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Recent studies examining the neurobiology of substance abuse have revealed a
significant role of neuroimmune signaling as a mechanism through which drugs of
abuse induce aberrant changes in synaptic plasticity and contribute to substance
abuse-related behaviors. Immune signaling within the brain and the periphery critically
regulates homeostasis of the nervous system. Perturbations in immune signaling can
induce neuroinflammation or immunosuppression, which dysregulate nervous system
function including neural processes associated with substance use disorders (SUDs).
In this review, we discuss the literature that demonstrates a role of neuroimmune
signaling in regulating learning, memory, and synaptic plasticity, emphasizing specific
cytokine signaling within the central nervous system. We then highlight recent preclinical
studies, within the last 5 years when possible, that have identified immune mechanisms
within the brain and the periphery associated with addiction-related behaviors. Findings
thus far underscore the need for future investigations into the clinical potential of
immunopharmacology as a novel approach toward treating SUDs. Considering the
high prevalence rate of comorbidities among those with SUDs, we also discuss
neuroimmune mechanisms of common comorbidities associated with SUDs and
highlight potentially novel treatment targets for these comorbid conditions. We argue
that immunopharmacology represents a novel frontier in the development of new
pharmacotherapies that promote long-term abstinence from drug use and minimize the
detrimental impact of SUD comorbidities on patient health and treatment outcomes.

Keywords: neuroinflammation, addiction, PTSD, MDD, chronic pain, HIV

INTRODUCTION

Substance Use Disorders (SUDs) are a significant public health concern and remain a leading
cause of preventable death in the United States (US) and worldwide. Moreover, the economic
burden of SUDs is substantial, amounting to more than $740 billion annually within the US in
health care costs, lost productivity, and crime (National Institute on Drug Abuse [NIDA], 2020d).
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Current FDA-approved pharmacotherapies used to treat
SUDs primarily function to reduce withdrawal symptoms via
partial receptor stimulation or to prevent drug reinforcement
through receptor inhibition. Such strategies can reduce
drug cravings and promote abstinence, yet relapse rates
remain high even for individuals receiving such treatments
(National Institute on Drug Abuse [NIDA], 2020b). Impediments
to successful treatment include comorbidities such as depression,
anxiety, and other physical ailments that are not adequately
addressed by current treatment strategies (Swendsen et al.,
2010). Thus, new and effective treatments that target shared
mechanisms underlying these comorbidities may enhance
treatment outcomes.

Decades of research have revealed distinct neural mechanisms
involved in various phases of SUD development. Early work
utilizing animal models focused on the effects of drug exposure
on mesolimbic dopamine transmission originating from the
ventral tegmental area (VTA) and terminating in corticolimbic
structures such as the nucleus accumbens (see Koob and Volkow,
2010 for review). More recent studies have expounded the
role of other molecular pathways and cellular circuitries that
are involved in the cycle of addiction (Koob and Volkow,
2016). For example, the role of glial cells in modulating drug-
induced neural plasticity and behavior has emerged as an
important topic in the study of the pathophysiology of SUDs
(Miguel-Hidalgo, 2009). Specifically, glia within the CNS and
immune cells within the periphery are capable of modulating
brain plasticity and behavior through complex interactions,
and mounting evidence suggests that these interactions may
underlie substance abuse and relapse vulnerability (Crews
and Vetreno, 2011; Crews et al., 2011; Clark et al., 2013;
Cui et al., 2014).

There are several recent and thorough reviews on
neuroimmune mechanisms of SUDs (Cui et al., 2014;
Bachtell et al., 2015; Jacobsen et al., 2016; Crews et al., 2017;
Hofford et al., 2019) and other neuropsychiatric disorders
(Hodes et al., 2015; Wohleb et al., 2016; Bekhbat and Neigh,
2018; Brenhouse et al., 2019). Here, we focus on literature
from within the last 5 years when possible to highlight
the most recent advances in neuroimmune mechanisms of
SUDs across several common drugs of abuse. As well, we
highlight recent studies on neuroimmune mechanisms of
psychiatric and non-psychiatric comorbidities and discuss
how these studies reveal intersections with the SUD literature.
Specifically, we discuss the neuroimmune mechanisms that
are associated with addiction-related processes, first focusing
on neuron-glia interactions and how they underlie synaptic
plasticity, learning, and memory with cytokine signaling as
a case in point. Next, we highlight recent preclinical studies
that have identified immune processes that are associated
with drug-induced neural plasticity and behavior. We then
discuss how recent studies have implicated neuroimmune
mechanisms in the comorbidity of SUDs with other diseases
and disorders, and we describe how targeting these underlying
neuroimmune mechanisms may represent a novel approach
toward improving treatment outcomes. Lastly, we provide
recommendations for future studies that aim to identify and

describe neuroimmune mechanisms underlying SUDs and
associated comorbidities.

CYTOKINES CRITICALLY REGULATE
SYNAPTIC PLASTICITY, LEARNING,
AND MEMORY

Glia play diverse roles in dynamically modulating synaptic
plasticity, learning, and memory beyond their “traditional”
roles in supporting tissue homeostasis (Temburni and Jacob,
2001; Ben Achour and Pascual, 2010; Perea et al., 2014). For
example, neurochemical signaling molecules such as glutamate
mediate neuron-glia crosstalk that can alter downstream
immunomodulatory signaling. As illustrated in Figure 1,
microglia, which continuously survey their environment with
ramified processes, express both ionotropic and metabotropic
glutamate receptors and can release proinflammatory factors
in response to rapid changes in extracellular glutamate levels
(Hagino et al., 2004; Murugan et al., 2011; Liu H. et al., 2016).
Similarly, astrocytes express such receptors and dynamically
respond to rapid changes in synaptic glutamate levels through
modulation of glutamate uptake (Duan et al., 1999) and through
gliotransmission via adenosine triphosphate (ATP) and other
transmitters (Harada et al., 2016). As well, astrocytes are highly
sensitive to immunomodulatory signals and this has indirect
consequences on astrocytic regulation of synaptic transmission
(Cekanaviciute and Buckwalter, 2016). Together, microglia and
astrocytes can orchestrate potent modulatory control over
synaptic plasticity through glial cell-derived immunomodulatory
factors such as cytokines.

Cytokines have been extensively studied for their role in
learning, memory, and synaptic plasticity (Levin and Godukhin,
2017), and the outcome of these processes depend on the specific
cytokine, its concentration within the brain, receptors available
for cytokine binding and activation of signal transduction
pathways, and the conditions underlying cytokine release
(Goshen and Yirmiya, 2007). For example, Beattie et al.
(2002) and Stellwagen et al. (2005) have demonstrated that
glial tumor necrosis factor alpha (TNFα) facilitates membrane
insertion of calcium-permeable α-amino-3-hydroxy-5-methyl-
4-isoxazolepropionic acid (AMPA) glutamate receptors (CP-
AMPARs) and internalization of γ-aminobutyric acid type
A (GABAA) receptors within the hippocampus, leading to
enhanced excitatory synaptic transmission. In contrast, Lewitus
et al. (2014) found that TNFα exerts an opposite effect at
striatal synapses, where TNFα internalizes CP-AMPARs and
reduces corticostriatal synaptic strength. These investigators
demonstrated that microglia-induced TNFα release depresses
excitatory synaptic activity within the ventral striatum through
internalization of AMPARs and that this process is associated
with cocaine-induced locomotor sensitization (Lewitus et al.,
2016). Another example of region-specific regulation of synaptic
plasticity showed that TNFα secretion in response to peripheral
nerve injury enhances excitatory synaptic connectivity within
the spinal cord but impairs this connectivity within the
hippocampus (Liu et al., 2017). These studies provide clear
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FIGURE 1 | Immunomodulation of striatal glutamatergic synaptic plasticity. GABAergic medium spiny neurons (MSNs) within the nucleus accumbens (NAc) receive
glutamatergic inputs from various corticolimbic structures that drive drug-seeking behavior, which includes the prelimbic cortex (PrL), the amygdala (AMY), and the
hippocampus (HPC). Glutamatergic plasticity at dendritic spines on MSNs is regulated by glia and extracellular matrix signaling. Glial cell-derived neuroimmune
signals such as cytokines play a significant role in modulating this plasticity. Additionally, glutamate transporters such as GLT-1 and the cystine-glutamate exchanger,
system xc- (Sxc−), which are found on both astrocytes and microglia, tightly regulate extracellular levels of glutamate. Microglia and astrocytes express ionotropic
and metabotropic glutamate receptors (e.g., mGlu5) and can release neuroimmune factors in response to glutamatergic stimulation. Within the extracellular matrix
(ECM), enzymes such as matrix metalloproteinases (MMPs), which are predominantly produced by microglia and astrocytes, can remodel the ECM to facilitate
dendritic spine plasticity. Cytokines can promote the expression and activation of MMPs, which are associated with learning, memory, and synaptic plasticity.
Cytokines also bind directly to receptors located on both neurons and glia, which can directly influence downstream gene expression and synaptic plasticity. This
can result in changes in glutamate transporter expression, glutamate receptor surface expression, intracellular signaling, gene expression, dendritic spine
morphology, and post-synaptic excitability.

evidence that immunomodulatory signals such as TNFα crucially
regulate synaptic plasticity in a brain region-specific manner,
which may have important implications for understanding the
pathophysiology of SUDs.

Like TNFα, microglia and astrocytes also release interleukin-
6 (IL-6) within the CNS, a cytokine involved in modulating
learning and memory (Ye and Johnson, 1999; Dong and
Benveniste, 2001; Choi et al., 2014). Early studies demonstrated
that acute IL-6 exposure inhibits long-term potentiation (LTP)
within the hippocampus likely through inhibition of mitogen-
activated protein kinase/extracellular signal-regulated kinase
(MAPK/ERK) signaling (Li et al., 1997; Tancredi et al., 2002).
In addition, overexpression of IL-6 in astrocytes of mice
results in reduced LTP in the dentate gyrus (Bellinger et al.,
1995). However, in vitro and in vivo studies examining IL-6

expression during the induction of hippocampal LTP show that
LTP induces an upregulation of IL-6 mRNA that is localized
to non-neuronal cells such as astrocytes (Jankowsky et al.,
2000; Balschun et al., 2004) and inhibition of IL-6 signaling
results in improved performance in hippocampus-dependent
memory tasks (del Rey et al., 2013). Consistent with this
finding, IL-6 knockout mice exhibit enhanced performance in
a radial arm maze task compared to wild type mice, which is
correlated with hippocampal choline acetyltransferase activity
(Braida et al., 2004).

Interleukin-1β (IL-1β) is also critically involved in
hippocampal-dependent learning and synaptic plasticity.
Within the hippocampus, fear conditioning and LTP upregulate
IL-1β and systemic administration of small concentrations of
IL-1β can enhance learning and memory (Schneider et al., 1998;
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Balschun et al., 2003; Goshen et al., 2007; del Rey et al., 2013).
Additionally, acute intra-hippocampal administration and
chronic overexpression of IL-1β can impair fear conditioning
and spatial learning as well as hippocampal LTP similar to IL-6
(Vereker et al., 2000; Loscher et al., 2003; Ross et al., 2003;
Gonzalez et al., 2009; Moore et al., 2009; Hein et al., 2010;
MacHado et al., 2010). Despite these seemingly convergent
and consistent findings, studies examining learning (e.g., fear
conditioning) and hippocampal plasticity using IL-1 receptor
(IL-1R) knockout mice have demonstrated mixed effects (Avital
et al., 2003; Koo and Duman, 2009; Murray et al., 2013). This
is likely the result of complex interactions with other cytokines
within the IL-1 family, which is a very broad family of closely
related cytokines (Dinarello, 2018).

These studies provide clear evidence that cytokines can exert
a dynamic modulatory role within the nervous system over
synaptic plasticity, learning, and memory. They also highlight
that the specific cytokine and conditions in which neural circuits
are exposed to them are paramount when interpreting these
findings. This complexity is a primary reason why elucidating
the role of immunomodulation and neuron-glia crosstalk in
facilitating the formation and persistence of addiction-related
behaviors remains challenging. Below we highlight recent
preclinical studies, within the last 5 years when possible,
that demonstrate the diverse nature of immunomodulation in
regulating addiction-related behaviors and underscore some of
the remaining gaps in our understanding of these processes.

RECENT PRECLINICAL STUDIES
EXAMINING IMMUNOMODULATION OF
ADDICTION-RELATED BEHAVIORS AND
ASSOCIATED NEUROPLASTICITY

Since 2015, hundreds of articles related to immune mechanisms
involved in SUDs have been published, ranging from cellular and
molecular studies exploring novel neuroimmune mechanisms
of addiction-related behaviors to clinical studies examining the
efficacy of immunopharmacology in the treatment of SUDs
and associated comorbidities. For example, a PubMed search
conducted at the time of preparation of this manuscript for
all articles within the last 5 years containing the keywords
“addiction” and “immune” yielded over 900 results, showing
the exponential growth of research in this area. Of relevance
to the current review, preclinical animal models of SUDs have
proven invaluable in advancing our understanding of the social,
psychological, and biological etiology of SUDs (Lynch et al., 2010;
Kuhn et al., 2019), and recent studies utilizing these models have
revealed valuable insights into the significant role neuroimmune
mechanisms play in regulating drug reward and motivation.
Here, we highlight key preclinical research developments in
this area, focusing on cocaine, methamphetamine, nicotine,
alcohol, and opioids. This review is by no means intended to
be exhaustive, but rather serves to highlight recent advances,
common themes, and lingering gaps within the literature

geared to inform future investigations into the neuroimmune
mechanisms of SUDs.

Cocaine
Since 2015, cocaine overdose deaths, particularly those involving
synthetic opioids, have risen sharply to over 15,000 as of
2019 in the United States (National Institute on Drug Abuse
[NIDA], 2021), highlighting a resurgence of psychostimulant
abuse in the wake of the opioid epidemic. Importantly, no
effective medications exist that successfully treat cocaine use
disorders (CUDs). Studies in humans have demonstrated that
CUDs are associated with altered serum levels of pro- and anti-
inflammatory cytokines (Moreira et al., 2016; Zaparte et al.,
2019). As well, serum cytokine levels may be useful indicators
for assessing the severity for CUDs and identifying effective
treatment strategies, although sex differences and psychiatric
comorbidity are important factors to consider (Araos et al.,
2015; Pedraz et al., 2015; Maza-Quiroga et al., 2017; Pianca
et al., 2017). Thus, preclinical investigation into the impact
of cocaine on immune function may reveal novel targets for
pharmacotherapy development. In a recent study by Calipari
et al. (2018), both non-contingent cocaine exposure and cocaine
self-administration in mice were found to upregulate serum
levels of granulocyte-colony stimulating factor (G-CSF), a
known growth factor regulator of granulocytes, which positively
correlated with cocaine-induced locomotor sensitization. This
study also found that both acute and sub-chronic cocaine
exposure increased G-CSF mRNA expression within the nucleus
accumbens (NAc) and medial prefrontal cortex (mPFC) and
that G-CSF potentiates cocaine self-administration. This effect
is likely not specific to cocaine, as this same group also
demonstrated that G-CSF enhances sucrose motivation and
cognitive flexibility, which they hypothesize may be through
indirect modulation of mesolimbic dopamine transmission via
other immunomodulators such as TNFα (Kutlu et al., 2018).
As well, the role of G-CSF in cocaine-induced dopaminergic
plasticity was also shown to be dependent on estrous cycle
phase in female mice (Brady et al., 2019), suggesting important
sex differences underlying immunomodulation of drug-induced
neural and behavioral plasticity.

As mentioned above, TNFα is a critical modulator of synaptic
plasticity and specifically cocaine-induced neuroadaptations.
A recent study demonstrated that non-contingent cocaine
exposure in mice activated microglia and increased TNFα in
the NAc, leading to depressed excitatory synaptic strength at
striatal synapses (Lewitus et al., 2016). Interestingly, this study
showed that treatment with a weak agonist of toll-like receptor 4
(TLR4) resulted in microglia activation, reduced cocaine-induced
locomotor sensitization, and decreased excitatory activity within
the NAc. This study suggests that TNFα plays an adaptive
role in suppressing cocaine-induced neurobehavioral plasticity.
Nevertheless, the effects of TNFα on downstream cell signaling
and subsequent changes in gene expression and cellular
physiology are sensitive to the concentration and duration of
exposure to these immunomodulators. For example, nuclear
factor kappa B (NF-κB), which is a DNA-binding protein
complex that is induced by TNFα, exhibits autoregulatory
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feedback and oscillatory nuclear translocation with prolonged
upstream receptor stimulation. This allows cells to discriminate
against multiple levels of cytokine input and subsequently
fine-tune downstream gene transcription (Inoue et al., 2016;
Zambrano et al., 2016; Zhang Q. et al., 2017). Moreover, the
effects of immunomodulators such as TNFα are likely drug-
specific and dependent on the preclinical behavioral model (e.g.,
see Araos et al., 2015 for comparison to nicotine). Indeed,
attention to these considerations is important for understanding
the role of neuroimmune signaling in the pathophysiology
of SUDs. Recent studies examining mesolimbic neuroimmune
signaling implicate proinflammatory signaling mechanisms as
an important regulator of cocaine-induced neurobehavioral
plasticity. For example, Brown et al. (2018) demonstrated that
antagonism of TLR4 within the ventral tegmental area (VTA),
which sends dopaminergic projections to corticolimbic structures
such as the striatum to drive drug-seeking, reduces cocaine-
primed reinstatement of drug seeking with no effect on sucrose
seeking. As well, stimulation of the VTA with lipopolysaccharide
(LPS), which activates TLR4, modestly reinstates cocaine seeking,
and inhibition of cocaine-induced elevations in IL-1β within the
VTA reduces cocaine seeking (Brown et al., 2018). This study
corroborates a previous study demonstrating that cocaine binds
uniquely with the TLR4 receptor complex within the VTA to
modulate dopamine input into the NAc and subsequent cocaine-
seeking behavior (Northcutt et al., 2015). TLR4 knockout mice
exhibit attenuated cocaine conditioned place preference (CPP),
which may be due to impairments in excitatory synaptic plasticity
within the NAc core (Kashima and Grueter, 2017). These findings
are consistent with the hypothesis that dopamine input into
the NAc and cocaine-mediated activation of TLR4 stimulate
microglial activation, resulting in TNFα release that serves as
a feedback mechanism to scale down drug-induced increases
in synaptic strength. Nevertheless, whether these neuroimmune
mechanisms play a significant role in abstinence-dependent
changes in mesocorticolimbic plasticity and subsequent relapse
remains unclear.

Like cytokines, chemokines are immunomodulators that
are influenced by cocaine and may be important regulators
of cocaine-induced neurobehavioral plasticity. Traditionally,
chemokines promote cellular chemotaxis and are important
for directing both homeostatic and inflammatory immune
responses. Kim et al. (2017) recently demonstrated that inhibiting
the chemokine receptor CXCR4 with the antagonist AMD3100
reduces cocaine CPP and cocaine-induced locomotion.
Similar effects are also observed with the synthetic cathinone
methylenedioxypyrovalerone (MDPV) (Oliver et al., 2018),
which mimics cocaine in its physiological and behavioral effects.
Interestingly, this same group has recently provided the first
evidence that the chemokine receptor CCR5, which is highly
implicated in the pathophysiology of human immunodeficiency
virus (HIV), is upregulated by cocaine and regulates the
formation of cocaine CPP (Nayak et al., 2020). Cocaine is
known to facilitate HIV invasion and viral replication within
the brain (Zhang et al., 1998; Sahu et al., 2015; Tyagi et al.,
2016) and HIV may also potentiate the reinforcing properties
of cocaine (McIntosh et al., 2015). Thus, these studies highlight

how neuroimmune mechanisms may underly the intersection
between SUDs and other comorbidities, including non-
psychiatric comorbidities such as HIV. As discussed below,
other psychostimulants such as methamphetamine also exhibit
similar qualities.

Methamphetamine
Over the last decade, methamphetamine (METH) use has
risen sharply, particularly among individuals that also use
opioids. Specifically, the number of psychostimulant overdoses
(consisting primarily of METH), both with and without opioids,
has been sharply rising within the United States over the last
decade in the wake of the opioid epidemic (Mattson et al.,
2021). This highlights an important need for novel therapeutic
strategies to treat psychostimulant use disorders, which currently
have no FDA-approved pharmacological treatments. METH has a
profound impact on immune system function through disruption
of the blood–brain barrier, dysregulation of both central and
peripheral immune signaling, epigenetic modifications, and
perturbation to the gut microbiome (for a recent review,
see Prakash et al., 2017). For instance, METH alters the
expression of microRNAs (miRNAs) that regulate immune-
and addiction-related genes (Zhu et al., 2015, 2016). A recent
study demonstrated that METH exposure in mice downregulates
miR-29b and miR-124 within the NAc, which is consistent
with previous observations in animals treated with cocaine
(Chandrasekar and Dreyer, 2009; Eipper-Mains et al., 2011; Zhu
et al., 2016). These miRNAs are crucial regulators of immune
system function (Liston et al., 2012; Qin et al., 2016), suggesting
that METH (and possibly psychostimulants in general) may exert
aberrant immunomodulatory effects over mesocorticolimbic
reward pathway signaling through dysregulation of miRNA
expression. In addition to indirect immunomodulation of drug-
induced plasticity via miRNA regulation, METH interacts
directly with immune cells to promote neuroinflammation
and alter reward learning. Indeed, a recent report examining
METH’s effects on TLR4 signaling and VTA-NAc dopamine
transmission provides convincing evidence of this fact. In this
study, Wang X. et al. (2019) report that METH can bind to
lymphocyte antigen 96 (i.e., MD-2), which interacts directly
with TLR4 to confer receptor responsiveness to LPS, and that
inhibition of TLR4 attenuated METH-induced NF-κB activation
in microglia. In addition, this study also showed that METH
upregulates IL-6 within the VTA and that this is associated with
enhanced extracellular dopamine within the NAc, and treatment
with the TLR4 inhibitor (+) naloxone or an intra-VTA IL-6
antibody reduces METH-induced increases in NAc dopamine
(Wang X. et al., 2019). This study parallels findings described
above by Brown et al. (2018), which demonstrated reduced
cocaine-primed reinstatement following intra-VTA treatment
with a TLR4 antagonist. These findings collectively suggest
that psychostimulants such as METH and cocaine may alter
dopamine transmission and reward processing through similar
immunomodulatory mechanisms such as TLR4 signaling.

Another recent study examining the potential role of
dopamine D1 receptors (D1Rs) in mediating METH’s
immunomodulatory effects found that acute METH exposure
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increases LPS-induced IL-6 and TNFα release within the
NAc, hippocampus (HPC), and caudate-putamen (CPu),
and that systemic inhibition of D1Rs suppresses this effect
(Wang B. et al., 2019). This study suggests that METH primes
neuroimmune responses to inflammatory stimuli within
the mesocorticolimbic reward circuitry and that METH-
induced dopamine transmission may be involved in this
process. Nevertheless, whether these processes confer increased
susceptibility to METH relapse remains unclear. An intriguing
pair of studies has attempted to address this gap within the
literature, where investigators used a CPP paradigm to probe
whether cannabidiol (CBD) reduces reinstatement of METH
seeking in animals that experienced sleep deprivation and
if CBD modulates cytokine expression within the prefrontal
cortex (PFC) and HPC (Karimi-Haghighi and Haghparast, 2018;
Karimi-Haghighi et al., 2020). These studies collectively showed
that METH-induced reinstatement is accompanied by increased
expression of TNFα and the anti-inflammatory cytokine IL-10
within the PFC and HPC, and CBD treatment significantly
reduces reinstatement as well as proinflammatory cytokine levels
within these brain regions. Interestingly, CBD treatment before
sleep deprivation elevated TNFα, IL-1β, IL-6, and IL-10 levels
within the HPC but reduced IL-10 levels within the PFC. These
results indicate that CBD may attenuate METH-seeking behavior
through immunomodulatory mechanisms. However, the clear
heterogeneity of cytokine expression profiles across the brain
raise important questions regarding the functional role of these
cytokines within specific neural circuits. Thus, further studies
that attempt to dissect possible circuit-specific mechanisms of
immunomodulation are warranted.

One limitation of the studies above is that METH was
experimenter-delivered to the animals, as opposed to self-
administered. Previous studies demonstrate that the magnitude
of METH effects on the CNS, such as on dopamine transporter
(DAT) expression, is larger in experimenter-delivered METH
exposure models as compared to human clinical and post-
mortem studies (Wilson et al., 1996; Volkow et al., 2001a,b;
Sekine et al., 2003). Indeed, self-administration models better
recapitulate the effects of METH on striatal DAT function and
expression observed in humans (McFadden et al., 2012). As well,
experimenter-delivered METH models do not allow investigators
to correlate drug-induced neuroplasticity with behavioral
measures such as escalation of drug intake and cue-motivated
drug seeking. Thus, self-administration models examining the
neuroimmune consequences of chronic METH use provide
a clearer understanding of how these immune mechanisms
facilitate METH abuse and relapse vulnerability in humans.

Recent investigations using self-administration paradigms
implicate neuroinflammation and disruption of blood-brain
barrier (BBB) integrity as a consequences of chronic METH
use. For example, Gonçalves et al. (2017) examined the impact
of extended-access METH self-administration and abstinence
on BBB integrity and neuroinflammation within the HPC
and striatum. This study found that METH self-administration
and abstinence downregulated tight junction proteins and
collagen IV, indicating reduced BBB integrity, as well as
astrogliosis, microgliosis, and upregulated proinflammatory

mediators such as TNFα, IL-1β, and matrix metalloproteinase-
9 (MMP-9) (Gonçalves et al., 2017). While this study did
not examine whether these METH-induced neuroadaptations
are directly involved in METH-seeking behaviors, many other
studies discussed previously have implicated TNFα and IL-
1β in regulating learning, memory, and synaptic plasticity,
and MMP-9 in particular has also been implicated in these
processes as well as in cue-motivated drug seeking specifically
(Mizoguchi et al., 2007; Knapska and Kaczmarek, 2015; Smith
et al., 2015). METH-induced impairments on the BBB are well
documented, and the consequences of these proinflammatory
effects of METH on the BBB can exacerbate invasion of
viruses as well as peripheral immune cells into the brain (see
Northrop and Yamamoto, 2015 for review). Indeed, individuals
who use METH are significantly more vulnerable to HIV
and the neurocognitive dysfunctions associated with chronic
HIV infection (Borgmann and Ghorpade, 2015; Kesby et al.,
2015a). Recent preclinical animal studies demonstrate that HIV
and its proteins exacerbate METH-induced deficits in learning
and memory (Hoefer et al., 2015; Kesby et al., 2015a,b) as
well as METH reward sensitivity and behavioral sensitization
(Liu et al., 2009; Kesby et al., 2014). Taken together, METH
produces significant perturbations to cellular systems within the
mesocorticolimbic reward system through immunomodulation
and, akin to cocaine, these immunomodulatory mechanisms
may underlie the co-morbidity of chronic METH use and both
psychiatric and non-psychiatric diseases.

Nicotine
Unlike other drugs of abuse such as alcohol, cocaine, and
methamphetamine, relatively little preclinical research exists
on the role of immunomodulation in nicotine addiction-
related behaviors. Previous work demonstrates that nicotine
produces predominantly anti-inflammatory and pro-cognitive
effects, which has been largely attributed to nicotine’s full-
agonist activity at α7-containing nicotinic acetylcholine receptors
(Kalra et al., 2004; Shytle et al., 2004; Foucault-Fruchard
and Antier, 2017) (nAChRs; although see Thomsen and
Mikkelsen, 2012). For example, recent studies suggest that
nicotine’s acute anti-inflammatory effects via α7-containing
nAChR signaling may improve learning and memory and
reduce the severity of neurocognitive symptoms associated
with neurodegenerative diseases such as Alzheimer’s disease.
Specifically, a recent study demonstrated that nicotine attenuates
LPS-induced neuroinflammation within the HPC and associated
cognitive deficits in spatial learning (Wei et al., 2015). As
well, another study showed that inhibition of α7-containing
nAChRs with an α7-specific antibody is sufficient to produce
neuroinflammation, accumulation of β-amyloid, and memory
impairments in mice (Lykhmus et al., 2015). While these studies
suggest that nicotine may be therapeutic within certain clinical
contexts (e.g., Alzheimer’s disease), there are a number of caveats
to consider. Firstly, individuals who are dependent on nicotine
largely smoke tobacco, which can produce profoundly different
effects on cognition and neuroinflammation when compared
to nicotine alone (Swan and Lessov-Schlaggar, 2007). This
complicates the interpretations one can make from preclinical
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nicotine studies regarding the neuroimmune and neurocognitive
effects of smoking in humans. Additionally, acute versus
chronic nicotine, as well as varying withdrawal periods, are
all associated with significant differences in whether they are
associated with neuroinflammation and cognitive deficits. For
example, a recent study revealed cognitive impairment and
neuroinflammation within the PFC and HPC of mice 4 days
after mecamylamine-precipitated nicotine withdrawal, which was
reversed by cannabidiol (Saravia et al., 2019). This contrasts
the studies described above demonstrating anti-inflammatory
and cognition-enhancing effects of acute or sub-chronic nicotine
treatment in inflammatory disease models. Furthermore, these
disparate findings in the literature may be attributed to the
heterogenous distribution of nAChRs throughout the CNS (Gotti
et al., 2009). Given the significant role of nAChRs in immune
system function [particularly the α7-containing nAChR (Fujii
et al., 2017)], the heterogeneity of nAChR distribution within the
CNS could have significant implications for immunomodulation
of nicotine addiction-related behaviors.

Several recent studies have attempted to address these
significant gaps in the literature by investigating whether
neuroimmune mechanisms within mesocorticolimbic reward
circuitry are involved in nicotine addiction-related behaviors. In
our recent study, we attempted to investigate whether changes in
NAc core neuroimmune signaling were associated with nicotine
self-administration, extinction, and cue-induced reinstatement
as well as the therapeutic efficacy of the antioxidant compound
N-acetylcysteine (NAC). NAC, which has been used traditionally
as a mucolytic and as a treatment for acetaminophen overdose,
is known to reverse drug-induced perturbations in glutamatergic
homeostasis within the NAc and to inhibit cue-motivated drug
seeking (Baker et al., 2003; Moran et al., 2005; Moussawi et al.,
2009; Deepmala et al., 2015; Reissner et al., 2015; Elbini Dhouib
et al., 2016; Powell et al., 2019). We demonstrated that 2 weeks
of extinction training following nicotine self-administration was
associated with enhanced TNFα expression within the NAc core
and concomitant downregulation of the astrocytic glutamate
transporter GLT-1. As well, we showed that NAC ameliorated
these deficits and blocked cue-induced reinstatement of nicotine
seeking through GLT-1- and NF-κB-dependent mechanisms
within the NAc core (Namba et al., 2019). Unlike TNFα, IL-6 was
not upregulated after a period of extinction and cue reinstatement
testing, although glial fibrillary acidic protein (GFAP) expression
was downregulated at these timepoints. No changes in TNFα

and GFAP expression were observed immediately following
nicotine self-administration when compared to yoked saline
controls. This is consistent with a previous report showing
downregulated NAc GFAP expression following 2 weeks of
cocaine extinction (Scofield et al., 2016). Our findings were
also corroborated by another recent study demonstrating that
withdrawal from experimenter-delivered nicotine exposure in
mice upregulates TNFα and IL-1β mRNA within the NAc and
increases anxiety-like behavior, both of which are prevented
by pharmacological depletion of microglia with a colony-
stimulating factor 1 receptor inhibitor (Adeluyi et al., 2019).
Moreover, another recent study showed that co-administration of
the non-steroidal anti-inflammatory drug acetylsalicylic acid with

NAC significantly attenuates oral nicotine self-administration as
well as consumption of nicotine following a period of nicotine
deprivation (Quintanilla et al., 2021).

Taken together, the above findings highlight the need
for future studies to evaluate multiple timepoints when
attempting to describe neuroimmune mechanisms of
addiction-related behaviors. As well, these data underscore
the need for investigators to exhibit caution when describing
their findings related to the neuroimmune consequences of
nicotine exposure. While it can be tempting to ascribe labels
such as “neuroinflammation” to processes that upregulate
proinflammatory cytokines such as TNFα, the studies above
illustrate that these immunomodulators exhibit diverse functions
that serve to fine-tune neuronal plasticity and behavior, and
dysregulation of a specific cytokine may not be indicative
of a net “inflammatory” or “anti-inflammatory” process per
se. Significant gaps remain in the understanding of whether
nicotine alters neuroimmune signaling within the brain’s
mesocorticolimbic reward circuitry and whether such changes
are relevant to the reinforcing and incentive motivational
properties of nicotine. However, α7-containing nAChRs are
critically involved in nicotine addiction-related behaviors, and
it is possible that neuroimmune mechanisms downstream of
α7-containing nAChRs mediate the modulatory role of this
receptor type over nicotine reward and reinforcement.

The α7 nAChR subunit plays a critical yet complex role
in mediating the effects of nicotine on immune system
function. For example, a recent study demonstrated that an
α7-containing nAChR agonist inhibits LPS-induced astroglial
release of proinflammatory cytokines and NF-κB activation
in vitro (Patel et al., 2017). Moreover, another recent study
showed that α7-containing nAChR agonist treatment improves
neuronal survival and reduces microglial activation in rats
treated with an excitotoxic lesion within the striatum (Foucault-
Fruchard et al., 2017). While many studies demonstrate an
anti-inflammatory and protective role of α7-containing nAChR
stimulation in a variety of disease models, other studies offer
conflicting conclusions (Thomsen and Mikkelsen, 2012). In
addition to its role in regulating neuroimmune signaling, the
α7 nAChR subunit has also been implicated in the reinforcing
properties of nicotine (Levin et al., 2009; Besson et al., 2012;
Brunzell and McIntosh, 2012). In a recent study examining
nicotine-induced changes in α7 expression within the striatum
and frontal cortex of mice, experimenter-delivered, nicotine-
containing electronic cigarette vapor exposure upregulated
α7 expression within these brain regions (Alasmari et al.,
2017). In contrast, another recent study demonstrated that
nicotine consumption in rats is negatively correlated with α7
expression within the HPC, which is most prominent in females
(Gozen et al., 2016). Indeed, the heterogeneity of nAChR
expression throughout the brain as well as the differential
neurobehavioral impact of experimenter-delivered drug exposure
versus self-administration likely contributed to these seemingly
discrepant findings (Gotti et al., 2009; Namba et al., 2018).
Additionally, such differences may suggest that nicotine alters
α7-containing nAChR expression differentially throughout the
brain, which could produce brain region-specific differences
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in downstream neuroimmune signaling. Varenicline, which is
a popular smoking-cessation medication, has been reported
to be a full agonist at α7-containing nAChRs in addition to
a partial agonist at α4β2∗ nAChRs (Mihalak et al., 2006).
Interestingly, a recent study demonstrated that combination
therapy of varenicline with the weak monoamine reuptake
inhibitor bupropion reduced nicotine self-administration in
rats (Hall et al., 2015), and bupropion has been shown to
exhibit anti-inflammatory properties in mice (Hajhashemi and
Khanjani, 2014). However, another recent study concluded that
discontinuation of varenicline treatment may increase relapse
vulnerability. Specifically, this study showed that rats receiving
varenicline treatment exhibited impaired extinction learning,
which was particularly evident in varenicline-treated rats that
underwent a second cycle of nicotine self-administration and
extinction training without continued varenicline treatment
(Macnamara et al., 2016). Perturbations to α7-containing
nAChRs and subsequent α7-mediated neuroimmune responses
may also come from flavor additives in tobacco products such as
menthol, which has been shown to inhibit α7-containing nAChR
receptor function (Ashoor et al., 2013) and facilitate nicotine
self-administration (Biswas et al., 2016). Ultimately, it remains
unclear whether immunomodulatory mechanisms, such as those
elicited by α7-containing nAChRs, are relevant to the formation
and persistence of nicotine addiction-related behaviors. As well,
it is unclear if such mechanisms would be effective targets
for medications development. While recent preclinical studies
have attempted to shed light on this gap in the literature
(Adeluyi et al., 2019; Namba et al., 2019), future research that
utilizes preclinical models of volitional drug self-administration,
withdrawal, and cue-motivated nicotine seeking is needed to
better understand whether neuroimmune mechanisms underly
the pathophysiology of nicotine addiction-related behaviors.

Alcohol
Similar to cocaine and methamphetamine, alcohol (ethanol)
promotes inflammation and immune system dysfunction.
Alcohol and its metabolites induce oxidative stress, increase
systemic endotoxin levels, and promote the release of
inflammatory peptides. Together, these effects contribute
to liver disease, bone and muscle disease, cardiovascular
disease, reproductive disorders, and neuroinflammation
(González-Reimers et al., 2014). Many studies have revealed
alcohol-induced changes in immunoregulatory miRNAs,
cytokines, and other signaling pathways associated with
neuroinflammation, and increasing evidence suggests that
alcohol-induced neuroinflammation contributes to brain
damage and neurodegeneration that is observed in individuals
with severe alcohol use disorders (AUDs) (Vallés et al., 2006;
Tajuddin et al., 2014; Orio et al., 2019).

NF-κB regulates alcohol-induced changes in immune-related
gene expression, either through direct interactions with NF-
κB-specific binding sites on many immune-related genes (e.g.,
IL-1β, TNFα, and MCP1) or with miRNAs to indirectly regulate
immune-related gene expression. For example, the miRNA
miR-155 is induced by NF-κB activation and plays a role in
alcohol-induced dysregulation of TNFα and MCP1 expression.

Specifically, chronic alcohol intake increases TNFα and MCP1
expression within the cerebellum, an effect mediated by alcohol-
induced activation of miR-155 (Lippai et al., 2013). This effect
was further validated in this study using miR-155 knockout
mice, where alcohol-induced TNFα and MCP1 elevations were
prevented in these animals following alcohol treatment. Also
known for its role in alcohol-induced liver diseases (for review
see Hartmann and Tacke, 2016), miR-155 has been shown
to promote cytokine release through TLR4 activation (Lippai
et al., 2013). TLR4, which is a potent mediator of alcohol-
induced neuroinflammation (Alfonso-Loeches et al., 2010),
participates in alcohol-induced, long-term synaptic remodeling
during adolescence (Montesinos et al., 2016), promotes leukocyte
infiltration across the blood–brain barrier (BBB) in the presence
of alcohol (Alfonso-Loeches et al., 2016), and participates in
alcohol-induced autophagy and synaptic dysfunction during
development (Montesinos et al., 2018). Furthermore, alcohol
increases the release of TLR4 and cytokines from astrocytes by
mediating the release of astrocyte-derived extracellular vesicles
(EVs) containing these inflammation-related proteins (Ibáñez
et al., 2019). Such mechanisms are capable of altering the
physiological state of neurons and has the ability to enhance
alcohol-induced neuroinflammation. Interestingly, alcohol does
not induce EV release in TLR4-deficient astrocytes, further
implicating TLR4 as an important component of alcohol-induced
neuroinflammation (Ibáñez et al., 2019). Additionally, genetic
elimination of TLR4 prevents damage to myelin and synapses
within the PFC as well as neuroinflammatory processes induced
by intermittent alcohol treatment (Montesinos et al., 2015),
and inhibition of TLR4 using the opioid antagonist nalmefene
has been shown to prevent alcohol-induced neuroinflammation
(Montesinos et al., 2017). Taken together, TLR4 plays an essential
role in mediating alcohol-induced neuroinflammation and may
serve as a promising target for treatment in patients with AUDs.

Similar to other drugs of abuse, alcohol consumption increases
LPS-induced inflammation, which has known interactions with
TLR4 located within the hepatic system as well as on microglia
and astrocytes (Monnig, 2017). Interestingly, while alcohol
increases proinflammatory cytokine release within the mouse
hippocampus, including TNFα, IL-1β and MCP-1, co-treatment
with LPS (alcohol + LPS) further increases MCP-1 and IL-
1β (Qin et al., 2008). Additionally, alcohol + LPS significantly
decreases the number of cells within the dentate gyrus relative to
controls, an effect not observed with alcohol or LPS treatment
alone (Qin et al., 2008). The ionized calcium binding adapter
molecule 1 (Iba-1) protein is expressed within microglia and
is elevated in post-mortem brains of patients with AUD (He
and Crews, 2008). Iba-1 expression is increased in a TLR4-
dependent manner in response to ethanol, where 35 days of
chronic intermittent ethanol (CIE) exposure enhanced Iba-
1 expression within the PFC (Sanchez-Alavez et al., 2019).
Conversely, a recent study showed that 15 days of CIE exposure
plus 10 h of withdrawal decreases Iba-1 immunoreactivity within
the prelimbic cortex (PrL), whereas no changes are observed
in the NAc. This study also demonstrated that LPS exposure
produces an enlargement of soma volume in Iba-1-expressing
microglia within the PrL and NAc and a decrease in microglial
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density within the NAc (Siemsen et al., 2020). Taken together,
these studies suggest that chronic alcohol exposure may prime
both central and peripheral immune mechanisms to exhibit
exacerbated immune responses to inflammatory insults such as
LPS. As well, these studies suggest that alcohol exposure produces
a unique profile of neuroimmune effects that are distinct from
classic proinflammatory stimuli such as LPS and that the duration
of alcohol exposure and withdrawal are important factors when
considering alcohol-induced changes in neuroimmune function.

In addition to processes described above, alcohol activates
nicotinamide adenine dinucleotide phosphate (NADHP) oxidase,
an enzyme known to produce reactive oxygen species, thus
contributing to oxidative stress, alcohol-induced cell damage,
and neuroinflammation (Qin and Crews, 2012). As a common
activator of glial cells within the brain, oxidative stress is
promoted by inducible nitric oxide synthase (iNOS), a gene
activated by pro-inflammatory cytokines induced by alcohol (Sun
and Sun, 2001). Further, iNOS catalyzes the oxidation of alcohol
into acetaldehyde and α-hydroxyethyl radicals (Porasuphatana
et al., 2006), and acetyladehyde production promotes reactive
oxygen species (ROS) formation that contributes to unbalanced
cellular oxidative stress (Hernández et al., 2016; Yan et al., 2016).
Through its activation of p38 mitogen-activated protein kinase
(MAPK) and inhibition of extracellular signal-regulated kinases,
acetaldehyde induces cytotoxicity by promoting apoptotic
signaling and inhibiting cell survival pathways (Yan et al.,
2016). Interestingly, inhibition of the phosphoinositide 3-
kinase/protein kinase B (PI3K/Akt) pathway with glycine inhibits
ROS production in young rats and reduces alcohol-induced
neuroinflammation (Amin et al., 2016). Altogether, these studies
highlight the complexities of ROS and oxidative stress induced by
alcohol, and more studies investigating the role of these processes
in alcohol addiction-related behaviors are warranted.

Preclinical models of alcohol consumption are largely
reliant on three forms of self-administration paradigms,
which include drinking-in-the-dark (DID), two-bottle
choice (2BC), and operant conditioning for oral alcohol
consumption. Each paradigm allows rodents to self-administer
alcohol-containing solutions and have varying degrees of
translational value. Pharmacological and genetic manipulations
of neuroinflammatory targets have yielded promising results in
reducing alcohol consumption across these different paradigms.
For example, inhibition of microglia activation reduces alcohol
consumption during the DID task in C57/BL6 male mice
(Lainiola and Linden, 2017) and prevents relapse-like drinking
in the 2BC task in male rats (Gajbhiye et al., 2018). Further,
inhibition of microglial P2X7 receptor signaling also reduces
alcohol consumption in C57/BL6 male mice during the DID
paradigm (Lainiola and Linden, 2017). Dual knockout of IL-1
and TNFα receptors reduces social stress-induced increases in
alcohol consumption during the 2BC task in male mice (Karlsson
et al., 2017), and IL-6 knockout mice also show similar reductions
(Blednov et al., 2012). Likewise, antagonism of the IL-1 receptor
within the basolateral amygdala reduces alcohol consumption
during DID in male C57/BL6 mice (Marshall et al., 2016). Similar
reductions in alcohol consumption have also been observed
using peroxisome proliferator activated receptor (PPAR)

agonists, which generally promote anti-inflammatory responses.
Specifically, PPARα activation with fenofibrate decreases alcohol
consumption during the 2BC and DID tasks in both UChB male
rats and C57/BL6 male mice (Karahanian et al., 2014; Blednov
et al., 2016). PPARα activation with gemfibrozil also decreases
2BC alcohol consumption in male Sprague-Dawley rats (Barson
et al., 2009). Lastly, treatment with ceftriaxone [a beta-lactam
antibiotic with immunomodulatory mechanisms (Wei et al.,
2012; Kaur and Prakash, 2017; Ochoa-Aguilar et al., 2018)] or
the antioxidant N-acetylcysteine reduces relapse-like drinking
in alcohol preferring P rats (Qrunfleh et al., 2013; Alhaddad
et al., 2014) as well as alcohol seeking and alcohol-reinforced
responding in Long-Evans rats (Lebourgeois et al., 2018).
Altogether, these findings provide a critical foundation for future
investigations into anti-inflammatory compounds that may
reduce alcohol motivation and consumption. However, most
of the studies discussed here were conducted in male subjects
only, making it difficult to determine whether these effects would
also be observed in females. Thus, further characterization of
potential sex differences in both alcohol-induced neuroimmune
responses as well as the effects of pharmacological and genetic
manipulations on these responses are warranted.

While much preclinical evidence exists demonstrating
alcohol-induced neuroinflammation and cellular toxicity as
well as the effects of anti-inflammatory agents in reducing
alcohol consumption, studies examining pharmacotherapies
for treating alcohol-induced neuroinflammation in humans are
lacking. N-acetylcysteine (NAC) prevents alcohol-induced
neuroinflammation in rats (Schneider et al., 2017) and
human studies suggest that NAC may be useful for treating
AUDs. Preclinically, NAC prevents alcohol withdrawal-
induced increases in TNFα, IL-1β, IL-6, and IL-18 within the
hippocampus and medial prefrontal cortex of rats (Schneider
et al., 2017). As well, co-treatment with aspirin and NAC restores
alcohol-induced impairments in glial glutamate transporter
expression within the prefrontal cortex and prevents microglial
activation (as measured through morphological alterations)
within the hippocampus of rats (Israel et al., 2019). Parallel
to these preclinical findings, NAC has also shown efficacy
within humans with AUDs for reducing alcohol intake and
withdrawal symptoms (Back et al., 2016; Squeglia et al., 2016,
2018); however, studies have not examined whether NAC
reduces inflammation in humans. NAC’s poor bioavailability is a
significant clinical limitation that may impair its efficacy. Thus,
improving its bioavailability with novel delivery vectors such as
nanoparticles may enhance its anti-inflammatory properties and,
consequently, its therapeutic efficacy (Markoutsa and Xu, 2017).
Similar to NAC, the lipid transmitter oleoylethanolamide (OEA),
which is primarily generated by phospholipid cleavage, reduces
alcohol-mediated neuroinflammation. By modulating oxidative
stress, neuroinflammation, glial cell activation, as well as
neurotransmission, OEA has neuroprotective properties, such as
blocking alcohol-induced upregulation of TLR4 and subsequent
proinflammatory signaling (Orio et al., 2019; Orio, 2020). OEA
provides neuroprotection of the frontal cortex in alcohol-exposed
rats by inhibiting NF-κB and TLR4 signaling pathways (Antón
et al., 2017). Interestingly, systemic OEA treatment reduces
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operant responding for alcohol and prevents alcohol-induced
withdrawal symptoms in rodents (Bilbao et al., 2016).

Another novel treatment target that is being investigated
both clinically and preclinically for its use in treating AUDs is
phosphodiesterases (PDEs). PDEs are upstream modulators of
intracellular cyclic nucleotides, such as cyclic AMP (cAMP) and
cyclic GMP (cGMP), as well as immunomodulators that underly
alcohol reward and toxicity (Wen et al., 2018). Specifically, PDEs
catalyze the hydrolysis of cAMP and cGMP, decreasing their
intracellular levels and thus downstream signal transduction.
As well, PDEs (e.g., PDE4) are involved in ethanol-mediated
inflammatory responses (Gobejishvili et al., 2008; Avila et al.,
2017). Evidence suggests that ethanol exposure alters cAMP
signal transduction by modulating adenylate cyclase (Yang et al.,
1996; Asher et al., 2002; Asyyed et al., 2006). This modulatory
effect may depend on the amount of ethanol exposure as
acute ethanol promotes cAMP signal transduction whereas
chronic ethanol attenuates this signaling (Saito et al., 1987; Yang
et al., 1996, 1998; Pandey, 2004). Preclinical studies show that
reductions in cAMP and cGMP levels, caused by hyperactivity of
PDEs, promote excessive ethanol use. Given their link to alcohol
seeking, several studies have attempted to pharmacologically
identify which PDEs modulate alcohol consumption (Hu et al.,
2011; Wen et al., 2012; Blednov et al., 2014; Bell et al.,
2015; Logrip, 2015). Other studies have attempted to describe
genetic differences in PDEs between alcohol-preferring and non-
preferring mouse lines (Mulligan et al., 2006). Importantly,
pharmacological inhibition of PDE4 (Hu et al., 2011; Wen et al.,
2012; Blednov et al., 2014) and PDE10 (Bell et al., 2015; Logrip,
2015) reduce ethanol intake in rodents. Given the results of these
preclinical findings, two PDE inhibitors are undergoing clinical
trials for their therapeutic efficacy in treating AUDs. Specifically,
the PDE inhibitor Ibudilast, a non-specific PDE inhibitor that
targets PDE3, PDE4, PDE10, and PDE11, is currently within
Phase I (ClinicalTrials.gov, 2021a), while the PDE4 inhibitor
Apremilast is currently within Phase II (ClinicalTrials.gov,
2021b). For additional information regarding PDEs and alcohol,
see the in-depth review by Wen et al. (2018). Taken together,
targeting neuroinflammation and reducing oxidative stress may
be a promising therapeutic strategy for individuals with AUDs by
reducing the underlying effects of alcohol on neuroinflammation.

Opioids
Opioids are a class of drugs that possess a very high abuse
liability and have been at the center of an ongoing public health
crisis. Between the years 2000 and 2017, yearly opioid overdose-
related deaths rose to more than 47,000 within the United States,
and 21–29 percent of individuals who are prescribed opioids
to manage chronic pain misuse them (Vowles et al., 2015;
National Institute on Drug Abuse [NIDA], 2020c). In response
to this crisis, considerable preclinical research has revealed
many neuronal and non-neuronal mechanisms underlying
opioid reward and reinforcement, including neuroimmune
mechanisms. This research has advanced our understanding of
the pathophysiology of opioid use disorders (OUDs) as well
as other comorbid chronic pain and inflammatory conditions.
For example, the opioid receptor antagonist naltrexone, which

has been used as a medication to treat both OUDs and
AUDs, attenuates inflammation and pain associated with chronic
autoimmune disorders and cancer (Li et al., 2018; Patten et al.,
2018). Several groups have recently provided thorough, in-depth
reviews of the many neuroimmune mechanisms involved in
OUDs (Plein and Rittner, 2018; Eidson and Murphy, 2019;
Hofford et al., 2019; Zhang et al., 2020). Thus, for the purposes of
this review, we will summarize key findings within the last 5 years,
and emphasize recent advancements within the last 2 years where
possible, to highlight current trends in the field and offer our
perspectives on future directions regarding novel neuroimmune
mechanisms of OUDs.

TLR4 is known to play a critical role in the rewarding
and reinforcing effects of opioids, and TLR4 antagonists may
be efficacious pharmacotherapies to treat OUDs (Hutchinson
et al., 2012; Wang et al., 2012; Bachtell et al., 2015). Specifically,
a study by Hutchinson et al. (2012) showed that inhibition
of TLR4 and its downstream myeloid differentiation primary
response 88 (MyD88)-dependent signaling suppresses opioid-
conditioned place preference and self-administration as well
as morphine-induced increases in NAc extracellular dopamine.
This study was paralleled by another study demonstrating
that morphine induces neuroinflammation through activation
of TLR4 signaling and that inhibition of TLR4 signaling can
enhance the analgesic properties of morphine (Wang et al.,
2012). TLR4 is also involved in opioid reinforcement, tolerance,
and withdrawal. For example, knockdown of TLR4 within the
ventrolateral periaqueductal gray (vlPAG) increases glutamic acid
decarboxylase mRNA within the PAG and decreases withdrawal
symptoms in morphine-exposed rats (Liu Q.F. et al., 2016). As
well, chronic morphine exposure stimulates TLR4 and recruits
TNFα signaling within the PAG to enhance neuroinflammation,
downregulate glutamate transporters, and increase morphine
tolerance (Eidson et al., 2017). Within the VTA, TLR4 signaling
also facilitates the acquisition and maintenance opioid CPP,
which may depend on downstream signal transducer and
activator of transcription 3 (STAT3) signaling (Chen et al.,
2017). Interestingly, genetic deletion of Myd88, in microglia of
mice impairs extinction learning and enhances reinstatement of
morphine CPP (Rivera et al., 2019). These findings are seemingly
conflicting with those of Hutchinson et al. (2012) as highlighted
above which used a Myd88 knockout mouse model that lacked
cell-type specificity. Nevertheless, it is likely that neuroimmune
influences over addiction-related behaviors, such as those
mediated by TLR4-Myd88 signaling, are cell type-specific and
brain region-dependent. Moreover, there are likely sex-specific
neuroimmune mechanisms that may influence opioid addiction-
related behaviors and opioid treatment outcomes for chronic pain
(Posillico et al., 2015; Doyle et al., 2017). While there is still some
conflicting evidence regarding the efficacy of TLR4 antagonists
for reducing opioid craving and relapse (Yue et al., 2020), future
research should explore the efficacy of TLR4 antagonists as
medications that supplement other treatment approaches for
OUDs and comorbid chronic pain.

Several recent investigations have identified many cytokines
and other immune-related signaling mechanisms that may
regulate opioid reinforcement and motivation. For example, a
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recent study using a rodent model of fentanyl self-administration
showed that the NAc and HPC are particularly vulnerable to
changes in the expression of a number of immune markers,
such as increased IL-1β, TNFα, and IFN-γ within the NAc and
decreased GM-CSF and IFN-γ in the HPC (Ezeomah et al.,
2020). While this study did not directly manipulate any of these
neuroimmune substrates, expression of IL-1β and IL-6 within the
NAc, as well as IFN-β and various interleukins within the HPC,
correlate positively and negatively (respectively) with fentanyl
intake. Similarly, another study using single-cell qRT-PCR
analyses demonstrated that morphine withdrawal is associated
with increased expression of neuroinflammatory genes, such
as Tnf, as well as increased TNFα protein expression within
neurons, microglia, and astrocytes from the central amygdala.
Among these cell types, astrocytes exhibited the largest changes
in neuroimmune gene expression (O’Sullivan et al., 2019).
Such findings implicate opioid-induced neuroinflammatory
interactions with neural reward systems that are known to drive
drug-seeking behavior (Koob and Volkow, 2016). Rodent self-
administration models with the prescription opioid oxycodone
have shown upregulation within both the dorsal and ventral
striatum of numerous immune-related genes using RNAseq and
qPCR techniques [e.g., Ccr5, Icam1, Cybb (Zhang Y. et al., 2017)],
as well as changes within the NAc and CPu in the expression
of various integrin, semaphorin, and ephrin genes that play a
role in neurodevelopment, cell migration, structural regulation
of synapses, and immune signaling (Yuferov et al., 2018).

Several studies examining the efficacy of various
immunomodulatory treatments have also provided evidence for
immune signaling as an important mechanism underlying opioid
addiction-related behaviors. For example, N-acetylcysteine
effectively inhibits heroin-seeking behavior akin to other drugs of
abuse (Zhou and Kalivas, 2008; Hodebourg et al., 2019). Similarly,
IL-10 overexpression within the NAc reduces remifentanil self-
administration in rats (Lacagnina et al., 2017) and intra-NAc
treatment with the antibiotic and microglia inhibitor minocycline
inhibits drug-primed reinstatement of morphine CPP in rats
(Arezoomandan and Haghparast, 2016). Clinical studies also
support the use of anti-inflammatory medications to treat OUDs.
For instance, the anti-inflammatory phosphodiesterase inhibitor
ibudilast reduces heroin cravings and self-reported pain ratings
among opioid-dependent individuals (Metz et al., 2017). Another
study suggests beneficial effects of ibudilast on withdrawal
symptoms in opioid-dependent individuals undergoing
detoxification (Cooper et al., 2016). The cyclooxygenase-2
(COX-2) inhibitor celecoxib may also reduce opioid cravings
among individuals undergoing detoxification (Jafari et al., 2017).
Overall, the studies described here provide evidence supporting
the conclusion that neuroimmune mechanisms may be involved
in the pathophysiology of OUDs, particularly regarding tolerance
to both the rewarding and analgesic properties of opioids, as
well as withdrawal from chronic opioid use. Nevertheless, there
is still a significant gap in the literature regarding the efficacy
of novel immunomodulatory medications, and particularly
anti-inflammatory agents, in reducing opioid craving and relapse
as well as tolerance to the analgesic effects of opioids. Specifically,
the changes in neuroimmune function in acute versus protracted

abstinence from chronic opioid self-administration and the
functional role of such changes on opioid craving and relapse
are not well understood. As well, sex differences within these
processes are poorly understood. Future studies are needed to
improve our understanding of how neuroimmune mechanisms
may contribute to opioid relapse.

NEUROIMMUNE MECHANISMS AND
SUBSTANCE USE DISORDER
COMORBIDITIES

Many individuals who are diagnosed with a SUD often suffer
from other physical or psychiatric comorbidities that can hinder
successful treatment outcomes. According to the United States
Substance Abuse and Mental Health Services Administration
(SAMHSA), over 9.2 million American adults had both a SUD
and a comorbid mental illness such as anxiety or depression
as of 2018 (Substance Abuse and Mental Health Services
Administration, 2019). Furthermore, physical comorbidities such
as chronic pain and HIV are more difficult to treat among those
with SUDs (National Institute on Drug Abuse [NIDA], 2020a).
Convergent findings from numerous clinical and preclinical
studies have implicated immune dysfunction as a possible shared
mechanism linking these comorbidities to the pathophysiology
of SUDs. Here, we briefly highlight recent studies demonstrating
immune system dysfunction in disorders that are commonly
comorbid with SUDs, focusing primarily on major depressive
disorder (MDD), posttraumatic stress disorder (PTSD), chronic
pain, and HIV. The studies discussed here may provide useful
insights into commonly shared mechanisms that facilitate
the pathogenesis of these comorbidities as well as increase
SUD vulnerability.

Depression
The idea that depression (also referred to as Major Depressive
Disorder, or MDD) may be influenced by immune system
dysfunction dates back to the early 1990’s, when Ronald
Smith published his seminal paper on the “macrophage
theory of depression” (Smith, 1991). Among the evidence
described by Smith included the observations that experimental
volunteers who were administered monocyte/macrophage-
derived cytokines developed many of the symptoms of MDD
and that individuals with chronic inflammatory diseases such
as rheumatoid arthritis are more likely to have depression.
Ahead of his time, Smith also postulated that the “food-gut-
allergy” axis may be involved in the pathogenesis of MDD.
While outside the scope of this review, recent studies have
elucidated key mechanisms of the gut microbiome in human
health and disease, including its role in the etiology of psychiatric
illnesses (Singh et al., 2017; Cryan and de Wit, 2019). Both
systemic inflammation induced by xenobiotic substances and
inflammatory disease states, such as in multiple sclerosis and
spinal cord injury, are associated with depressive symptoms in
humans (Allison and Ditor, 2015; Engler et al., 2017; Morris et al.,
2018). Other inflammatory conditions such as irritable bowel
syndrome and psoriasis are associated with higher prevalence
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rates of depression, anxiety, and substance abuse, suggesting that
inflammatory mechanisms may reside at the intersection between
these disorders (Hayes and Koo, 2010; Fond et al., 2014; Knight
et al., 2015). MDD is often comorbid with AUDs in particular,
and many studies implicate neuroimmune dysfunction as a
significant pathophysiological feature of this comorbidity (for
review, see Neupane, 2016). Individuals with MDD also show
elevated serum levels of various immune factors such as IL-6
(Engler et al., 2017; Ye et al., 2018) and TNFα (Fan et al., 2017;
Zou et al., 2018), and IL-6 in particular has been implicated in
depression across a number of clinical and preclinical studies
(for review, see Hodes et al., 2016). A recent example is that
stress-susceptible mice treated systemically with an IL-6 antibody
show significant reductions in depressive-like behaviors in the
chronic social defeat stress model of depression, which generally
upregulates systemic levels of IL-6 (Hodes et al., 2014; Stewart
et al., 2015; Zhang J.C. et al., 2017). As well, social stress
and drugs of abuse can downregulate the expression of cell
adhesion and tight junction proteins such as collagen-IV and
claudin-5, leading to infiltration of immune factors like IL-6
from the periphery (Menard et al., 2017; Rodríguez-Arias et al.,
2017). In a recent preclinical study, mice exposed to chronic
unpredictable stress exhibited elevated levels of TNFα within the
HPC and increased depressive- and anxiety-like behaviors, which
were attenuated by minocycline treatment (Zhang et al., 2019).
Interestingly, minocycline has also been shown to reduce both
METH- and alcohol-seeking behavior in rodents (Fujita et al.,
2012; Attarzadeh-Yazdi et al., 2014; Gajbhiye et al., 2017).

Serum levels of TNFα are also elevated in individuals
with MDD (Tuglu et al., 2003), and elevated levels of TNFα

may be associated with treatment-resistance, particularly with
selective serotonin reuptake inhibitors (SSRIs) (Tuglu et al.,
2003; O’Brien et al., 2007; Eller et al., 2008). Interestingly,
TNFα levels are positively correlated with midbrain serotonin
transporter (SERT) availability in humans (Krishnadas et al.,
2016), suggesting a possible immunomodulatory mechanism
that underlies dysregulated serotonin neurotransmission in
depression. The SSRIs fluoxetine and escitalopram inhibit M1
proinflammatory activation and promote M2 anti-inflammatory
activation of microglia in vitro (Su et al., 2015). As well, rats
experiencing chronic mild stress exhibit elevated plasma levels of
proinflammatory cytokines (IL-1β, IL-17, and TNFα), which are
prevented by chronic fluoxetine treatment (Lu et al., 2017). This
is mirrored by a recent meta-analysis demonstrating that patients
with MDD who respond to antidepressant treatment show
significantly decreased peripheral TNFα levels (Liu et al., 2020).

The studies above highlight that antidepressant SERT
inhibitors exert immunomodulatory effects, and these effects
may be related to their therapeutic efficacy. As well, several
recent preclinical studies suggest that changes in SERT expression
and/or activity alters glutamatergic plasticity and addiction-
related behaviors. For example, SERT knockout (SERT−/−)
rats, which exhibit depression- and anxiety-like behaviors
(Kalueff et al., 2010), show decreased mRNA expression of key
glutamatergic substrates within the habenula, including GLT-1,
NMDA subunits (GluN1, GluN2A, and GluN2B), and AMPA
subunits (GluA1 and GluA2) (Caffino et al., 2019). Moreover,

SERT−/− rats exhibit greater cocaine self-administration, and
cocaine self-administering SERT+/+ rats showed reduced mRNA
levels of genes encoding for GLT-1 and GluN1 to the levels
of SERT−/− rats (Caffino et al., 2019). Another recent study
utilizing the bilateral olfactory bulbectomy (OBX) model of
depression in combination with cocaine self-administration
showed that treatment with escitalopram dose-dependently
reduces cue-induced cocaine-seeking behavior in both OBX and
sham control rats as well as burst responding on day 1 of
extinction training (Jastrzêbska et al., 2017). As illustrated in
Figure 1, glutamatergic signaling interfaces with neuroimmune
function in glial cells, and serotonergic dysfunction in MDD
(e.g., altered SERT function) could lead to dysregulated
glutamatergic signaling and, subsequently, altered neuroimmune
function. Nevertheless, this remains largely speculative, and more
studies are needed to fully investigate whether serotonergic
substrates directly or indirectly alter neuroimmune function
within animal models of MDD and SUDs and if such
neuroimmune mechanisms are relevant to the pathophysiology
of this comorbidity.

Although it is unclear whether specific cytokine inhibitors
alone would be broadly effective treatments for MDD (Raison
et al., 2013; Smolen et al., 2014), these studies support the notion
that immunopharmacology may be an efficacious adjunctive
treatment strategy in combination with existing anti-depressants
for treating co-morbid MDD and SUDs. Ketamine, which has
demonstrated efficacy in cases of chronic, treatment-resistant
depression, exhibits a broad spectrum of anti-inflammatory
effects (e.g., TNFα and IL-6 inhibition) in both clinical and
preclinical studies (Murrough et al., 2013; Tan et al., 2017; Chen
et al., 2018). Indeed, broad-spectrum immunomodulators, as
opposed to cytokine-specific antibodies for example, may prove
to be effective treatment strategies for MDD. For instance, drugs
that confer a wide range of antioxidant and anti-inflammatory
effects, such as the cysteine prodrug N-acetylcysteine, show
clinical promise as adjunctive treatments for MDD, bipolar
depression, and for SUDs (Berk et al., 2011, 2014; Magalhães
et al., 2011; Carvalho et al., 2013; Tomko et al., 2018).
Nevertheless, more studies are needed to further examine
whether such treatment strategies are effective in cases of
comorbid MDD and SUDs.

Posttraumatic Stress Disorder
Akin to MDD, posttraumatic stress disorder (PTSD) is a
comorbidity experienced by many individuals with SUDs. PTSD
is associated with systemic elevation of inflammatory markers
that may underly the pathophysiology of the disorder (for review,
see Hori and Kim, 2019). A recent meta-analysis by Passos et al.
(2015) revealed that serum IL-6, IL-1β, and interferon gamma
(IFN-γ) are all elevated in individuals with PTSD compared to
healthy controls. IL-6 is also positively correlated with disease
severity and IL-1β with disease duration. Furthermore, when
MDD comorbidity is controlled for, individuals with PTSD
show elevated TNFα, IL-6, and IL-1β (Passos et al., 2015).
Genetic studies in humans also provide converging evidence
in support of immune dysregulation in PTSD. For example, a
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recent genome-wide association study identified significant gene
loci (e.g., ANKRD55) associated with immune disorders such
as rheumatoid arthritis and psoriasis in individuals with PTSD
(Stein et al., 2016).

Preclinical studies also implicate both central and peripheral
immune activation in the pathophysiology of PTSD. For instance,
fear memory retrieval in mice is associated with increased
circulating IL-6 and inhibition of IL-6 signaling can improve
extinction learning (Young et al., 2018). In addition, many
inflammatory and innate immune pathways such as interferons,
interleukins, and TNFα remain activated long after social stress
exposure in mice, while anti-inflammatory mediators such as
TGFβ are inhibited (Muhie et al., 2017). Interestingly, predator
stress exposure in mice induces a state of immunosuppression
within the brain, but acute “priming” of the immune system
with LPS prior to this form of stress exposure has no effect on
later avoidance behavior (Deslauriers et al., 2017). This suggests
that chronic stress experienced with PTSD, as opposed to acute
trauma exposure itself, may underly the persistence of immune
dysregulation seen in individuals with PTSD.

Other studies utilizing predator-based psychosocial stress
models also highlight the significance of prior drug experience
in modulating the effects of stress on drug taking later in life.
For example, a recent study demonstrated that rats exposed
to chronic predator stress showed enhanced ethanol preference
(over sucrose) compared to unstressed controls only when they
had ethanol experience with two-bottle choice prior to stress
exposure (Zoladz et al., 2018). A question that remains is
whether prior stress and drug experience interact to dysregulate
immune signaling in a way that promotes stress susceptibility
and/or subsequent increases in addiction-related behaviors. One
recent study sheds some light on this topic, demonstrating that
early life stress in the form of maternal separation increases
PFC and NAc TNFα levels in males, but not females, and
enhances cocaine CPP in maternally stressed males. As well,
this study showed that systemic inhibition of TNFα restores
cocaine CPP to control levels (Ganguly et al., 2019). This supports
another recent study showing that early life social stress in mice
can sensitize both central and peripheral immune responses
to cocaine within the VTA and that humans with CUDs that
experienced childhood social stress show elevated expression of
inflammatory markers (e.g., TLR4, TNFα, IL-1β, and IL-6) (Lo
Iacono et al., 2018). Indeed, these findings highlight that a history
of chronic stress or trauma, especially during adolescence, may
cause aberrant changes in immune function that could increase
SUD susceptibility later in life.

As highlighted throughout this review and illustrated
in Figure 1, glutamate dysfunction is a consistent feature
observed across drugs of abuse and recent evidence
implicates metabotropic glutamate receptor 5 (mGlu5) in
the pathophysiology of PTSD and neuroimmune function.
Indeed, dysfunction of glutamatergic plasticity is also thought to
be involved in pathophysiology of PTSD (for review, see Averill
et al., 2017). Microglia, astrocytes, and peripheral immune cells
express mGlu5, which promotes anti-inflammatory responses
(Fazio et al., 2018). Interestingly, a recent study showed that
neuroinflammation induced by traumatic brain injury in mice is

reduced by mGlu5 PAM treatment and that the mechanism of
action involves Akt/GSK-3β/CREB signaling (Bhat et al., 2021).
This corroborates previous evidence showing that stimulation
of mGlu5 reduces LPS-induced microglial activation and
proinflammatory signaling (Byrnes et al., 2009). A recent study
by Schwendt et al. (2018) showed that rats resilient to stress
induced by predator odor exposure exhibit increased mGlu5
gene expression within the amygdala and mPFC. As well, stress-
susceptible animals show enhanced cue-induced reinstatement
of cocaine seeking that is not attenuated by the β-lactam
antibiotic ceftriaxone, which is a drug known to reliably suppress
this behavior (Knackstedt et al., 2010; LaCrosse et al., 2016;
Schwendt et al., 2018). Importantly, treating stress-susceptible
animals with a mGlu5 positive allosteric modulator (PAM)
along with ceftriaxone and fear extinction successfully prevented
cue-induced reinstatement of cocaine seeking (Schwendt et al.,
2018). Another recent study parallels these findings, showing
that early life stress in rats causes these animals to spend less
time in the light area of a light-dark box and to exhibit lower
mGlu5 gene expression within the amygdala. This study also
showed that time spent in the light area is positively correlated
with mGlu5 gene expression within the amygdala (Buonaguro
et al., 2020). One question that remains is whether such
mGlu5-mediated neuroimmune mechanisms are therapeutic in
cases of comorbid PTSD and SUDs. Given the putative role of
glutamatergic substrates such as mGlu5 in both PTSD and SUDs,
further investigation into the neuroimmune mechanisms of this
receptor system within animal models of comorbid PTSD and
SUDs is warranted.

Novel drugs that modulate immune signaling have shown
stress-reducing effects in preclinical models. For example, a
recent study showed that intranasal oxytocin treatment following
single prolonged stress (SPS) exposure is sufficient to reverse
physiological and behavioral deficits such as increased central
and peripheral proinflammatory cytokine expression, reduced
plasma corticosterone levels, and impaired extinction learning
(Wang S.C. et al., 2018). Additionally, SPS in rats treated with a
cyclooxygenase-2 (COX-2) inhibitor exhibit decreased apoptosis
in the HPC, reduced levels of proinflammatory cytokines
in the HPC, and decreased anxiety-like behavior (Wang M.
et al., 2018). Other preclinical studies have also shown similar
effects on anxiety-like behavior and proinflammatory cytokine
expression within the brain using COX-2 inhibitors (Gamble-
George et al., 2016; Lee et al., 2016), and human studies suggest
that anti-inflammatory treatments such as COX-2 inhibitors
may be effective in reducing depression symptoms (Köhler
et al., 2014). Interestingly, the antioxidant N-acetylcysteine
(NAC) was recently shown to inhibit conditioned stress-induced
cocaine and alcohol seeking when administered during or
immediately following restraint stress (Garcia-Keller et al.,
2020), which raises the question as to whether suppression
of oxidative stress and inflammation via NAC treatment is
therapeutic in this context. Importantly, NAC is currently being
investigated clinically for its use in treating comorbid AUDs
and PTSD (Back et al., 2020). Drugs with immunomodulatory
activity, such as monoclonal antibodies, glucocorticoids, and
cannabinoids, are also being investigated for their use in
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the treatment of PTSD (Hori and Kim, 2019). Overall, these
studies provide a firm rationale for future investigations into
immunomodulatory medications to treat symptoms of PTSD.
However, it remains largely unknown whether such treatment
strategies are efficacious in treating cases of comorbid PTSD
and SUDs. Indeed, use of psychotropic substances can explain
a significant degree of heterogeneity across studies examining
proinflammatory cytokine expression in individuals with PTSD
(Passos et al., 2015). Thus, future investigations should consider
the neuroimmune intersections of comorbid PTSD and SUDs
that may impact the therapeutic efficacy of treatments.

Chronic Pain
Substance abuse and misuse, particularly with opioids, is more
common among individuals with chronic pain. For example,
an estimated 10% of individuals living with chronic pain
also misuse prescription opioids, and chronic pain interacts
with mesocorticolimbic reward circuits and stress pathways to
increase SUD vulnerability (for review, see Elman and Borsook,
2016; Garland et al., 2013). Chronic pain, defined as pain lasting
longer than 3 months or beyond the period of normal tissue
healing, affects as much as 43% of adults within the United States
(Dowell et al., 2016). While the prescribing of opioids has
declined since 2012 (Zhu et al., 2019), these medications are
still commonly used to treat chronic pain and opioid-related
overdoses and deaths still remain high (Scholl et al., 2018).
Inflammation and immune system dysfunction are defining
features of many forms of chronic pain (Marchand et al.,
2005; Totsch and Sorge, 2017) and several recent studies have
identified immunomodulatory pain mechanisms that may extend
our understanding of the pathophysiology of SUDs (particularly
OUDs). For example, a recent preclinical study using the
complete Freund’s adjuvant (CFA) model of inflammation found
that rats experiencing chronic inflammation require higher doses
of heroin (150 µg/kg) to achieve significant increases in NAc core
dopamine release. As well, this study showed that inflammatory
pain impairs MOR-mediated inhibition of GABA transmission
within the VTA and enhances heroin self-administration at
higher doses without impacting sucrose self-administration
(Hipólito et al., 2015). This is consistent with another study
demonstrating that chronic neuropathic pain decreases MOR1
availability and expression within the rat CPu and motor cortex,
which correlates positively with sucrose preference in nerve-
injured animals (Thompson et al., 2018). Converging evidence
suggests that chronic inflammatory pain may also impair the
analgesic effects of opioids (Steele et al., 2002; DeLeo et al., 2004;
Zhang et al., 2004). Studies also show that the MOR antagonist
naltrexone may reduce chronic inflammatory pain through
inhibition of T and B cell proliferation and TLR4 signaling
(Tawfik et al., 2016; Patten et al., 2018), suggesting a potentially
promising role for adjunctive immunomodulatory therapies
in chronic pain management. Taken together, inflammatory
mechanisms can lead to dysregulations in endogenous opioid
receptor signaling that can facilitate chronic pain and lead to
escalated drug intake over time and, subsequently, increased risk
for drug dependence and substance abuse. Thus, use of anti-
inflammatory medications as adjunctive therapies to improve

chronic pain management may have the added benefit of
reducing the risk of addiction to opioid pain medications.

Chronic pain and antinociceptive opioid drugs are subject
to important sex differences that may have underlying
neuroimmune mechanisms. Indeed, some of the most common
chronic pain conditions such as migraine, low back pain, and
neck pain, are vastly overexpressed in women (Mogil, 2012).
In fact, women are overall more likely to use prescription
opioids than men (Serdarevic et al., 2017) and women may
also experience greater levels of pain than men in a manner
that may be dependent on opioid withdrawal (Huhn et al.,
2019). Preclinical studies have identified sexual dimorphism of
cellular responses to opioids that may explain some of the sex
differences in pain observed in humans. For example, a recent
study demonstrated that female rats exhibit increased basal and
LPS-induced microglial activation within the PAG, and that
basal activation of microglia is a significant predictor of the
ED50 of morphine’s antinociceptive effects (Doyle et al., 2017).
Moreover, this study showed that naloxone inhibition of TLR4
within the PAG significantly improves the antinociceptive effects
of morphine. T cells may also underly observed sex differences
in opioid analgesia, with one recent study demonstrating
that T-cell-deficient mice exhibit impaired opioid-induced
analgesia that is more pronounced in females (Rosen et al.,
2019). Other non-opioidergic, sex-specific neuroimmune
mechanisms underlying chronic pain have been identified,
which could have significant implications for clinical treatment
of pain and SUDs in human populations. For instance, ATP
signaling via P2X4 receptors on microglia has been shown to
be essential for nerve injury-induced allodynia in males but
not in females (Mapplebeck et al., 2018). However, human
studies have shown that the serotonin and norepinephrine
reuptake inhibitor duloxetine, which also inhibits P2X4
signaling (Yamashita et al., 2016), reduces pain in women with
fibromyalgia (Arnold et al., 2007; Bidari et al., 2019). This
highlights the complexity of sex differences in the neuroimmune
regulation of pain and suggests that perhaps dynamic immune
interactions with monoamine neurotransmitter systems play
a significant modulatory role in chronic pain between males
and females (Lei et al., 2011; Packiasabapathy and Sadhasivam,
2018).

Neuromodulatory systems such as the endocannabinoid
system (ECS) have also garnered significant attention for their
role in chronic pain. Conflicting clinical and preclinical studies
exist regarding sex differences in the efficacy of cannabinoids
as chronic pain treatments (for review, see Cooper and Craft,
2018). The efficacy of such treatments likely depend upon
the route of administration, type of pain, and locus of pain
(Romero-Sandoval et al., 2017). Nevertheless, the ECS is well
regarded for its role in regulating neuroimmune signaling and
pain. For example, cannabinoid receptors such as CB1 and
CB2 are expressed in CNS regions involved in nociception
(e.g., PAG, amygdala, dorsal root ganglion, thalamus, etc.)
and these receptors exert primarily anti-inflammatory effects
(Burstein and Zurier, 2009; Barrie and Manolios, 2017).
Cannabis has been proposed as a potential adjunctive or
alternative therapeutic for OUDs, particularly in cases of
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comorbid chronic pain (Wiese and Wilson-Poe, 2018), although
this has been disputed (Olfson et al., 2018; Wilson et al., 2018;
McBrien et al., 2019). Nevertheless, cannabidiol (CBD), which
is a specific chemical constituent of cannabis that has no
intoxicating psychoactive properties, exerts anti-inflammatory
activity (Nichols and Kaplan, 2020) that has shown significant
promise as a potential therapeutic for OUDs (Hurd et al.,
2015). Altogether, these studies underscore the need for future
investigations into the use of immunomodulatory therapeutics
in the treatment of chronic pain, either alone or as adjunctive
therapies. Importantly, these medications may be useful in
the treatment of comorbid chronic pain and SUDs, where
common immune mechanisms may underly the pathophysiology
of both conditions.

Human Immunodeficiency Virus (HIV)
HIV is another physical comorbidity that can significantly
impede treatment outcomes for SUDs and vice versa. According
to the United States Centers for Disease Control and Prevention
(CDC), over 1 million people in the United States are currently
living with HIV and 1 in 7 of those affected are unaware of
their HIV status (Centers for Disease Control and Prevention,
2019). Globally, nearly 40 million people are currently living with
HIV, and individuals who inject drugs are at a 22 times greater
risk for acquiring HIV (UNAIDS, 2019). Importantly, HIV still
remains a significant public health concern among minority and
socioeconomically disadvantaged populations (National Institute
on Drug Abuse [NIDA], 2012; Durvasula and Miller, 2014).
As well, drug abuse (particularly psychostimulant abuse) is
associated with higher rates of risky behaviors such as unsafe
sexual practices that can increase HIV risk (Centers for Disease
Control and Prevention, 2018).

Modern antiretroviral therapy (ART) has proven successful
at suppressing viral load and mitigating the transition to
acquired immunodeficiency syndrome (AIDS), allowing many
individuals living with HIV to live relatively normal lives.
However, ART does not readily cross the BBB, rendering the
brain vulnerable to chronic HIV infection (Atluri et al., 2015).
Specifically, drugs of abuse such as cocaine can increase BBB
permeability (Zhang et al., 1998) and facilitate invasion (An
and Scaravilli, 1997) and viral replication (Sahu et al., 2015) of
HIV in the brain even during the early asymptomatic stages
of HIV infection. This process can happen rapidly and lead to
chronic CNS infection that results in neuroimmune activation
and, in many cases, HIV-associated neurocognitive disorders
(HAND) (Hong and Banks, 2015; Zayyad and Spudich, 2015).
Cocaine facilitates HIV replication through a NF-κB-dependent
mechanism (Fiume et al., 2012; Sahu et al., 2015) and impairs the
innate immune response of astrocytes to infiltrating viruses such
as HIV through increased oxidative stress when tested in vitro
(Cisneros et al., 2018). Drugs of abuse also exacerbate the effects
of the HIV proteins trans-activator of transcription (Tat) and
gp120 in inducing oxidative stress, microgliosis, and astrogliosis
(Aksenov et al., 2001, 2003; Shah et al., 2013; Samikkannu
et al., 2015; Zeng et al., 2018). Moreover, HIV Tat primes
and activates proinflammatory responses in microglia via the
NLR family pyrin domain containing 3 (NLRP3) inflammasome
(Chivero et al., 2017), and dopamine can activate NF-κB and

prime the NLRP3 inflammasome in macrophages (Nolan et al.,
2020) (however, see Zhu et al., 2018). This could be exacerbated
by drugs of abuse that promote dopamine transmission within
areas of the brain that are particularly vulnerable to HIV,
such as the striatum (Nolan and Gaskill, 2019). Clinically,
the mitochondrial protein translocator protein (TSPO), which
has garnered interest as a biomarker of neuroinflammation in
human imaging studies (Werry et al., 2019), is upregulated in
people living with HIV (PLWH) and increased TSPO within
the hippocampus, amygdala, and thalamus is associated with
impaired cognition (Vera et al., 2016). Other studies suggest
that impaired cognitive function is associated with enhanced
TSPO binding in frontal and temporal regions of the brain
in PLWH (Garveya et al., 2014; Rubin et al., 2018). It
remains unclear whether combined HIV and active drug use,
compared to drug abstinence, produces differential profiles of
neuroinflammation and immune activation to confer increased
vulnerability to HAND and drug relapse. Nevertheless, many
preclinical studies suggest that HIV and its protein products
may exacerbate drug reward and reinforcement as well as drug-
induced neuroadaptations that may impede successful SUD
treatment outcomes.

Growing evidence suggests that HIV and its protein products
interact with brain reward circuitry to contribute to dysregulated
reward-seeking behavior and cognition. For example, HIV-1
transgenic rats, which constitutively express HIV-1 viral proteins
and model many HIV-associated neurological abnormalities
observed in humans (Moran et al., 2014; Vigorito et al.,
2015; McLaurin et al., 2018), exhibit increased dopamine
affinity at striatal dopamine transporters and a leftward shift
in the ascending limb of the cocaine dose response function,
suggesting enhanced sensitivity to the reinforcing properties
of cocaine (McIntosh et al., 2015). Another study using this
transgenic rat model showed that these animals exhibit enhanced
hyperexcitability of pyramidal neurons within the PFC following
abstinence from cocaine (Wayman et al., 2016). As well, inducible
Tat expression within the brain of transgenic mice is associated
with enhanced METH-induced microglia activation as well as
METH-induced locomotor sensitization (Kesby et al., 2017).
Other studies using the inducible Tat mouse model have
shown that induced Tat expression within the brain increases
the magnitude of cocaine CPP and is sufficient to reinstate
extinguished cocaine CPP (Paris et al., 2014a). Similar effects
have been observed in females, albeit in an estrous cycle phase-
dependent manner (Paris et al., 2014b). Similarly, inducible
gp120 expression within the mouse brain is associated with
the formation of METH conditioned place preference at lower
METH doses compared to non-transgenic controls (Kesby et al.,
2014). Many other preclinical studies have also demonstrated
impaired cognitive function in animals exposed to HIV proteins
and drugs of abuse, mimicking the cognitive dysfunction
observed in humans with HAND (Moran et al., 2014; Kesby
et al., 2015a,b, 2016; Paydary et al., 2016). Taken together, such
studies suggest that HIV and its protein products may increase
one’s sensitivity to the rewarding and reinforcing properties of
psychostimulants and impair cognitive function.

In contrast to the studies above, a recent study using the
HIV transgenic rat model suggests that HIV many promote a
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motivational state of apathy (Bertrand et al., 2018). However, one
significant limitation to this study and studies like it is that the
HIV transgenic rat model constitutively expresses HIV proteins
throughout the CNS prior to the establishment of stable drug
self-administration, which may produce profoundly different
effects on mesocorticolimbic circuit function and neuroimmune
signaling compared to the induction of viral protein expression
within the CNS after drug self-administration is established or
during a period of abstinence. Indeed, some individuals with
preexisting SUDs contract HIV collaterally through drug use and
risky behaviors associated with drug use (Centers for Disease
Control and Prevention, 2018). Regardless, it is possible that
HIV-induced perturbations to neuroimmune signaling described
above may underly these neurobehavioral intersections between
HIV and SUDs. Thus, immunopharmacology may be a promising
avenue of future research into medications that inhibit the
long-term neurocognitive deficits observed with chronic HIV
infection as well as drug craving and relapse in cases of
comorbid SUDs (Roederer et al., 1992; Ambrosius et al., 2019;
Tripathi et al., 2020). Interestingly, ART itself possess anti-
inflammatory properties (Hileman and Funderburg, 2017), but
drugs of abuse may interact pharmacologically with ART to
reduce its effectiveness in both suppressing viral load and
minimizing cognitive deficits associated with HAND (Kumar
et al., 2015). Future studies should examine the efficacy of
anti-inflammatory adjunctive therapeutics in reducing HIV-
associated neurocognitive deficits and promoting long-term
abstinence from drug use.

CONCLUSION

Throughout this review, we have highlighted recent studies
that demonstrate functionally significant immunomodulatory
mechanisms that may underlie the pathophysiology of SUDs and
associated comorbidities. While immunomodulation of learning,
memory, and synaptic plasticity is not a new concept per se,
recent research has greatly expounded the role of immune
signaling in neuropsychiatric disorders and diseases, providing
a firm foundation for future investigations into novel treatment
targets. The literature presented herein suggests that central
and peripheral immune mechanisms may represent a common
thread underlying the interactions between SUDs and associated
comorbidities. Indeed, the clinical and preclinical findings
discussed here underscore the need for future investigations
into the efficacy of adjunctive immunomodulatory medications
that may be therapeutically efficacious in the treatment of SUDs
and associated comorbidities such as MDD, PTSD, chronic
pain, and HIV. Despite these advances, one major gap in the
literature that demands future investigation is how neuroimmune
signaling within mesocorticolimbic circuits is altered across the
entire addiction cycle. For example, very few studies to date
have examined how neuroimmune signaling is altered across a
protracted period of abstinence compared to acute and chronic
drug exposure, and if such changes are causally linked to
drug-seeking behavior. Moreover, very few studies to date have
thoroughly examined how comorbidities impact neuroimmune

function during periods of active drug taking versus periods of
protracted abstinence. Abstinence represents a critical period of
vulnerability within the addiction cycle, and the neuroimmune
sequelae of chronic drug use and abstinence remains poorly
understood. Investigation of these processes could improve
our understanding of how motivation for drug increases (or
“incubates”) over time throughout a protracted period of
abstinence to increase relapse vulnerability (Pickens et al., 2011).
As mentioned numerous times throughout this review, the role
of sex differences in the neuroimmune mechanisms of SUDs
and associated comorbidities remains poorly understood. Indeed,
there are significant sex differences in the prevalence rates of
individual conditions such as SUDs, MDD, PTSD, chronic pain,
etc. As thoroughly reviewed by others (Rosen et al., 2017;
Bekhbat and Neigh, 2018; Osborne et al., 2018; McCarthy, 2019),
there are sex-specific neuroimmune mechanisms involved in
the pathophysiology of these conditions that may be suitable
targets for medications development. Nevertheless, whether these
sex-specific neuroimmune mechanisms drive the comorbidity of
these disorders and diseases and contribute to their disparate
prevalence rates is largely unknown and future research is
needed to address this gap. Many of the studies discussed herein
are largely observational in nature and few have attempted
to experimentally manipulate neuroimmune mechanisms using
drug self-administration animal models, which is another
remaining gap in the field. For example, there are significant
differences in the neurobiological mechanisms underlying cue-
induced drug-seeking behavior between animal models involving
experimenter-delivered drug versus self-administration of drug
(Namba et al., 2018), and these mechanisms may be differentially
regulated by distinct neuroimmune mechanisms. Overall, we
suggest that future research needs to address the gaps mentioned
above to better assess whether putative neuroimmune targets are
suitable candidates for medications development to treat SUDs
and associated comorbidities.
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