81.0] 52.9 [20.0, 81.0]

Tumor stage

Ⅰ 93 (40.0%) 18 (36.0%) 111 (39.4%)

Ⅱ 74 (31.9%) 11 (22.0%) 85 (30.1%)

Ⅲ 44 (19.0%) 12 (24.0%) 56 (19.9%)

Ⅳ 0 (0%) 1 (2.0%) 1 (0.3%)

Unknown 21 (9.1%) 8 (16.0%) 29 (10.3%)

Tumor size

<=5 cm 82 (35.3%) NA 82 (35.3%)

>5 cm 144 (62.1%) NA 144 (62.1%)

Unknown 6 (2.6%) NA 6 (2.6%)

Recurrence status

Recurrence 126 (54.3%) NA 126 (54.3%)

noRecurrence 101 (43.5%) NA 101 (43.5%)

Unknown 5 (2.2%) NA 5 (2.2%)

Survival status

Death 88 (37.9%) 34 (68.0%) 122 (43.3%)

Alive 139 (59.9%) 16 (32.0%) 155 (55.0%)

Unknown 5 (2.2%) 0 (0%) 5 (1.7%)

Survival time (days)

Median [Min, Max] 1242.4[55.0, 2089] 962.2 [11.0, 3437] 1039.2 [11.0, 3437]

Abbreviation: NA, not available data.

T A B L E  1  Summary of clinical data.
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confidence intervals (CIs) were estimated and displayed. 
Among them, NF2 significantly correlated with survival and 
had the highest HR (HR = 10.993, 95% CI = 1.367– 88.438, 
p = 0.024), suggesting that the expression of NF2 in PNTAH 

was of great significance in HCC patients. However, since the 
HR of NF2 was much higher than that of other genes, it was 
temporarily excluded from the forest map of the univariate 
regression analysis. In addition, these 14 genes were found 

F I G U R E  1  Workflow of this study. 
PNTAH, paired normal tissues adjacent 
to HCC; GEO: Gene Expression Omnibus 
Database; OS: overall survival; LASSO: 
Least Absolute Shrinkage and Selection 
Operator; HRGs, Hippo- related genes; 
ROC, receiver operating characteristic 
curve; TCGA- LIHC: TCGA Liver Cancer 
Hepatocellular Carcinoma.

F I G U R E  2  Differential gene expression pattern of NL, PNTAH, and HCC. (A) Principal- component analysis (PCA) of gene expression 
pattern of NL, PNTAH, and HCC in GEO cohort. (B) PCA of gene expression pattern of NL, PNTAH, and HCC in TCGA- GTEx cohort. NL, 
normal liver; PNTAH, paired normal tissues adjacent to HCC; HCC, hepatocellular carcinoma. PCA1 and PCA2 represent the top two dimensions 
of gene expression in each group.
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to be differentially expressed among NL, PNTAH, and HCC 
(Figure 4B).

Based on the prognosis- related HRGs in PNTAH, 
LASSO and multivariate Cox regression analyses 
were conducted to construct the HRG- based model 
(Figure  4C,D). Five genes, NF2, MYC, CSNK1E, 
BIRC3, and MINK1, were finally selected to construct 
the model (Table  4), and the risk score formula for the 
model was risk score  =  (0.369537168  ×  BIRC3 ex-
pression in PNTAH)  +  (0.727258146  ×  CSNK1E 
expression in PNTAH)  +  (−0.885485399  ×  MINK1 ex-
pression in PNTAH) + (0.308063532 × MYC expression in 
PNTAH) + (2.506094696 × NF2 expression in PNTAH).

3.4 | Validation of the constructed model 
in PNTAH

To assess the performance of the prognostic model in predict-
ing the clinical outcomes of patients, the risk score of each 
HCC patient was calculated based on the PNTAH expression 
profiles and the patients were divided into high-  or low- risk 
groups according to the median risk score. Twenty- two pa-
tients with HCC with missing clinical data were excluded. 
The median risk score was 1.0278. The survival curve indi-
cated that the high- risk group (n = 105) had a lower survival 
rate than the low- risk group (n = 105) (Figure 5A). The AUC 
of the ROC curve was 0.750, proving that the prognostic 

T A B L E  2  Construction of Hippo- related gene set.

Gene set

GO_HIPPO_SIGNALING AJUBA,AMOT,AMOTL1,AMOTL2,CASP3,DCHS1,DLG5,DVL2,FAT4,FRMD1,IQCJ- 
SCHIP1,LATS1,LATS2,LIMD1,MAP2 K3,MAPK14,MARK3,MOB1A,MOB1B,MOB
3B,NEK8,NF2,NPHP4,PJA2,SAV1,SCHIP1,SOX11,STK3,STK4,TEAD1,TEAD2,TE
AD3,TEAD4,TJP1,TJP2,VGLL4,WTIP,WWC1,WWC2,WWC3,WWTR1,YAP1,YWH
AB,YWHAE

KEGG_HIPPO_SIGNALING_PATHWAY CTGF,AREG,GLI2,BIRC5,AFP,ITGB2,GF1,SMAD7,SERPINE1,ID1,ID2,AXIN1,AXIN2,
NKD1,MYC,SOX2,SNAI2,BIRC2,BIRC3,CCND1,CCND2,CCND3,BBC3,YAP1,TAZ

REACTOME_SIGNALING_BY_HIPPO AMOT,AMOTL1,AMOTL2,CASP3,DVL2,LATS1,LATS2,MOB1A,MOB1BNPHP4,SAV
1,STK3,STK4,TJP1,TJP2,WWC1,WWTR1,YAP1,YWHAB,YWHAE

WP_HIPPOYAP_SIGNALING_PATHWAY CXCL10,LATS1,LATS2,MAP4 K1,MAP4 K2,MAP4 K3,MAP4 K4,MINK1,MST1,NDRG
1,NF2,RASSF1,SAV1,STK3,STK38L,TAZ,TEAD1,TEAD2,TEAD3,TEAD4,TNIK,Y
WHAQ,YY1AP1

F I G U R E  3  Construction of HRG signature. (A) The heatmap of the HRG expression levels in different groups. The color of each block 
depends on the expression value. (B) Gene Ontology (GO) enrichment analysis of the HRG signature. (C) Kyoto Encyclopedia of Genes and 
Genomes (KEGG) analysis of the HRG signature. HRG: Hippo- related genes.
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model performed well for survival prediction (Figure  5B). 
The risk score distribution, survival status of each patient, 
and the heatmap of five gene expression profiles in the 
GSE14520 PNTAH samples are shown (Figure 5C– E). The 
results illustrated that the survival time decreased and the 
mortality rate increased as the risk score increased.

3.5 | Further validation of the prognostic 
model using PNTAH expression profiles of 
TCGA- LIHC

The correlation between the risk score and the survival of HCC 
patients in TCGA- LIHC was further analyzed to validate the 
performance of the constructed model. As described above, 
these patients were classified into low-  or high- risk groups 
based on the median risk score calculated with the prognos-
tic model constructed using the PNTAH expression profiles 
from TCGA- LIHC. The median risk score of the TCGA- 
LIHC cohort was 0.0028. The survival rates of the two groups 
were significantly different (p = 2.949e- 02) (Figure 6A). In 

addition, the AUC calculated by the ROC curve was 0.775, 
indicating that the model predicts HCC patient survival well 
(Figure  6B). The risk score distribution, the number of pa-
tients examined, and the heatmap of the prognostic HRGs in 
different risk groups are also displayed (Figure 6C– E).

3.6 | Independence of prognostic model 
assessment and nomogram development

Multivariate and univariate Cox analyses were performed to 
explore whether the risk score or other conventional clinical 
parameters of HCC patients in the GEO cohort were independ-
ent risk factors for OS. Univariate Cox analysis showed that 
advanced stage, larger tumor size, and risk score were risk 
factors for OS (Figure 7A). However, after multivariate analy-
sis and adjustment for clinical parameters, only the risk score 
(HR = 1.715, 95% CI = 1.331– 2.209, p < 0.001) and tumor 
stage (HR = 2.121, 95% CI = 1.500– 2.998, p < 0.001) remained 
as independent prognostic factors for patients (Figure 7B). The 
ROC curve was plotted to compare the predictive value of the 
risk score with other clinical parameters. The results indicated 
that the tumor stage (AUC = 0.735) had the highest predictive 
value among the conventional clinical parameters (Figure 7C). 
However, the predictive value of the risk score (AUC = 0.750) 
was higher than that of the tumor stage. We further analyzed 
the correlations between the risk score calculated by the model 
and the clinical parameters in patients with HCC (Figure 7D– 
H). We found that a high- risk score was significantly related 
to larger tumor size (p = 0.039), advanced stage (p = 0.005), 
and more recurrence (p = 4.009e- 06). To show the relationship 
between individual predictors and survival rate, a nomogram 
model was developed based on the data of the GEO cohort and 
converted to scale within a certain range (Figure 8A). Each pa-
rameter (age, gender, tumor stage, tumor size, and risk score) 
in the map corresponded to a point. The points of all param-
eters were summed up to obtain a total point, which was used 
to determine the 1- , 3- , and 5-  year overall survival rates. The 
C- index was 0.755, and the calibration curves for the 1, 3, and 
5 survival predictions had good linearity (Figure 8B), which 
meant that the nomogram had favorable calibration.

3.7 | Verification of the specificity of the five 
HRGs and the prognostic model using HCC 
tissue expression profiles

To investigate whether the expression of the five selected 
HRGs in the HCC tissues also had prognostic value, 232 
HCC tissue expression profiles were extracted from the 
GSE14520 dataset. According to the median expression 
of each HRG, HCC patients were divided into high-  and 
low- expression groups. Survival analysis showed no 

T A B L E  3  Top 10 enrichment results of HRGs.

Category Description Count p- value

GO Hippo signaling 8 3.98E−19

Regulation of canonical Wnt 
signaling pathway

4 4.78E−05

Canonical Wnt signaling pathway 4 8.84E−05

Regulation of Wnt signaling 
pathway

4 1.21E−04

Negative regulation of protein 
phosphorylation

4 2.29E−04

Negative regulation of 
phosphorylation

4 3.20E−04

Transcription regulator complex 4 1.64E−04

Regulation of hippo signaling 3 7.36E−08

Regulation of metanephros 
development

3 5.89E−07

Regulation of kidney development 3 9.09E−06

KEGG Hippo signaling pathway 41 6.73E−56

Hippo signaling pathway— 
multiple species

16 2.62E−27

Tight junction 13 5.89E−10

MAPK signaling pathway 12 3.07E−06

Viral carcinogenesis 9 3.28E−05

Wnt signaling pathway 8 3.84E−05

Human papillomavirus infection 8 4.79E−03

PI3 K- Akt signaling pathway 8 7.13E−03

Hepatitis C 7 2.47E−04

Human cytomegalovirus infection 7 2.08E−03

Abbreviations: GO, Gene Ontology; HRG, Hippo- related gene; KEGG, Kyoto 
Encyclopedia of Genes and Genomes.

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE14520
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE14520
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statistical difference between the high-  and low- expression 
groups for each HRG (Figure S2A– E). Furthermore, the 
risk score was calculated by the PNTAH- derived formula 
using the expression values of the HRGs in the HCC tis-
sues. HCC patients were divided into high-  or low- risk 
groups based on the median risk score. However, there was 
no statistical difference in the survival rates of the high- 
and low- risk groups (Figure S2F). Similar results were ob-
tained in analyses of HCC tissue expression profiles from 

TCGA- LIHC (Figure S3A– F). The above results indicate 
that the five selected HRGs and the constructed model are 
PNTAH- specific.

4 |  DISCUSSION

HCC is characterized as insidious, showing rapid progress, 
and a low early diagnosis rate. Due to the heterogeneity of 

F I G U R E  4  Univariate Cox regression and LASSO regression analysis. (A) Fourteen HRGs with prognostic value determined by univariate 
Cox regression. NF2 was excluded due to the wide range of the hazard ratio. (B) The boxplot for the expression of 14 prognosis- related HRGs in 
NL, PNTAH, and HCC. (C) The changing trajectory of each independent variable. (D) Confidence intervals for each lambda. HRGs: Hippo- related 
genes; NL, normal liver; PNTAH, paired normal tissues adjacent to HCC; HCC, hepatocellular carcinoma. LASSO: Least Absolute Shrinkage and 
Selection Operator. *P value <0.05; **P value <0.01; ***P value <0.001; ns, no significance.

T A B L E  4  Multivariate Cox regression analysis.

Gene Coefficients HR HR.95L HR.95H p- value

BIRC3 0.369537168 1.447064711 1.003797478 2.086074458 0.047672596

CSNK1E 0.727258146 2.069398832 0.892533363 4.798040843 0.090077605

MINK1 −0.885485399 0.412513891 0.158456116 1.073910646 0.069694068

MYC 0.308063532 1.36078744 1.029154239 1.799285653 0.030648489

NF2 2.506094696 12.25696928 1.299938769 115.5695172 0.028589509

Abbreviations: HR, hazard ratio; HR.95H, hazard ratio 95% CI high; HR.95L, hazard ratio 95% CI low.
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liver cancer, conventional clinical parameters such as age, 
gender, and stage are often unable to accurately predict clini-
cal outcomes.15 In recent decades, many studies have focused 
on identifying novel biomarkers to promote the prediction of 
HCC patient survival.16- 18 Based on the advantages reported 
by these studies, a combination of multiple prognosis- related 
genes with conventional clinical parameters for the construc-
tion of a prognostic model may demonstrate better perfor-
mance.19,20 However, most studies focused only on HCC 
expression profiles and ignored PNTAH.

According to the published literature and our findings, the 
gene expression patterns of NL, PNTAH, and HCC are very 
different. In fact, as early as 1953, Slaughter et al proposed 
the “field cancerization” hypothesis, suggesting an interme-
diate, precancerous state of tumor- adjacent tissues which are 
histologically normal but molecularly changed.21,22 This the-
ory was supported by later studies. For example, the charac-
teristics of breast cancer genes were found to be differentially 
expressed in adjacent normal breast epithelium, which might 
underlie second primaries and local recurrences.23 Moreover, 

epithelial to mesenchymal transition, wound healing, and ex-
tracellular matrix remodeling occur in breast cancer- adjacent 
normal tissues.24 Observations interpreted as reflecting field 
cancerization have also been made in bladder, colon, and 
lung cancers.25- 27 Another theory holds that tumor- adjacent 
tissues are involved in the formation of a tumor microenviron-
ment that either promotes or suppresses tumor development. 
A recent study demonstrated that inflammation and immune 
response- related gene expression were increased in triple- 
negative breast cancer- adjacent tissues.28 Tumor- adjacent 
tissues were found to exhibit higher expanded clone ratios 
of the T cell receptor β- chain in HCC patients.29 Therefore, 
biomarkers derived from PNTAT may be helpful in predict-
ing prognosis.

Hippo signaling is an evolutionarily conserved pathway 
that plays an important role in tissue homeostasis.30 It has 
been reported that the control of the liver size relies on the 
tight regulation of the Hippo signaling activity, and the ac-
tivation of YAP/TAZ, two main transcriptional activators 
of Hippo signaling, involved in the repair and regeneration 

F I G U R E  5  Evaluation of the HRG- based prognostic model using PNTAH expression profiles from GSE14520. (A) Kaplan– Meier curve 
analysis of the high- risk and low- risk groups. (B) Time- dependent ROC curve analysis of the prognostic model. (C) The risk score distribution of 
patients in the prognostic model. (D) Survival status scatter plots for patients in the prognostic model. (E) Expression patterns of risk genes in the 
prognostic model. PNTAH, paired normal tissues adjacent to HCC; ROC, receiver operating characteristic curve.

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE14520
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of the damaged liver tissue.13 Although many studies have 
shown that the dysregulation or mutation of Hippo signaling 
components commonly causes tumorigenesis,31- 33 a recent 
study demonstrated that experimental overexpression of YAP 
in peritumoral hepatocytes induced regression of primary 
liver tumors and metastases.14 This finding sheds light on 
the tumor- suppressive effect of Hippo signaling in PNTAH. 
However, a prognostic model based on HRGs and PNTAH 
has not been previously established.

In this study, we used the expression profiles of PNTAH 
from GEO to construct an HRG prognostic model and val-
idated this model using PNTAH data from TCGA- LIHC. 
First, we identified 76 genes from four Hippo- related canon-
ical pathways as HRGs. Univariate Cox regression analysis 
identified 14 genes closely related to the survival of patients 
with HCC. LASSO and multivariate Cox regression analy-
ses were used to select five key HRGs (BIRC3, CSNK1E, 
MINK1, MYC, and NF2) to construct the prognostic model. 
High expression levels of BIRC3, CSNK1E, MYC, and NF2 

in PNTAH were associated with poor prognosis in HCC pa-
tients, while MINK1 expression was associated with a good 
prognosis. We divided patients into high-  or low- risk groups 
based on the median risk score calculated by the model for-
mula and found that the high- risk group had a lower survival 
rate. The AUC calculated by the ROC curve was 0.750, in-
dicating that the model could predict the survival of HCC 
patients. We then confirmed that the risk score was an inde-
pendent prognostic indicator after adjusting for other clini-
cal parameters. ROC curve analysis demonstrated that the 
risk score had a better predictive value than other clinical pa-
rameters. Finally, we established a nomogram that predicted 
the survival of HCC patients well. The use of this tool could 
help clinicians dynamically assess a patient's prognosis 
based on different levels of clinical parameters and imple-
ment more targeted interventions accordingly. Furthermore, 
we also observed a similar trend in the survival analysis and 
ROC curve analysis of an independent dataset from TCGA, 
which further confirmed the reliability of this prognostic 

F I G U R E  6  Validation of the HRG- based prognostic model using PNTAH expression profiles from TCGA- LIHC. (A) Kaplan– Meier curve 
analysis of the high- risk and low- risk groups. (B) Time- dependent ROC curve analysis of the prognostic model. (C) The risk score distribution of 
patients in the prognostic model. (D) Survival status scatter plots for patients in the prognostic model. (E) Expression patterns of risk genes in the 
prognostic model. PNTAH, paired normal tissues adjacent to HCC; ROC, receiver operating characteristic curve.
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model. Given that PNTAH might be a precancer state, the 
five HRGs and the constructed model could have better 
prognostic performance in HCC tissues. We investigated the 
prognostic ability of the five HRGs and constructed a model 
using the expression profiles of HCC tissues from GEO and 
TCGA- LIHC. Interestingly, the results showed that neither 
the five HRGs alone nor the constructed model had prognos-
tic value in HCC tissues. Thus, we concluded that the prog-
nostic model based on HRGs had a prognostic value specific 
for PNTAH.

We further explored five selected HRGs. NF2 is a well- 
established tumor suppressor and an essential upstream reg-
ulator of Hippo signaling.34- 36 However, our data showed 
that NF2 was highly expressed in HCC tissues, and the high 
expression level of NF2 in PNTAH was associated with poor 
prognosis in HCC patients. This paradox may be explained by 
the mutations in NF2. NF2 mutations have been observed in 
many tumors, which encode Merlin proteins that cannot inhibit 
tumorigenesis.37- 39 The loss- of- function of NF2 severely com-
promises Hippo signaling activity through the major effector 

F I G U R E  7  Independence of the prognostic model and correlations with clinical parameters. (A) Univariate Cox regression analysis. (B) 
Multivariate Cox regression analysis. Age: ≤50 versus >50, gender: male versus female, stage: I/II versus III/IV, risk core: high risk score versus 
low risk score (median risk score as the cutoff value). (C) Receiver operating characteristic (ROC) curve analysis for the prognostic values of the 
prognostic model and other conventional clinical parameters. AUC: area under curve. (D) Association with risk score and age. (E) Association with 
risk score and gender. (F) Association with risk score and tumor stage. (G) Association with risk score and tumor size. (H) Association with risk 
score and recurrence.

F I G U R E  8  Nomogram with calibration curves for the prediction of prognosis at one, three, and five years. (A) Nomogram for survival rate. 
(B) Calibration curves.
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YAP, resulting in hepatomegaly and liver cancers.40 To date, 
there have been no reports on the use of NF2 as a prognostic 
factor in cancer. MYC is a downstream gene of Hippo signal-
ing and a well- known oncogene.41- 43 Previous studies have 
noted MYC expression as a poor prognostic marker in vari-
ous cancers, such as breast cancer, osteosarcoma, and pancre-
atic ductal adenocarcinoma.44- 46 Our results showed that high 
expression of MYC in PNTAH predicted poor prognosis of 
HCC patients, which could be explained to a certain extent 
by the “field cancerization” theory. BIRC3 belongs to the in-
hibitor of apoptosis proteins family, which has been shown to 
be regulated by Hippo signaling.35,47 It has been reported that 
BIRC3 is associated with a poor prognosis in gliomas.48 Both 
CSNK1E and MINK1 are serine/threonine protein kinases 
belonging to the casein kinase I protein family and the ger-
minal center kinase family, respectively.49,50 A previous study 
identified CSNK1E as a new temporal regulator of the Hippo 
pathway.51 MINK1 is a known upstream factor that regulates 
Hippo signaling through the LATS1/2- YAP/TAZ interaction.52 
The roles of CSNK1E and MINK1 in a variety of cancers have 
not yet been investigated.

Some limitations of this study should also be consid-
ered. First, while the expression profiles were downloaded 
from the GEO and TCGA databases, the sample size was 
not large enough. Second, we only focused on the mRNA 
levels of these genes, and the five genes at the protein level 
should be further investigated. Third, the results of our study 
are descriptive, and the potential molecular mechanisms of 
these five genes warrant additional functional experiments. 
In addition, it has not been determined whether the median 
risk score we chose in the GEO and TCGA databases can be 
used as the threshold in real- world clinical practice to iden-
tify high- risk and low- risk patients.

5 |  CONCLUSIONS

In the present study, we constructed and validated a prog-
nostic model using PNTAH expression profiles, and this 
model could predict the survival of patients with HCC. The 
differentially expressed HRGs may provide a new perspec-
tive for the elucidation of the molecular mechanisms of 
HCC.
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