Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

7-(1,3-Dioxolan-2-ylmethyl)-1,3-dimethyl-2,6-dioxo-2,3,6,7-tetrahydro-1Hpurin-9-ium tetrachloridoferrate(III)

Ping Ping Wang,^a Jiang Gong^{b,c} and Shi-Feng Ni^c*

^aCollege of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China, ^bDepartment of Medicine, Tibet Nationalities Institute, Xianyang, Shaanxi 712082, People's Republic of China, and Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an 710069, People's Republic of China

Correspondence e-mail: nshyfe@sina.cn

Received 20 July 2010; accepted 28 August 2010

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.013 Å; disorder in main residue; R factor = 0.099; wR factor = 0.207; data-to-parameter ratio = 14.0

The asymmetric unit of the title compound, $(C_{11}H_{15}N_4O_4)$ -[FeCl₄], contains two independent protonated 7-(1,3-dioxolan-2-ylmethyl)-3,7-dihydro-1,3-dimethyl-1H-purine-2,6-dione (doxofyllinium) and two tetrahedral tetrachloridoferrate(III) anions. In the doxofyllinium, two disordered methylene C atoms are observed in each dioxolane ring with an occupancy ratio of 0.54 (4):0.46 (4). In the crystal, molecules are connected by N-H···O hydrogen bonds and weak C- $H \cdots O$ and $C - H \cdots Cl$ interactions.

Related literature

For the biological activity of the drug doxofylline, see: Franzone et al. (1981, 1989); Zhao & Li (2001). For bond distances and angles in other tetrachloridoferrate(III) compounds, see: Barbaro et al. (1992); Bottomley et al. (1984). For the synthesis of doxofylline, see: Li et al. (1995).

Experimental

Crystal data

(C11H15N4O4)[FeCl4] $M_r = 464.92$ Tetragonal, P4, a = 20.2947 (4) Å

c = 9.0692 (4) Å V = 3735.38 (19) Å³ Z = 8Mo Ka radiation

metal-organic compounds

 $R_{\rm int} = 0.046$

 $0.27 \times 0.16 \times 0.13 \text{ mm}$

19874 measured reflections

5589 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

Absolute structure: Flack (1983),

 $\Delta \rho_{\rm max} = 0.49 \ {\rm e} \ {\rm \AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.31 \text{ e } \text{\AA}^{-3}$

2724 Friedel pairs

Flack parameter: 0.10 (4)

 $\mu = 1.40 \text{ mm}^{-1}$ T = 293 K

Data collection

Bruker SMART APEX area-6253 independent reflections detector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2000) $T_{\min} = 0.775, \ T_{\max} = 0.852$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.099$ $wR(F^2) = 0.207$ S = 1.306253 reflections 447 parameters 13 restraints

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D{\cdots}A$	$D - \mathbf{H} \cdot \cdot \cdot A$
N4-H4···O2 ⁱ	0.86	1.93	2.774 (9)	165
N8−H8···O6 ⁱⁱ	0.86	1.91	2.754 (9)	166
$C5-H5\cdots Cl5^{i}$	0.93	2.80	3.650 (11)	153
$C8-H8B\cdots O7^{iii}$	0.97	2.29	3.114 (11)	142
C10−H10C···O5 ^{iv}	0.95	2.46	3.098 (11)	124
$C10' - H10B \cdot \cdot \cdot O5^{iv}$	0.89	2.57	3.384 (11)	153
$C10' - H10C \cdot \cdot \cdot O5^{iv}$	0.97	2.46	3.384 (11)	159
C16−H16···Cl1 ⁱⁱⁱ	0.93	2.78	3.560 (11)	143
$C19-H19A\cdots O4^{v}$	0.97	2.48	3.227 (11)	134
C19−H19A···O5	0.97	2.53	3.167 (11)	123
$C22' - H22D \cdots O1$	0.97	2.58	3.242 (11)	126

Symmetry codes: (i) -y + 1, $x, z + \frac{1}{2}$; (ii) $y, -x, z + \frac{1}{2}$; (iii) -x + 1, -y, z; (iv) x, y, z + 1; (v) -x + 1, -y, z - 1.

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

We are grateful for financial support by the Natural Science Foundation of Tibet (2009-10-12) and the Natural Science Foundation of the Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education (2009–11–12).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JH2188).

References

- Barbaro, P., Bianchini, C., Fochi, M., Masi, D. & Mealli, C. (1992). Acta Cryst. C48, 625-627.
- Bottomley, G. A., Carter, A. M., Engelhardt, L. M., Lincoln, F. J. & Patric, J. M. (1984). Aust. J. Chem. 37, 871-877.
- Bruker (2000). SMART, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Franzone, J. S., Cirillo, R. & Biffignandi, P. (1989). Eur. J. Pharmacol. 165, 269-274

Franzone, J. S., Reboani, C. & Fonzo, D. (1981). Farmacol. Sci. 36, 201-219. Li, C. H., Luo, Z. & Li, Z. H. (1995). Chin. J. Pharm. 25, 385-386.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Zhao, J. J. & Li, L. (2001). J. Norman Bethune Univ. Med. Sci. 27, 646-676.

Acta Cryst. (2010). E66, m1247 [doi:10.1107/S1600536810034720]

7-(1,3-Dioxolan-2-ylmethyl)-1,3-dimethyl-2,6-dioxo-2,3,6,7-tetrahydro-1*H*-purin-9-ium tetrachloridoferrate(III)

P. P. Wang, J. Gong and S.-F. Ni

Comment

Doxofylline [7-(1,3-dioxolan-2-ylmethyl)-1,3-dimethyl-3,7- dihydro-1*H*-purine-2,6-dione] is a xanthine drug with antiasthmatic (Franzone *et al.*, 1989), antiinflammatory (Zhao *et al.*, 2001), and bronchodilating activities (Franzone *et al.*, 1981). Now we present here the structure of the title compound, (I).

In the title compound (Fig. 1), (I), the asymmetric unit contain two crystallographically independent molecules of doxofyllinium tetrachloroferrate(III). The furan rings of the doxofyllinium are disordered, and the five atoms of these rings aren't coplanar. The iron cation is tetra coordinated by chlorine anions, and it adopts a slightly distorted tetrahedral coordination with two angles smaller than the tetrahedral one, two almost equal to tetrahedral and two larger than tetrahedral (Table 1). Fe—Cl distances spanning the range 2.172 (3) Å-2.190 (4) Å, and Cl—Fe—Cl angles 107.41 (16)°-111.77 (15)°, are similar to those found in other tetrachloroferrate(III) (Bottomley *et al.*, 1984; Barbaro *et al.*, 1992).

In the crystal, doxofyllinium cations are linked by N8—H8 \cdots O6ⁱ and N4—H4 \cdots O2ⁱⁱ hydrogen bonds (Table 2). The weak C—H \cdots O and C—H \cdots Cl interactions further link (I), reinforcing the structure (Table 2).

Experimental

Doxofylline was synthesized according to Li *et al.* (1995). Doxofylline, hydrochloric acid and trichloride were dissolved in sufficient ethanol by heating to 333 K, where a yellow solution resulted. Crystals of (I) were formed by gradual evaporation of ethanol over a period of one week are 293 K.

Refinement

All of the H atoms were placed in calculated positions and allowed to ride on their parent atoms at distances of 0.93 (C5–H5), 0.96 (methyl), 0.97 (methylene) and 0.98Å (methine), with $U_{iso}(H) = 1.2-1.5 U_{eq}(C)$.

Figures

Fig. 1. A view of the asymmetric unit of (I) with atom labels, showing 40% probability displacement ellipsoids. Parts of disorder furan rings are omitted for clarity.

7-(1,3-Dioxolan-2-ylmethyl)-1,3-dimethyl-2,6-dioxo-2,3,6,7-tetrahydro- 1*H*-purin-9-ium tetrachloridoferrate(III)

Crystal data

$(C_{11}H_{15}N_4O_4)[FeCl_4]$	$D_{\rm x} = 1.653 \ {\rm Mg \ m}^{-3}$
$M_r = 464.92$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Tetragonal, P4 ₂	Cell parameters from 8917 reflections
Hall symbol: P 4c	$\theta = 2.2 - 26.5^{\circ}$
a = 20.2947 (4) Å	$\mu = 1.40 \text{ mm}^{-1}$
c = 9.0692 (4) Å	<i>T</i> = 293 K
$V = 3735.38 (19) \text{ Å}^3$	Block, colourless
Z = 8	$0.27\times0.16\times0.13~mm$
F(000) = 1880.0	

Data collection

Bruker SMART APEX area-detector diffractometer	6253 independent reflections
Radiation source: fine-focus sealed tube	5589 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.046$
φ and ω scan	$\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 1.0^{\circ}$
Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2000)	$h = -24 \rightarrow 23$
$T_{\min} = 0.775, T_{\max} = 0.852$	$k = -24 \rightarrow 23$
19874 measured reflections	$l = -9 \rightarrow 10$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.099$	H-atom parameters constrained
$wR(F^2) = 0.207$	$w = 1/[\sigma^2(F_o^2) + (0.0665P)^2 + 7.3566P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.30	$(\Delta/\sigma)_{\rm max} < 0.001$
6253 reflections	$\Delta \rho_{max} = 0.49 \text{ e} \text{ Å}^{-3}$
447 parameters	$\Delta \rho_{min} = -0.31 \text{ e } \text{\AA}^{-3}$
13 restraints	Absolute structure: Flack (1983), 2724 Friedel pairs
Primary atom site location: structure-invariant direct methods	Flack parameter: 0.10 (4)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fe1 0.68089 (8) 0.33071 (7) 0.16159 (18) 0.0569 (4)Fe2 0.16760 (8) 0.17898 (7) 0.22058 (17) 0.0586 (4)C11 0.69861 (18) 0.24505 (16) 0.2998 (4) 0.0869 (10)C12 0.59364 (17) 0.3131 (2) 0.0264 (4) 0.0898 (11)C13 0.76550 (17) 0.33546 (18) 0.0238 (4) 0.0913 (11)C14 0.6604 (2) 0.41656 (17) 0.3005 (4) 0.0913 (11)C15 0.17996 (16) 0.25893 (15) 0.3795 (4) 0.0886 (10)C17 0.08268 (18) 0.20197 (19) 0.0809 (5) 0.0966 (11)C18 0.25566 (19) 0.1697 (2) 0.0873 (5) 0.1016 (12)O1 0.5196 (4) 0.1533 (3) 0.2934 (8) 0.0552 (19)O2 0.4364 (3) 0.3755 (3) 0.2618 (9) 0.063 (2)O3 0.4982 (4) 0.1132 (4) 0.6244 (10) 0.086 (3)O4 0.5548 (4) 0.1321 (4) 0.8177 (8) 0.0732 (2)O5 0.3355 (3) 0.0243 (4) -0.1686 (8) 0.0387 (19)O6 0.1189 (4) 0.0213 (14) 0.2853 (9) 0.0448 (19)N2 0.5058 (4) 0.3180 (4) 0.1737 (8) 0.0370 (16)N4 0.5907 0.3354 (3) 0.5173 (8) 0.0370 (16)N4 0.5907 0.3354 (3) 0.1618 (9) 0.0444 (19)N4 0.5907 0.3359 (0.6865 0.544^* N5 0.2260 (4)		x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$	Occ. (<1)
Fe2 0.16760 (8) 0.17898 (7) 0.22058 (17) 0.0586 (4)C11 0.69861 (18) 0.24505 (16) 0.2998 (4) 0.0869 (10)C12 0.59364 (17) 0.3131 (2) 0.0264 (4) 0.0898 (11)C13 0.76550 (17) 0.3334 (18) 0.0238 (4) 0.0913 (11)C14 0.6604 (2) 0.41656 (17) 0.3005 (4) 0.0913 (11)C15 0.1796 (16) 0.25893 (15) 0.3795 (4) 0.0735 (9)C16 0.1499 (2) 0.08671 (15) 0.3379 (4) 0.0886 (10)C17 0.08268 (18) 0.20197 (19) 0.0809 (5) 0.0966 (11)C18 0.25566 (19) 0.1697 (2) 0.0873 (15) 0.0317 (16) (2)O1 0.5196 (4) 0.1673 (3) 0.2218 (8) 0.0592 (19)O2 0.4364 (3) 0.3755 (3) 0.2618 (9) 0.063 (2)O3 0.4982 (4) 0.1135 (4) 0.6244 (10) 0.086 (3)O4 0.5648 (4) 0.121 (4) 0.8177 (8) 0.0737 (2)O5 0.3355 (3) 0.0243 (4) -0.2061 (9) 0.068 (2)O7 0.3705 (4) 0.319 (3) 0.3520 (8) 0.0370 (16)N1 0.4750 (4) 0.2704 (4) 0.2833 (9) 0.0448 (19)N2 0.5058 (4) 0.3180 (4) 0.6382 (9) 0.0446 (19)N4 0.5913 (3) 0.2156 (3) 0.5178 (8) 0.0370 (16)N4 0.5945 (4) 0.3180 (4) 0.0281 (19) 0.446 (19)N4<	Fe1	0.68089 (8)	0.33071 (7)	0.16159 (18)	0.0569 (4)	
Cl1 $0.69861 (18)$ $0.24505 (16)$ $0.2998 (4)$ $0.0869 (10)$ Cl2 $0.59364 (17)$ $0.3131 (2)$ $0.0264 (4)$ $0.0898 (11)$ Cl3 $0.76550 (17)$ $0.35346 (18)$ $0.0238 (4)$ $0.0913 (11)$ Cl4 $0.604 (2)$ $0.41656 (17)$ $0.3005 (4)$ $0.0735 (9)$ Cl6 $0.1499 (2)$ $0.08671 (15)$ $0.3379 (4)$ $0.0886 (10)$ Cl7 $0.08268 (18)$ $0.20197 (19)$ $0.0809 (5)$ $0.0966 (1)$ Cl8 $0.2556 (19)$ $0.1697 (2)$ $0.0873 (5)$ $0.1016 (12)$ O1 $0.5196 (4)$ $0.1673 (3)$ $0.2934 (8)$ $0.0592 (19)$ O2 $0.4364 (3)$ $0.3755 (3)$ $0.2618 (9)$ $0.063 (2)$ O3 $0.4982 (4)$ $0.1135 (4)$ $0.6244 (10)$ $0.066 (3)$ O4 $0.5648 (4)$ $0.1321 (4)$ $0.817 (8)$ $0.072 (2)$ O5 $0.3355 (3)$ $0.243 (4)$ $-0.1686 (8)$ $0.0587 (19)$ O6 $0.1189 (4)$ $0.0815 (4)$ $-0.2061 (9)$ $0.068 (2)$ O7 $0.3705 (4)$ $-0.0319 (3)$ $0.3520 (8)$ $0.030 (2)$ N1 $0.4750 (4)$ $0.2704 (4)$ $0.2853 (9)$ $0.0448 (19)$ N2 $0.508 (4)$ $0.3180 (4)$ $0.6382 (9)$ $0.0444 (19)$ N4 $0.5845 (4)$ $0.3180 (4)$ 0.6865 $0.054*$ N5 $0.2260 (4)$ $0.0555 (3)$ $0.1613 (9)$ $0.0444 (19)$ N4 0.5907 0.3539 0.6865 $0.054*$ N5 $0.2260 (4)$ $0.0565 (3)$ </td <td>Fe2</td> <td>0.16760 (8)</td> <td>0.17898 (7)</td> <td>0.22058 (17)</td> <td>0.0586 (4)</td> <td></td>	Fe2	0.16760 (8)	0.17898 (7)	0.22058 (17)	0.0586 (4)	
C12 0.59364 (17) 0.3131 (2) 0.0264 (4) 0.0898 (1)C13 0.76550 (17) 0.33346 (18) 0.0238 (4) 0.0913 (11)C14 0.6604 (2) 0.41656 (17) 0.3005 (4) 0.0913 (11)C15 0.17996 (16) 0.25893 (15) 0.3795 (4) 0.0735 (9)C16 0.1499 (2) 0.08671 (15) 0.3379 (4) 0.0886 (10)C17 0.08268 (18) 0.2197 (19) 0.0809 (5) 0.0966 (11)C18 0.25566 (19) 0.1677 (3) 0.2394 (8) 0.0592 (19)O2 0.3364 (3) 0.3755 (3) 0.2618 (9) 0.063 (2)O3 0.4982 (4) 0.1135 (4) 0.6244 (10) 0.086 (3)O4 0.5648 (4) 0.1321 (4) 0.8177 (8) 0.072 (2)O5 0.3355 (3) 0.0243 (4) -0.1686 (8) 0.0587 (19)O6 0.1189 (4) 0.0815 (4) -0.2061 (9) 0.068 (2)O7 0.3705 (4) -0.0319 (3) 0.3520 (8) 0.063 (2)N1 0.4750 (4) 0.2704 (4) 0.2853 (9) 0.0448 (19)N2 0.058 (4) 0.3180 (4) 0.6382 (9) 0.0444 (19)N4 0.5845 (4) 0.3180 (4) 0.6382 (9) 0.0444 (19)N4 0.5907 0.3339 0.6865 $0.054*$ N5 0.2260 (4) 0.3580 (3) 0.1018 (8) 0.3343 (16)N4 0.5943 (4) 0.0128 (4) 0.0128 (4) 0.0349 (11)N4 0.5943 (4) 0	Cl1	0.69861 (18)	0.24505 (16)	0.2998 (4)	0.0869 (10)	
Cl3 $0.76550 (17)$ $0.35346 (18)$ $0.0238 (4)$ $0.0913 (11)$ Cl4 $0.6604 (2)$ $0.41656 (17)$ $0.3005 (4)$ $0.0913 (11)$ Cl5 $0.17996 (16)$ $0.25893 (15)$ $0.3795 (4)$ $0.0735 (9)$ Cl6 $0.1499 (2)$ $0.0867 (15)$ $0.3379 (4)$ $0.0886 (10)$ Cl7 $0.08268 (18)$ $0.20197 (19)$ $0.0809 (5)$ $0.0966 (11)$ Cl8 $0.25566 (19)$ $0.167 (2)$ $0.0873 (5)$ $0.1016 (12)$ O1 $0.5196 (4)$ $0.1673 (3)$ $0.2934 (8)$ $0.0522 (19)$ O2 $0.4364 (3)$ $0.3755 (3)$ $0.2418 (9)$ $0.063 (2)$ O3 $0.4982 (4)$ $0.1135 (4)$ $0.6244 (10)$ $0.086 (3)$ O4 $0.5648 (4)$ $0.1321 (4)$ $0.8177 (8)$ $0.072 (2)$ O5 $0.3355 (3)$ $0.243 (4)$ $-0.1686 (8)$ $0.0587 (19)$ O6 $0.1189 (4)$ $0.0815 (4)$ $-0.2061 (9)$ $0.068 (2)$ O7 $0.3705 (4)$ $-0.0319 (3)$ $0.3520 (8)$ $0.063 (2)$ O8 $0.3889 (4)$ $0.0414 (4)$ $0.1734 (9)$ $0.0448 (19)$ N2 $0.5058 (4)$ $0.3546 (3)$ $0.4494 (9)$ $0.0448 (19)$ N3 $0.5913 (3)$ $0.2156 (3)$ $0.5737 (8)$ $0.0370 (16)$ N4 0.5907 0.3539 0.6865 $0.054*$ N5 $0.2260 (4)$ $0.0555 (4)$ $-0.1796 (9)$ $0.0464 (19)$ N6 $0.1468 (4)$ $0.0128 (4)$ $-0.0221 (10)$ $0.047 (2)$ N7 $0.2938 (3)$ $-0.$	C12	0.59364 (17)	0.3131 (2)	0.0264 (4)	0.0898 (11)	
Cl4 0.6604 (2) 0.41656 (17) 0.3005 (4) 0.0913 (1) Cl5 0.17996 (16) 0.25893 (15) 0.3795 (4) 0.0735 (9) Cl6 0.1499 (2) 0.08671 (15) 0.3379 (4) 0.0886 (10) Cl7 0.0826 (18) 0.20197 (19) 0.0809 (5) 0.1016 (12) Ol 0.5196 (4) 0.1673 (3) 0.2934 (8) 0.0592 (19) O2 0.4364 (3) 0.3755 (3) 0.2618 (9) 0.063 (2) O3 0.4982 (4) 0.1135 (4) 0.6244 (10) 0.086 (3) O4 0.5648 (4) 0.1321 (4) 0.817 (8) 0.072 (2) O5 0.3355 (3) 0.0243 (4) -0.1686 (8) 0.0587 (19) O6 0.1189 (4) 0.0815 (4) -0.2061 (9) 0.068 (2) O7 0.3705 (4) -0.0319 (3) 0.3520 (8) 0.063 (2) O8 0.3889 (4) 0.014 (4) 0.1734 (9) 0.0448 (19) N2 0.5058 (4) 0.3509 0.6865 0.0544 N3 0.5913 (3) 0.2164	C13	0.76550 (17)	0.35346 (18)	0.0238 (4)	0.0913 (11)	
C15 $0.17996 (16)$ $0.25893 (15)$ $0.3795 (4)$ $0.0735 (9)$ C16 $0.1499 (2)$ $0.08671 (15)$ $0.3379 (4)$ $0.0886 (10)$ C17 $0.08268 (18)$ $0.20197 (19)$ $0.0809 (5)$ $0.0966 (11)$ C18 $0.25566 (19)$ $0.1697 (2)$ $0.0873 (5)$ $0.1016 (12)$ O1 $0.5196 (4)$ $0.1673 (3)$ $0.2934 (8)$ $0.0592 (19)$ O2 $0.4364 (3)$ $0.3755 (3)$ $0.2618 (9)$ $0.063 (2)$ O3 $0.4982 (4)$ $0.1132 (4)$ $0.6244 (10)$ $0.086 (3)$ O4 $0.5648 (4)$ $0.1321 (4)$ $0.617 (8)$ $0.072 (2)$ O5 $0.3355 (3)$ $0.243 (4)$ $-0.1686 (8)$ $0.0587 (19)$ O6 $0.1189 (4)$ $0.0815 (4)$ $-0.2061 (9)$ $0.068 (2)$ O7 $0.3705 (4)$ $-0.0319 (3)$ $0.3520 (8)$ $0.063 (2)$ O8 $0.3880 (4)$ $0.0414 (4)$ $0.1734 (9)$ $0.073 (2)$ N1 $0.4750 (4)$ $0.2704 (4)$ $0.2853 (9)$ $0.0448 (19)$ N2 $0.5058 (4)$ $0.3546 (3)$ $0.4494 (9)$ $0.044 (2)$ N3 $0.5913 (3)$ $0.2156 (3)$ $0.5737 (8)$ $0.0370 (16)$ N4 $0.5945 (4)$ $0.3180 (4)$ 0.6855 $0.0448 (19)$ N6 $0.1468 (4)$ $0.0128 (4)$ $-0.0221 (10)$ $0.047 (2)$ N7 $0.2938 (3)$ $-0.0580 (3)$ $0.1618 (9)$ $0.0445 (19)$ N6 $0.15154 (4)$ $0.2006 (4)$ $0.3469 (11)$ $0.040 (2)$ C2 $0.4696 (4)$ 0	Cl4	0.6604 (2)	0.41656 (17)	0.3005 (4)	0.0913 (11)	
Cl6 $0.1499 (2)$ $0.08671 (15)$ $0.3379 (4)$ $0.0886 (10)$ Cl7 $0.08268 (18)$ $0.20197 (19)$ $0.0809 (5)$ $0.0966 (11)$ Cl8 $0.25566 (19)$ $0.1697 (2)$ $0.0873 (5)$ $0.0101 (12)$ O1 $0.5196 (4)$ $0.1673 (3)$ $0.2934 (8)$ $0.0592 (19)$ O2 $0.4364 (3)$ $0.3755 (3)$ $0.2618 (9)$ $0.063 (2)$ O3 $0.4982 (4)$ $0.1135 (4)$ $0.6244 (10)$ $0.086 (3)$ O4 $0.5648 (4)$ $0.1321 (4)$ $0.8177 (8)$ $0.072 (2)$ O5 $0.3355 (3)$ $0.0243 (4)$ $-0.2061 (9)$ $0.068 (2)$ O7 $0.3705 (4)$ $-0.0319 (3)$ $0.3520 (8)$ $0.063 (2)$ O8 $0.3889 (4)$ $0.0414 (4)$ $0.1734 (9)$ $0.073 (2)$ N1 $0.4750 (4)$ $0.2704 (4)$ $0.2853 (9)$ $0.0448 (19)$ N2 $0.508 (4)$ $0.3546 (3)$ $0.4494 (9)$ $0.044 (2)$ N3 $0.5913 (3)$ $0.2156 (3)$ $0.5737 (8)$ $0.0370 (16)$ N4 $0.5845 (4)$ $0.3180 (4)$ $0.6382 (9)$ $0.0446 (19)$ N6 $0.1468 (4)$ $0.0128 (4)$ $-0.0221 (10)$ $0.047 (2)$ N7 $0.2938 (3)$ $-0.0580 (3)$ $0.161 (3) (9)$ $0.033 (16)$ N8 $0.1903 (4)$ $-0.063 (5)$ $0.161 (3) (9)$ $0.044 (2)$ N6 $0.1468 (4)$ $0.0226 (4)$ $0.346 (11)$ $0.040 (2)$ C2 $0.4696 (4)$ $0.3359 (5)$ $0.3274 (12)$ $0.046 (2)$ N4 $0.5154 (4)$ 0	C15	0.17996 (16)	0.25893 (15)	0.3795 (4)	0.0735 (9)	
C170.08268 (18)0.20197 (19)0.0809 (5)0.0966 (11)C180.25566 (19)0.1697 (2)0.0873 (5)0.1016 (12)O10.5196 (4)0.1673 (3)0.2934 (8)0.0592 (19)O20.4364 (3)0.3755 (3)0.2618 (9)0.063 (2)O30.4982 (4)0.1135 (4)0.6244 (10)0.086 (3)O40.5648 (4)0.1321 (4)0.8177 (8)0.072 (2)O50.3355 (3)0.0243 (4)-0.1686 (8)0.0587 (19)O60.1189 (4)0.0815 (4)-0.2061 (9)0.068 (2)O70.3705 (4)-0.0319 (3)0.3520 (8)0.063 (2)O80.3889 (4)0.0414 (4)0.1734 (9)0.0448 (19)N10.4750 (4)0.2704 (4)0.2853 (9)0.0448 (19)N20.5058 (4)0.3180 (4)0.6382 (9)0.0444 (2)N30.5913 (3)0.2156 (3)0.5737 (8)0.0370 (16)N40.5845 (4)0.3180 (4)0.6382 (9)0.0444 (19)N60.1648 (4)0.0128 (4)-0.0221 (10)0.047 (2)N70.2938 (3)-0.0580 (3)0.1613 (9)0.0433 (16)N80.1903 (4)-0.0635 (3)0.1613 (9)0.0442 (19)H80.1551-0.07440.20810.054*C10.5154 (4)0.2206 (4)0.3469 (11)0.040 (2)C20.4696 (4)0.3399 (5)0.3274 (12)0.046 (2)C30.5154 (4)0.2090 (3)0.5178 (10)0.039 (2)C5<	C16	0.1499 (2)	0.08671 (15)	0.3379 (4)	0.0886 (10)	
Cl8 0.25566 (19) 0.1697 (2) 0.0873 (5) 0.1016 (12)O1 0.5196 (4) 0.1673 (3) 0.2934 (8) 0.0592 (19)O2 0.4364 (3) 0.3755 (3) 0.2618 (9) 0.063 (2)O3 0.4982 (4) 0.1135 (4) 0.6244 (10) 0.086 (3)O4 0.5648 (4) 0.1321 (4) 0.8177 (8) 0.072 (2)O5 0.3355 (3) 0.0243 (4) -0.1686 (8) 0.0587 (19)O6 0.1189 (4) 0.0815 (4) -0.2061 (9) 0.068 (2)O7 0.3705 (4) -0.0319 (3) 0.3520 (8) 0.063 (2)O8 0.3889 (4) 0.0414 (4) 0.1734 (9) 0.073 (2)N1 0.4750 (4) 0.2704 (4) 0.2853 (9) 0.0448 (19)N2 0.5058 (4) 0.3180 (4) 0.6382 (9) 0.0444 (19)N3 0.5913 (3) 0.2156 (3) 0.5737 (8) 0.0370 (16)N4 0.5845 (4) 0.3180 (4) 0.6382 (9) 0.0450 (19)H4 0.5907 0.3539 0.6865 $0.054*$ N5 0.2260 (4) 0.0586 (3) 0.1018 (8) 0.0343 (16)N7 0.2938 (3) -0.0580 (3) 0.1018 (8) 0.0343 (16)N8 0.1903 (4) -0.0635 (3) 0.1618 (8) 0.0343 (16)N6 0.1468 (4) 0.2206 (4) 0.3469 (11) 0.046 (2)C3 0.5473 (4) 0.2206 (4) 0.3769 (11) 0.046 (2)C3 0.5473 (4) 0.2206 (4) $0.$	Cl7	0.08268 (18)	0.20197 (19)	0.0809 (5)	0.0966 (11)	
01 0.5196 (4) 0.1673 (3) 0.2934 (8) 0.0592 (19) 02 0.4364 (3) 0.3755 (3) 0.2618 (9) 0.063 (2) 03 0.4982 (4) 0.1135 (4) 0.6244 (10) 0.086 (3) 04 0.5648 (4) 0.1321 (4) 0.8177 (8) 0.072 (2) 05 0.3355 (3) 0.0243 (4) -0.1686 (8) 0.0587 (19) 06 0.1189 (4) 0.0815 (4) -0.2061 (9) 0.068 (2) 07 0.3705 (4) -0.0319 (3) 0.3520 (8) 0.063 (2) 08 0.3889 (4) 0.0414 (4) 0.1734 (9) 0.073 (2) $N1$ 0.4750 (4) 0.2704 (4) 0.2853 (9) 0.0448 (19) $N2$ 0.5058 (4) 0.3546 (3) 0.4494 (9) 0.0444 (2) $N3$ 0.5913 (3) 0.2156 (3) 0.5737 (8) 0.0370 (16) $N4$ 0.5845 (4) 0.3180 (4) 0.6685 $0.054*$ $N5$ 0.2260 (4) 0.3556 (4) -0.1796 (9) 0.0464 (19) $N6$ 0.1468 (4) 0.0128 (4) -0.0221 (10) 0.047 (2) $N7$ 0.2938 (3) -0.0580 (3) 0.1613 (9) 0.0452 (19) $H8$ 0.1551 -0.0744 0.2081 $0.054*$ $C1$ 0.5154 (4) 0.2206 (4) 0.3469 (11) 0.040 (2) $C2$ 0.4696 (4) 0.3359 (5) 0.3274 (12) 0.046 (2) $C3$ 0.5413 (4) 0.2099 (3) 0.5178 (10) 0.0317 (19) $C4$ 0.5473 (4) <td>C18</td> <td>0.25566 (19)</td> <td>0.1697 (2)</td> <td>0.0873 (5)</td> <td>0.1016 (12)</td> <td></td>	C18	0.25566 (19)	0.1697 (2)	0.0873 (5)	0.1016 (12)	
02 0.4364 (3) 0.3755 (3) 0.2618 (9) 0.063 (2) 03 0.4982 (4) 0.1135 (4) 0.6244 (10) 0.086 (3) 04 0.5648 (4) 0.1321 (4) 0.8177 (8) 0.072 (2) 05 0.3355 (3) 0.0243 (4) -0.1686 (8) 0.0587 (19) 06 0.1189 (4) 0.0815 (4) -0.2061 (9) 0.068 (2) 07 0.3705 (4) -0.0319 (3) 0.3520 (8) 0.063 (2) 08 0.3889 (4) 0.0414 (4) 0.1734 (9) 0.073 (2) $N1$ 0.4750 (4) 0.2704 (4) 0.2853 (9) 0.0448 (19) $N2$ 0.5058 (4) 0.3546 (3) 0.4494 (9) 0.0444 (2) $N3$ 0.5913 (3) 0.2156 (3) 0.5737 (8) 0.0370 (16) $N4$ 0.5845 (4) 0.3180 (4) 0.6382 (9) 0.0450 (19) $H4$ 0.5907 0.3539 0.6865 $0.054*$ $N5$ 0.2260 (4) 0.0555 (4) -0.1796 (9) 0.0464 (19) $N6$ 0.1468 (4) 0.0128 (4) -0.0221 (10) 0.047 (2) $N7$ 0.2938 (3) -0.0580 (3) 0.1613 (9) 0.0452 (19) $N8$ 0.1903 (4) -0.0635 (3) 0.1613 (9) 0.0452 (19) $N8$ 0.1903 (4) 0.2206 (4) 0.3699 (11) 0.040 (2) $C2$ 0.4696 (4) 0.3099 (3) 0.5178 (10) 0.0317 (19) $C4$ 0.5413 (4) 0.2094 (4) 0.6661 (11) 0.0464 (2) $C3$ 0.541	01	0.5196 (4)	0.1673 (3)	0.2934 (8)	0.0592 (19)	
03 0.4982 (4) 0.1135 (4) 0.6244 (10) 0.086 (3) 04 0.5648 (4) 0.1321 (4) 0.8177 (8) 0.072 (2) 05 0.3355 (3) 0.0243 (4) -0.1686 (8) 0.0587 (19) 06 0.1189 (4) 0.0815 (4) -0.2061 (9) 0.068 (2) 07 0.3705 (4) -0.0319 (3) 0.3520 (8) 0.063 (2) 08 0.3889 (4) 0.0414 (4) 0.1734 (9) 0.073 (2) $N1$ 0.4750 (4) 0.2704 (4) 0.2853 (9) 0.0448 (19) $N2$ 0.5058 (4) 0.3546 (3) 0.4794 (9) 0.044 (2) $N3$ 0.5913 (3) 0.2156 (3) 0.5737 (8) 0.0370 (16) $N4$ 0.5907 0.3539 0.6865 $0.054*$ $N5$ 0.2260 (4) 0.0565 (4) -0.1796 (9) 0.0464 (19) $N6$ 0.1468 (4) 0.0128 (4) -0.0221 (10) 0.047 (2) $N7$ 0.2938 (3) -0.0580 (3) 0.1613 (9) 0.0445 (19) $N8$ 0.1903 (4) -0.0635 (3) 0.1613 (9) 0.0452 (19) $H8$ 0.1551 -0.0744 0.2081 $0.054*$ $C1$ 0.5154 (4) 0.2206 (4) 0.3469 (11) 0.040 (2) $C2$ 0.6496 (4) 0.3099 (3) 0.5178 (10) 0.0317 (19) $C4$ 0.5473 (4) 0.2506 (6) 0.7420 $0.448*$ $C5$ 0.6115 (4) 0.2506 (6) 0.7420 $0.048*$ $C6$ 0.3436 (6) 0.2588 (6)<	02	0.4364 (3)	0.3755 (3)	0.2618 (9)	0.063 (2)	
04 0.5648 (4) 0.1321 (4) 0.8177 (8) 0.072 (2) 05 0.3355 (3) 0.0243 (4) -0.1686 (8) 0.0587 (19) 06 0.1189 (4) 0.0815 (4) -0.2061 (9) 0.068 (2) 07 0.3705 (4) -0.0319 (3) 0.3520 (8) 0.063 (2) 08 0.3889 (4) 0.0414 (4) 0.1734 (9) 0.073 (2) $N1$ 0.4750 (4) 0.2704 (4) 0.2853 (9) 0.0448 (19) $N2$ 0.5058 (4) 0.3546 (3) 0.4494 (9) 0.0444 (2) $N3$ 0.5913 (3) 0.2156 (3) 0.5737 (8) 0.0370 (16) $N4$ 0.5845 (4) 0.3180 (4) 0.6382 (9) 0.0450 (19) $H4$ 0.5907 0.3539 0.6865 $0.54*$ $N5$ 0.2260 (4) 0.0565 (4) -0.0221 (10) 0.047 (2) $N7$ 0.2938 (3) -0.0580 (3) 0.1613 (9) 0.0452 (19) $H8$ 0.1903 (4) -0.0635 (3) 0.1613 (9) 0.0452 (19) $H8$ 0.1551 -0.0744 0.2081 $0.054*$ $C1$ 0.5154 (4) 0.2206 (4) 0.33469 (11) 0.040 (2) $C2$ 0.4696 (4) 0.3359 (5) 0.3274 (12) 0.046 (2) $C3$ 0.5443 (4) 0.3099 (3) 0.5178 (10) 0.0317 (19) $C4$ 0.5473 (4) 0.2604 (4) 0.6661 (11) 0.040 (2) $C3$ 0.6413 0.2508 (6) 0.1589 (13) 0.68 (3) $H6A$ 0.4414 0.2050 </td <td>03</td> <td>0.4982 (4)</td> <td>0.1135 (4)</td> <td>0.6244 (10)</td> <td>0.086 (3)</td> <td></td>	03	0.4982 (4)	0.1135 (4)	0.6244 (10)	0.086 (3)	
05 0.3355 (3) 0.0243 (4) -0.1686 (8) 0.0587 (19) 06 0.1189 (4) 0.0815 (4) -0.2061 (9) 0.068 (2) 07 0.3705 (4) -0.0319 (3) 0.3520 (8) 0.063 (2) 08 0.3889 (4) 0.0414 (4) 0.1734 (9) 0.073 (2) $N1$ 0.4750 (4) 0.2704 (4) 0.2853 (9) 0.0448 (19) $N2$ 0.5058 (4) 0.3546 (3) 0.4494 (9) 0.0444 (2) $N3$ 0.5913 (3) 0.2156 (3) 0.5737 (8) 0.0370 (16) $N4$ 0.5845 (4) 0.3180 (4) 0.6382 (9) 0.0450 (19) $H4$ 0.5907 0.3539 0.6865 $0.054*$ $N5$ 0.2260 (4) 0.0555 (4) -0.1796 (9) 0.0464 (19) $N6$ 0.1468 (4) 0.0128 (4) -0.0221 (10) 0.047 (2) $N7$ 0.2938 (3) -0.0580 (3) 0.1613 (9) 0.0452 (19) $H8$ 0.1551 -0.0744 0.2081 $0.054*$ $C1$ 0.5154 (4) 0.2206 (4) 0.3469 (11) 0.040 (2) $C2$ 0.4696 (4) 0.3359 (5) 0.3274 (12) 0.046 (2) $C3$ 0.5443 (4) 0.3099 (3) 0.5178 (10) 0.0317 (19) $C4$ 0.5473 (4) 0.2604 (4) 0.6661 (11) 0.040 (2) $C5$ 0.6115 (4) 0.2508 (6) 0.1589 (13) 0.686 (3) $H6A$ 0.4414 0.2050 0.1380 $0.103*$ $H6B$ 0.4463 0.2766 0	O4	0.5648 (4)	0.1321 (4)	0.8177 (8)	0.072 (2)	
06 0.1189 (4) 0.0815 (4) -0.2061 (9) 0.068 (2) 07 0.3705 (4) -0.0319 (3) 0.3520 (8) 0.063 (2) 08 0.3889 (4) 0.0414 (4) 0.1734 (9) 0.073 (2) $N1$ 0.4750 (4) 0.2704 (4) 0.2853 (9) 0.0448 (19) $N2$ 0.5058 (4) 0.3546 (3) 0.4494 (9) 0.044 (2) $N3$ 0.5913 (3) 0.2156 (3) 0.5737 (8) 0.0370 (16) $N4$ 0.5845 (4) 0.3180 (4) 0.6382 (9) 0.0450 (19) $H4$ 0.5907 0.3539 0.6865 $0.054*$ $N5$ 0.2260 (4) 0.0565 (4) -0.1796 (9) 0.0464 (19) $N6$ 0.1468 (4) 0.0128 (4) -0.0221 (10) 0.047 (2) $N7$ 0.2938 (3) -0.0580 (3) 0.1613 (9) 0.0452 (19) $H8$ 0.1551 -0.0744 0.2081 $0.054*$ $C1$ 0.5154 (4) 0.2206 (4) 0.3469 (11) 0.040 (2) $C2$ 0.4696 (4) 0.3359 (5) 0.3274 (12) 0.046 (2) $C3$ 0.5443 (4) 0.3099 (3) 0.5178 (10) 0.0317 (19) $C4$ 0.5473 (4) 0.2256 0.7420 $0.048*$ $C6$ 0.4343 (6) 0.2508 (6) 0.1589 (13) 0.068 (3) $H6A$ 0.4414 0.2050 0.1380 $0.103*$	05	0.3355 (3)	0.0243 (4)	-0.1686 (8)	0.0587 (19)	
07 $0.3705 (4)$ $-0.0319 (3)$ $0.3520 (8)$ $0.063 (2)$ 08 $0.3889 (4)$ $0.0414 (4)$ $0.1734 (9)$ $0.073 (2)$ $N1$ $0.4750 (4)$ $0.2704 (4)$ $0.2853 (9)$ $0.0448 (19)$ $N2$ $0.5058 (4)$ $0.3546 (3)$ $0.4494 (9)$ $0.044 (2)$ $N3$ $0.5913 (3)$ $0.2156 (3)$ $0.5737 (8)$ $0.0370 (16)$ $N4$ $0.5845 (4)$ $0.3180 (4)$ $0.6382 (9)$ $0.0450 (19)$ $H4$ 0.5907 0.3539 0.6865 $0.054*$ $N5$ $0.2260 (4)$ $0.0565 (4)$ $-0.1796 (9)$ $0.0464 (19)$ $N6$ $0.1468 (4)$ $0.0128 (4)$ $-0.0221 (10)$ $0.047 (2)$ $N7$ $0.2938 (3)$ $-0.0580 (3)$ $0.1613 (9)$ $0.0452 (19)$ $H8$ 0.1551 -0.0744 0.2081 $0.054*$ $C1$ $0.5154 (4)$ $0.2206 (4)$ $0.3469 (11)$ $0.040 (2)$ $C2$ $0.4696 (4)$ $0.3359 (5)$ $0.3274 (12)$ $0.046 (2)$ $C3$ $0.5443 (4)$ $0.2099 (3)$ $0.5178 (10)$ $0.0317 (19)$ $C4$ $0.5473 (4)$ $0.2455 (4)$ $0.4781 (10)$ $0.039 (2)$ $C5$ $0.6115 (4)$ $0.2506 (6)$ $0.1589 (13)$ $0.068 (3)$ $H6A$ 0.4414 0.2050 0.1380 $0.103*$	O6	0.1189 (4)	0.0815 (4)	-0.2061 (9)	0.068 (2)	
08 $0.3889(4)$ $0.0414(4)$ $0.1734(9)$ $0.073(2)$ N1 $0.4750(4)$ $0.2704(4)$ $0.2853(9)$ $0.0448(19)$ N2 $0.5058(4)$ $0.3546(3)$ $0.4494(9)$ $0.044(2)$ N3 $0.5913(3)$ $0.2156(3)$ $0.5737(8)$ $0.0370(16)$ N4 $0.5845(4)$ $0.3180(4)$ $0.6382(9)$ $0.0450(19)$ H4 0.5907 0.3539 0.6865 $0.054*$ N5 $0.2260(4)$ $0.0565(4)$ $-0.1796(9)$ $0.0464(19)$ N6 $0.1468(4)$ $0.0128(4)$ $-0.0221(10)$ $0.047(2)$ N7 $0.2938(3)$ $-0.0580(3)$ $0.1018(8)$ $0.0343(16)$ N8 $0.1903(4)$ $-0.0635(3)$ $0.1613(9)$ $0.0452(19)$ H8 0.1551 -0.0744 0.2081 $0.054*$ C1 $0.5154(4)$ $0.2206(4)$ $0.3469(11)$ $0.040(2)$ C2 $0.4696(4)$ $0.3359(5)$ $0.3274(12)$ $0.046(2)$ C3 $0.5443(4)$ $0.3099(3)$ $0.5178(10)$ $0.0317(19)$ C4 $0.5473(4)$ $0.2256(4)$ $0.4781(10)$ $0.039(2)$ C5 $0.6115(4)$ $0.2504(4)$ $0.6661(11)$ $0.048*$ C6 $0.4343(6)$ $0.2508(6)$ 0.1380 $0.103*$ H6B 0.4463 0.2766 0.0744 $0.103*$	07	0.3705 (4)	-0.0319 (3)	0.3520 (8)	0.063 (2)	
N1 $0.4750(4)$ $0.2704(4)$ $0.2853(9)$ $0.0448(19)$ N2 $0.5058(4)$ $0.3546(3)$ $0.4494(9)$ $0.044(2)$ N3 $0.5913(3)$ $0.2156(3)$ $0.5737(8)$ $0.0370(16)$ N4 $0.5845(4)$ $0.3180(4)$ $0.6382(9)$ $0.0450(19)$ H4 0.5907 0.3539 0.6865 $0.054*$ N5 $0.2260(4)$ $0.0555(4)$ $-0.1796(9)$ $0.0464(19)$ N6 $0.1468(4)$ $0.0128(4)$ $-0.0221(10)$ $0.047(2)$ N7 $0.2938(3)$ $-0.0580(3)$ $0.1018(8)$ $0.0343(16)$ N8 $0.1903(4)$ $-0.0635(3)$ $0.1613(9)$ $0.0452(19)$ H8 0.1551 -0.0744 0.2081 $0.054*$ C1 $0.5154(4)$ $0.2206(4)$ $0.3469(11)$ $0.040(2)$ C2 $0.4696(4)$ $0.3359(5)$ $0.3274(12)$ $0.046(2)$ C3 $0.5443(4)$ $0.3099(3)$ $0.5178(10)$ $0.0317(19)$ C4 $0.5473(4)$ 0.2256 0.7420 $0.48*$ C6 $0.4343(6)$ $0.2508(6)$ $0.1589(13)$ $0.068(3)$ H6A 0.4414 0.2050 0.1380 $0.103*$ H6B 0.4463 0.2766 0.0744 $0.103*$	08	0.3889 (4)	0.0414 (4)	0.1734 (9)	0.073 (2)	
N20.5058 (4)0.3546 (3)0.4494 (9)0.044 (2)N30.5913 (3)0.2156 (3)0.5737 (8)0.0370 (16)N40.5845 (4)0.3180 (4)0.6382 (9)0.0450 (19)H40.59070.35390.68650.054*N50.2260 (4)0.0565 (4)-0.1796 (9)0.0464 (19)N60.1468 (4)0.0128 (4)-0.0221 (10)0.047 (2)N70.2938 (3)-0.0580 (3)0.1018 (8)0.0343 (16)N80.1903 (4)-0.0635 (3)0.1613 (9)0.0452 (19)H80.1551-0.07440.20810.054*C10.5154 (4)0.2206 (4)0.3469 (11)0.040 (2)C20.4696 (4)0.3359 (5)0.3274 (12)0.046 (2)C30.5443 (4)0.3099 (3)0.5178 (10)0.0317 (19)C40.5473 (4)0.2604 (4)0.6661 (11)0.040 (2)C50.6115 (4)0.25060.74200.048*C60.4343 (6)0.2508 (6)0.1589 (13)0.068 (3)H6A0.44140.20500.13800.103*H6B0.44630.27660.07440.103*	N1	0.4750 (4)	0.2704 (4)	0.2853 (9)	0.0448 (19)	
N30.5913 (3)0.2156 (3)0.5737 (8)0.0370 (16)N40.5845 (4)0.3180 (4)0.6382 (9)0.0450 (19)H40.59070.35390.68650.054*N50.2260 (4)0.0565 (4)-0.1796 (9)0.0464 (19)N60.1468 (4)0.0128 (4)-0.0221 (10)0.047 (2)N70.2938 (3)-0.0580 (3)0.1018 (8)0.0343 (16)N80.1903 (4)-0.0635 (3)0.1613 (9)0.0452 (19)H80.1551-0.07440.20810.054*C10.5154 (4)0.2206 (4)0.3469 (11)0.040 (2)C20.4696 (4)0.3359 (5)0.3274 (12)0.046 (2)C30.5443 (4)0.3099 (3)0.5178 (10)0.0317 (19)C40.5473 (4)0.2604 (4)0.6661 (11)0.040 (2)L50.6115 (4)0.25060.74200.048*C60.4343 (6)0.2508 (6)0.1589 (13)0.068 (3)H6A0.44140.20500.13800.103*H6B0.44630.27660.07440.103*	N2	0.5058 (4)	0.3546 (3)	0.4494 (9)	0.044 (2)	
N40.5845 (4)0.3180 (4)0.6382 (9)0.0450 (19)H40.59070.35390.68650.054*N50.2260 (4)0.0565 (4)-0.1796 (9)0.0464 (19)N60.1468 (4)0.0128 (4)-0.0221 (10)0.047 (2)N70.2938 (3)-0.0580 (3)0.1018 (8)0.0343 (16)N80.1903 (4)-0.0635 (3)0.1613 (9)0.0452 (19)H80.1551-0.07440.20810.054*C10.5154 (4)0.2206 (4)0.3469 (11)0.040 (2)C20.4696 (4)0.3359 (5)0.3274 (12)0.046 (2)C30.5443 (4)0.3099 (3)0.5178 (10)0.0317 (19)C40.5473 (4)0.2455 (4)0.4781 (10)0.039 (2)C50.6115 (4)0.25060.74200.048*C60.4343 (6)0.2508 (6)0.1589 (13)0.068 (3)H6A0.44140.20500.13800.103*H6B0.44630.27660.07440.103*H6C0.38870.25810.18170.103*	N3	0.5913 (3)	0.2156 (3)	0.5737 (8)	0.0370 (16)	
H40.59070.35390.68650.054*N50.2260 (4)0.0565 (4)-0.1796 (9)0.0464 (19)N60.1468 (4)0.0128 (4)-0.0221 (10)0.047 (2)N70.2938 (3)-0.0580 (3)0.1018 (8)0.0343 (16)N80.1903 (4)-0.0635 (3)0.1613 (9)0.0452 (19)H80.1551-0.07440.20810.054*C10.5154 (4)0.2206 (4)0.3469 (11)0.040 (2)C20.4696 (4)0.3359 (5)0.3274 (12)0.046 (2)C30.5443 (4)0.3099 (3)0.5178 (10)0.0317 (19)C40.5473 (4)0.2604 (4)0.6661 (11)0.040 (2)C50.6115 (4)0.25260.74200.048*C60.4343 (6)0.2508 (6)0.1589 (13)0.068 (3)H6A0.44140.20500.13800.103*H6B0.44630.27660.07440.103*H6C0.38870.25810.18170.103*	N4	0.5845 (4)	0.3180 (4)	0.6382 (9)	0.0450 (19)	
N50.2260 (4)0.0565 (4)-0.1796 (9)0.0464 (19)N60.1468 (4)0.0128 (4)-0.0221 (10)0.047 (2)N70.2938 (3)-0.0580 (3)0.1018 (8)0.0343 (16)N80.1903 (4)-0.0635 (3)0.1613 (9)0.0452 (19)H80.1551-0.07440.20810.054*C10.5154 (4)0.2206 (4)0.3469 (11)0.040 (2)C20.4696 (4)0.3359 (5)0.3274 (12)0.046 (2)C30.5443 (4)0.3099 (3)0.5178 (10)0.0317 (19)C40.5473 (4)0.2604 (4)0.6661 (11)0.040 (2)C50.6115 (4)0.25260.74200.048*C60.4343 (6)0.2508 (6)0.1589 (13)0.068 (3)H6A0.44630.27660.07440.103*H6B0.44630.27660.07440.103*	H4	0.5907	0.3539	0.6865	0.054*	
N60.1468 (4)0.0128 (4)-0.0221 (10)0.047 (2)N70.2938 (3)-0.0580 (3)0.1018 (8)0.0343 (16)N80.1903 (4)-0.0635 (3)0.1613 (9)0.0452 (19)H80.1551-0.07440.20810.054*C10.5154 (4)0.2206 (4)0.3469 (11)0.040 (2)C20.4696 (4)0.3359 (5)0.3274 (12)0.046 (2)C30.5443 (4)0.3099 (3)0.5178 (10)0.0317 (19)C40.5473 (4)0.2604 (4)0.46661 (11)0.040 (2)C50.6115 (4)0.2504 (4)0.6661 (11)0.040 (2)H50.64130.25260.74200.048*C60.4343 (6)0.2508 (6)0.1589 (13)0.068 (3)H6A0.44630.27660.07440.103*H6B0.44630.27660.07440.103*	N5	0.2260 (4)	0.0565 (4)	-0.1796 (9)	0.0464 (19)	
N70.2938 (3)-0.0580 (3)0.1018 (8)0.0343 (16)N80.1903 (4)-0.0635 (3)0.1613 (9)0.0452 (19)H80.1551-0.07440.20810.054*C10.5154 (4)0.2206 (4)0.3469 (11)0.040 (2)C20.4696 (4)0.3359 (5)0.3274 (12)0.046 (2)C30.5443 (4)0.3099 (3)0.5178 (10)0.0317 (19)C40.5473 (4)0.2604 (4)0.4661 (11)0.040 (2)C50.6115 (4)0.2604 (4)0.6661 (11)0.040 (2)H50.64130.25260.74200.048*C60.4343 (6)0.2508 (6)0.1589 (13)0.068 (3)H6A0.44140.20500.13800.103*H6B0.44630.27660.07440.103*H6C0.38870.25810.18170.103*	N6	0.1468 (4)	0.0128 (4)	-0.0221 (10)	0.047 (2)	
N80.1903 (4)-0.0635 (3)0.1613 (9)0.0452 (19)H80.1551-0.07440.20810.054*C10.5154 (4)0.2206 (4)0.3469 (11)0.040 (2)C20.4696 (4)0.3359 (5)0.3274 (12)0.046 (2)C30.5443 (4)0.3099 (3)0.5178 (10)0.0317 (19)C40.5473 (4)0.2455 (4)0.4781 (10)0.039 (2)C50.6115 (4)0.2604 (4)0.6661 (11)0.040 (2)H50.64130.25260.74200.048*C60.4343 (6)0.2508 (6)0.1589 (13)0.068 (3)H6A0.44140.20500.13800.103*H6B0.44630.27660.07440.103*H6C0.38870.25810.18170.103*	N7	0.2938 (3)	-0.0580 (3)	0.1018 (8)	0.0343 (16)	
H80.1551-0.07440.20810.054*C10.5154 (4)0.2206 (4)0.3469 (11)0.040 (2)C20.4696 (4)0.3359 (5)0.3274 (12)0.046 (2)C30.5443 (4)0.3099 (3)0.5178 (10)0.0317 (19)C40.5473 (4)0.2455 (4)0.4781 (10)0.039 (2)C50.6115 (4)0.2604 (4)0.6661 (11)0.040 (2)H50.64130.25260.74200.048*C60.4343 (6)0.2508 (6)0.1589 (13)0.068 (3)H6A0.44140.20500.13800.103*H6B0.44630.27660.07440.103*H6C0.38870.25810.18170.103*	N8	0.1903 (4)	-0.0635 (3)	0.1613 (9)	0.0452 (19)	
C10.5154 (4)0.2206 (4)0.3469 (11)0.040 (2)C20.4696 (4)0.3359 (5)0.3274 (12)0.046 (2)C30.5443 (4)0.3099 (3)0.5178 (10)0.0317 (19)C40.5473 (4)0.2455 (4)0.4781 (10)0.039 (2)C50.6115 (4)0.2604 (4)0.6661 (11)0.040 (2)H50.64130.25260.74200.048*C60.4343 (6)0.2508 (6)0.1589 (13)0.068 (3)H6A0.44140.20500.13800.103*H6B0.44630.27660.07440.103*H6C0.38870.25810.18170.103*	H8	0.1551	-0.0744	0.2081	0.054*	
C20.4696 (4)0.3359 (5)0.3274 (12)0.046 (2)C30.5443 (4)0.3099 (3)0.5178 (10)0.0317 (19)C40.5473 (4)0.2455 (4)0.4781 (10)0.039 (2)C50.6115 (4)0.2604 (4)0.6661 (11)0.040 (2)H50.64130.25260.74200.048*C60.4343 (6)0.2508 (6)0.1589 (13)0.068 (3)H6A0.44140.20500.13800.103*H6B0.44630.27660.07440.103*H6C0.38870.25810.18170.103*	C1	0.5154 (4)	0.2206 (4)	0.3469 (11)	0.040 (2)	
C30.5443 (4)0.3099 (3)0.5178 (10)0.0317 (19)C40.5473 (4)0.2455 (4)0.4781 (10)0.039 (2)C50.6115 (4)0.2604 (4)0.6661 (11)0.040 (2)H50.64130.25260.74200.048*C60.4343 (6)0.2508 (6)0.1589 (13)0.068 (3)H6A0.44140.20500.13800.103*H6B0.44630.27660.07440.103*H6C0.38870.25810.18170.103*	C2	0.4696 (4)	0.3359 (5)	0.3274 (12)	0.046 (2)	
C40.5473 (4)0.2455 (4)0.4781 (10)0.039 (2)C50.6115 (4)0.2604 (4)0.6661 (11)0.040 (2)H50.64130.25260.74200.048*C60.4343 (6)0.2508 (6)0.1589 (13)0.068 (3)H6A0.44140.20500.13800.103*H6B0.44630.27660.07440.103*H6C0.38870.25810.18170.103*	C3	0.5443 (4)	0.3099 (3)	0.5178 (10)	0.0317 (19)	
C50.6115 (4)0.2604 (4)0.6661 (11)0.040 (2)H50.64130.25260.74200.048*C60.4343 (6)0.2508 (6)0.1589 (13)0.068 (3)H6A0.44140.20500.13800.103*H6B0.44630.27660.07440.103*H6C0.38870.25810.18170.103*	C4	0.5473 (4)	0.2455 (4)	0.4781 (10)	0.039 (2)	
H50.64130.25260.74200.048*C60.4343 (6)0.2508 (6)0.1589 (13)0.068 (3)H6A0.44140.20500.13800.103*H6B0.44630.27660.07440.103*H6C0.38870.25810.18170.103*	C5	0.6115 (4)	0.2604 (4)	0.6661 (11)	0.040 (2)	
C60.4343 (6)0.2508 (6)0.1589 (13)0.068 (3)H6A0.44140.20500.13800.103*H6B0.44630.27660.07440.103*H6C0.38870.25810.18170.103*	Н5	0.6413	0.2526	0.7420	0.048*	
H6A0.44140.20500.13800.103*H6B0.44630.27660.07440.103*H6C0.38870.25810.18170.103*	C6	0.4343 (6)	0.2508 (6)	0.1589 (13)	0.068 (3)	
H6B0.44630.27660.07440.103*H6C0.38870.25810.18170.103*	H6A	0.4414	0.2050	0.1380	0.103*	
H6C 0.3887 0.2581 0.1817 0.103*	H6B	0.4463	0.2766	0.0744	0.103*	
	H6C	0.3887	0.2581	0.1817	0.103*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

C7	0.5043 (5)	0.4240 (5)	0.4975 (16)	0.068 (3)	
H7A	0.4743	0.4483	0.4364	0.102*	
H7B	0.5476	0.4426	0.4894	0.102*	
H7C	0.4899	0.4262	0.5983	0.102*	
C8	0.6086 (5)	0.1450 (4)	0.5793 (11)	0.049 (2)	
H8A	0.6530	0.1401	0.6176	0.059*	
H8B	0.6077	0.1268	0.4805	0.059*	
C9	0.5614 (6)	0.1078 (5)	0.6754 (12)	0.060 (3)	
Н9	0.5739	0.0611	0.6762	0.072*	
C10	0.4622 (13)	0.1031 (15)	0.7592 (18)	0.068 (8)	0.46 (4)
H10A	0.4659	0.0580	0.7939	0.081*	0.46 (4)
H10B	0.4160	0.1147	0.7488	0.081*	0.46 (4)
C11	0.4989 (6)	0.1514 (14)	0.859 (3)	0.068 (8)	0.46 (4)
H11A	0.4895	0.1969	0.8345	0.081*	0.46 (4)
H11B	0.4901	0.1436	0.9627	0.081*	0.46 (4)
C10'	0.4559 (11)	0.1331 (16)	0.7455 (19)	0.094 (10)	0.54 (4)
H10C	0.4157	0.1072	0.7479	0.113*	0.54 (4)
H10D	0.4448	0.1795	0.7401	0.113*	0.54 (4)
C11'	0.4999 (7)	0.1183 (18)	0.878 (3)	0.094 (10)	0.54 (4)
H11C	0.4898	0.1469	0.9609	0.113*	0.54 (4)
H11D	0.4960	0.0727	0.9091	0.113*	0.54 (4)
C12	0.2815 (5)	0.0217 (4)	-0.1225 (11)	0.043 (2)	
C13	0.1621 (4)	0.0531 (4)	-0.1418 (12)	0.044 (2)	
C14	0.1953 (4)	-0.0211 (3)	0.0451 (10)	0.0309 (19)	
C15	0.2591 (4)	-0.0156 (4)	0.0084 (10)	0.035 (2)	
C16	0.2515 (5)	-0.0846 (4)	0.1871 (11)	0.042 (2)	
H16	0.2622	-0.1153	0.2593	0.050*	
C17	0.2421 (6)	0.1030 (6)	-0.3009 (13)	0.080 (4)	
H17A	0.2887	0.1019	-0.3196	0.119*	
H17B	0.2294	0.1468	-0.2731	0.119*	
H17C	0.2188	0.0902	-0.3885	0.119*	
C18	0.0772 (5)	0.0074 (6)	0.0225 (16)	0.071 (4)	
H18A	0.0507	0.0353	-0.0389	0.107*	
H18B	0.0726	0.0207	0.1235	0.107*	
H18C	0.0629	-0.0375	0.0119	0.107*	
C19	0.3647 (4)	-0.0690 (5)	0.1035 (11)	0.045 (2)	
H19A	0.3825	-0.0610	0.0058	0.054*	
H19B	0.3736	-0.1145	0.1292	0.054*	
C20	0.3981 (4)	-0.0246 (5)	0.2117 (13)	0.054 (3)	
H20	0.4453	-0.0347	0.2153	0.065*	
C22	0.367 (2)	0.0769 (14)	0.303 (2)	0.065 (11)	0.36 (4)
H22A	0.3207	0.0863	0.2988	0.078*	0.36 (4)
H22B	0.3915	0.1179	0.3141	0.078*	0.36 (4)
C21	0.383 (3)	0.0292 (8)	0.429 (3)	0.065 (11)	0.36 (4)
H21A	0.4289	0.0327	0.4606	0.078*	0.36 (4)
H21B	0.3543	0.0353	0.5127	0.078*	0.36 (4)
C22'	0.3901 (12)	0.0742 (11)	0.3145 (17)	0.078 (7)	0.64 (4)
H22C	0.3718	0.1183	0.3076	0.094*	0.64 (4)
H22D	0.4346	0.0769	0.3530	0.094*	0.64 (4)

C21'	0.3470 (14)	0.0299 (6)	0.411 (3)	0.078 (7)	0.64 (4)
H21C	0.3566	0.0348	0.5150	0.094*	0.64 (4)
H21D	0.3004	0.0365	0.3931	0.094*	0.64 (4)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Fe1	0.0695 (10)	0.0601 (10)	0.0411 (9)	-0.0070 (8)	0.0035 (8)	0.0009 (8)
Fe2	0.0745 (11)	0.0581 (10)	0.0432 (9)	0.0120 (8)	0.0031 (8)	0.0023 (8)
Cl1	0.105 (2)	0.078 (2)	0.078 (2)	0.0085 (18)	0.021 (2)	0.0265 (19)
Cl2	0.089 (2)	0.126 (3)	0.055 (2)	-0.026 (2)	-0.0054 (17)	-0.0144 (19)
Cl3	0.083 (2)	0.096 (2)	0.095 (3)	-0.0082 (18)	0.027 (2)	0.032 (2)
Cl4	0.128 (3)	0.082 (2)	0.064 (2)	0.003 (2)	-0.008 (2)	-0.0211 (18)
C15	0.087 (2)	0.0716 (18)	0.0619 (19)	-0.0058 (16)	0.0210 (17)	-0.0146 (15)
Cl6	0.136 (3)	0.0681 (19)	0.061 (2)	0.0021 (19)	-0.004 (2)	0.0153 (16)
Cl7	0.101 (3)	0.108 (3)	0.081 (2)	0.023 (2)	-0.027 (2)	0.010 (2)
C18	0.102 (3)	0.129 (3)	0.073 (2)	0.011 (2)	0.027 (2)	-0.018 (2)
01	0.090 (5)	0.040 (4)	0.047 (4)	-0.004 (3)	-0.018 (4)	-0.019 (3)
O2	0.045 (4)	0.064 (4)	0.079 (6)	0.019 (3)	-0.012 (4)	0.022 (4)
O3	0.093 (6)	0.087 (6)	0.078 (7)	-0.033 (5)	-0.019 (5)	0.002 (5)
O4	0.086 (5)	0.093 (6)	0.036 (4)	0.012 (4)	-0.006 (4)	0.013 (4)
05	0.035 (4)	0.097 (5)	0.044 (4)	-0.002 (3)	0.015 (3)	0.027 (4)
O6	0.065 (5)	0.068 (5)	0.071 (6)	0.020 (4)	-0.016 (4)	0.017 (4)
07	0.098 (6)	0.055 (4)	0.034 (4)	-0.003 (4)	-0.015 (4)	0.011 (3)
08	0.081 (5)	0.066 (5)	0.073 (6)	-0.024 (4)	0.002 (5)	0.009 (4)
N1	0.049 (4)	0.055 (5)	0.031 (4)	-0.003 (4)	-0.008 (4)	0.005 (4)
N2	0.050 (5)	0.024 (4)	0.056 (6)	0.008 (3)	-0.005 (4)	0.010 (3)
N3	0.048 (4)	0.041 (4)	0.022 (4)	0.009 (3)	-0.005 (3)	0.004 (3)
N4	0.061 (5)	0.036 (4)	0.038 (5)	0.003 (3)	-0.021 (4)	-0.014 (3)
N5	0.061 (5)	0.047 (4)	0.032 (4)	0.010 (4)	-0.010 (4)	0.009 (4)
N6	0.035 (4)	0.050 (5)	0.056 (5)	0.005 (3)	0.005 (4)	0.015 (4)
N7	0.037 (4)	0.039 (4)	0.027 (4)	0.003 (3)	0.002 (3)	0.012 (3)
N8	0.040 (4)	0.046 (4)	0.049 (5)	-0.010 (3)	0.013 (4)	0.000 (4)
C1	0.033 (5)	0.047 (5)	0.040 (6)	-0.003 (4)	0.004 (4)	0.010 (5)
C2	0.033 (5)	0.060 (6)	0.044 (6)	0.005 (4)	-0.009 (4)	0.014 (5)
C3	0.047 (5)	0.015 (4)	0.033 (5)	-0.012 (3)	0.009 (4)	-0.004 (3)
C4	0.038 (5)	0.052 (6)	0.026 (5)	-0.007 (4)	0.002 (4)	0.007 (4)
C5	0.052 (5)	0.035 (5)	0.033 (5)	0.004 (4)	-0.022 (4)	0.004 (4)
C6	0.088 (8)	0.071 (7)	0.046 (7)	0.008 (6)	-0.020 (6)	-0.001 (6)
C7	0.060 (7)	0.044 (6)	0.101 (10)	0.008 (5)	-0.027 (7)	0.001 (6)
C8	0.065 (6)	0.052 (6)	0.030 (5)	0.018 (5)	-0.010 (5)	0.003 (4)
C9	0.096 (9)	0.045 (6)	0.039 (6)	0.006 (5)	-0.021 (6)	0.010 (5)
C10	0.057 (13)	0.060 (14)	0.085 (17)	0.011 (9)	-0.009 (10)	0.043 (12)
C11	0.057 (13)	0.060 (14)	0.085 (17)	0.011 (9)	-0.009 (10)	0.043 (12)
C10'	0.083 (15)	0.061 (16)	0.14 (2)	0.025 (11)	0.014 (14)	0.054 (14)
C11'	0.083 (15)	0.061 (16)	0.14 (2)	0.025 (11)	0.014 (14)	0.054 (14)
C12	0.053 (6)	0.035 (5)	0.041 (6)	-0.004 (4)	-0.007 (5)	0.005 (4)
C13	0.026 (4)	0.046 (5)	0.060 (7)	0.017 (4)	-0.014 (5)	-0.009 (5)

C14	0.037 (5)	0.019 (4)	0.037 (5)	-0.008 (3)	0.006 (4)	0.007 (3)
C15	0.048 (5)	0.025 (4)	0.032 (5)	0.003 (4)	0.002 (4)	0.002 (4)
C16	0.061 (6)	0.021 (4)	0.043 (6)	0.007 (4)	-0.008 (5)	0.018 (4)
C17	0.096 (9)	0.094 (9)	0.049 (8)	0.012 (7)	0.012 (7)	0.020 (7)
C18	0.038 (6)	0.072 (7)	0.103 (10)	0.003 (5)	0.003 (6)	0.015 (7)
C19	0.035 (5)	0.057 (6)	0.042 (6)	0.019 (4)	-0.008 (4)	0.007 (5)
C20	0.034 (5)	0.059 (6)	0.069 (8)	0.011 (4)	0.003 (5)	0.015 (6)
C22	0.06 (2)	0.051 (16)	0.08 (2)	-0.008 (12)	0.016 (14)	0.002 (14)
C21	0.06 (2)	0.051 (16)	0.08 (2)	-0.008 (12)	0.016 (14)	0.002 (14)
C22'	0.063 (12)	0.064 (11)	0.108 (15)	-0.001 (7)	-0.001 (9)	-0.009 (10)
C21'	0.063 (12)	0.064 (11)	0.108 (15)	-0.001 (7)	-0.001 (9)	-0.009 (10)

Geometric parameters (Å, °)

Fe1—Cl1	2.173 (3)	N8—H8	0.8600
Fe1—C13	2.173 (3)	C1—C4	1.446 (13)
Fe1—Cl2	2.183 (4)	C3—C4	1.357 (12)
Fe1—Cl4	2.190 (4)	С5—Н5	0.9300
Fe2—C18	2.165 (4)	С6—Н6А	0.9600
Fe2—Cl6	2.183 (3)	С6—Н6В	0.9600
Fe2—Cl5	2.185 (3)	С6—Н6С	0.9600
Fe2—C17	2.189 (4)	С7—Н7А	0.9600
O1—C1	1.189 (10)	С7—Н7В	0.9600
O2—C2	1.206 (11)	С7—Н7С	0.9600
O3—C9	1.368 (13)	C8—C9	1.499 (14)
O3—C10	1.441 (10)	С8—Н8А	0.9700
O3—C10'	1.450 (10)	C8—H8B	0.9700
O4—C9	1.383 (13)	С9—Н9	0.9800
O4—C11	1.442 (10)	C10-C11	1.528 (10)
O4—C11'	1.454 (10)	C10—H10A	0.9700
O5—C12	1.173 (10)	C10—H10B	0.9700
O6—C13	1.201 (10)	C11—H11A	0.9700
O7—C20	1.398 (13)	C11—H11B	0.9700
O7—C21'	1.444 (9)	C10'—C11'	1.529 (10)
O7—C21	1.447 (10)	C10'—H10C	0.9700
O8—C20	1.396 (12)	C10'—H10D	0.9700
O8—C22'	1.443 (10)	C11'—H11C	0.9700
O8—C22	1.446 (10)	C11'—H11D	0.9700
N1—C2	1.386 (12)	C12—C15	1.479 (12)
N1—C1	1.417 (11)	C14—C15	1.342 (11)
N1—C6	1.467 (13)	С16—Н16	0.9300
N2—C3	1.349 (11)	C17—H17A	0.9600
N2—C2	1.382 (12)	С17—Н17В	0.9600
N2—C7	1.473 (12)	С17—Н17С	0.9600
N3—C5	1.302 (11)	C18—H18A	0.9600
N3—C4	1.384 (11)	C18—H18B	0.9600
N3—C8	1.477 (11)	C18—H18C	0.9600
N4—C5	1.316 (10)	C19—C20	1.494 (14)
N4—C3	1.372 (11)	C19—H19A	0.9700

N4—H4	0.8600	С19—Н19В	0.9700
N5—C13	1.344 (11)	C20—H20	0.9800
N5—C12	1.427 (11)	C22—C21	1.530 (10)
N5—C17	1.486 (13)	C22—H22A	0.9700
N6—C14	1.346 (11)	C22—H22B	0.9700
N6—C13	1.394 (13)	C21—H21A	0.9700
N6—C18	1.473 (12)	C21—H21B	0.9700
N7—C16	1.274 (11)	C22'—C21'	1.528 (10)
N7—C15	1.399 (10)	C22'—H22C	0.9700
N7—C19	1.456 (10)	C22'—H22D	0.9700
N8—C16	1.335 (11)	C21'—H21C	0.9700
N8—C14	1.365 (11)	C21'—H21D	0.9700
Cl1—Fe1—Cl3	111.77 (15)	O3—C10—C11	99.2 (16)
Cl1—Fe1—Cl2	109.10 (16)	O3—C10—H10A	111.9
Cl3—Fe1—Cl2	110.66 (17)	C11—C10—H10A	111.9
Cl1—Fe1—Cl4	109.65 (16)	O3-C10-H10B	111.9
Cl3—Fe1—Cl4	108 16 (16)	C11—C10—H10B	111.9
Cl_2 —Fe1—Cl4	107.41 (16)	H10A - C10 - H10B	109.6
C18—Fe2—C16	109.43 (17)	04-C11-C10	97.2 (16)
$C18 - Fe^2 - C15$	109.77 (15)	04— $C11$ — $H11A$	112.3
$C16 - Fe^2 - C15$	109.54 (15)		112.3
$C18 = Fe^2 = C17$	110 21 (18)	04_C11_H11B	112.3
Cl6— $Fe2$ — $Cl7$	109 58 (17)	C10-C11-H11B	112.3
$C15 - Fe^2 - C17$	109.38(17) 108.28(15)	H11A_C11_H11B	109.9
$C_{10} = C_{10} = C_{10}$	100.20(13)	03-010'-011'	109.9
$C_{9} = 03 = C_{10}$	100.2(14) 108.8(12)	03-C10'-H10C	101.4 (17)
C10-O3-C10'	25.3(10)	C11'-C10'-H10C	111.5
$C_{9} - 0_{4} - C_{11}$	107 1 (13)	$O_3 - C_{10} - H_{10}D$	111.5
$C_{9} = 04 = C_{11}$	103.8 (15)	C11'-C10'-H10D	111.5
$C_{11} - O_{4} - C_{11}$	27.7 (10)	H10C-C10'-H10D	109.3
$C_{20} - 07 - C_{21}'$	112 1 (10)	04-C11'-C10'	107.5
$C_{20} = 07 = C_{21}$	106.0 (16)	04-C11'-H11C	111.6
$C_{21} = 07 = C_{21}$	30 3 (14)	C10'-C11'-H11C	111.6
$C_{20} = 0^8 = C_{22}^{22}$	102.7(12)	04-C11'-H11D	111.6
$C_{20} = 08 = C_{22}$	102.7(12) 108.4(14)	C10'-C11'-H11D	111.6
$C_{22}^{(22)} = 08 = C_{22}^{(22)}$	18.9(19)		109.4
$C_{2} = N_{1} = C_{1}$	128 4 (8)	05-012-N5	125.8 (9)
$C_2 = N_1 = C_6$	115 5 (8)	05 - 012 - 015	126.6 (8)
C1 - N1 - C6	116.1 (8)	N5-C12-C15	120.0(0) 107.5(8)
$C_3 = N_2 = C_2$	119.4 (7)	06-C13-N5	107.9(0)
$C_{3} = N_{2} = C_{2}$	121.2 (8)	06	119.9 (8)
$C_2 = N_2 = C_7$	119 3 (8)	N5-C13-N6	116.3 (7)
$C_{2} = N_{2} = C_{1}$	107 5 (7)	C15-C14-N6	1234(7)
$C_{5} N_{3} C_{1}$	107.5(7)	C_{15} C_{14} N8	123.1(7) 108.4(7)
C4-N3-C8	125.4(7) 126.9(7)	N6-C14-N8	108.4(7) 128.2(7)
C_{5} N4 C_{3}	107 2 (7)	C14 - C15 - N7	120.2(7) 106 5 (7)
C5—N4—H4	126.4	C14-C15-C12	122.6 (8)
C3—N4—H4	126.4	N7-C15-C12	130.2 (8)
C13—N5—C12	130.1 (8)	N7-C16-N8	112 6 (8)
010 110 012		010 110	

C13—N5—C17	115.8 (8)	N7—C16—H16	123.7
C12—N5—C17	114.1 (8)	N8—C16—H16	123.7
C14—N6—C13	119.3 (7)	N5-C17-H17A	109.5
C14—N6—C18	122.5 (8)	N5-C17-H17B	109.5
C13—N6—C18	118.1 (8)	H17A—C17—H17B	109.5
C16—N7—C15	106.8 (7)	N5—C17—H17C	109.5
C16—N7—C19	126.5 (7)	H17A—C17—H17C	109.5
C15—N7—C19	126.7 (7)	H17B—C17—H17C	109.5
C16—N8—C14	105.6 (7)	N6	109.5
C16—N8—H8	127.2	N6	109.5
C14—N8—H8	127.2	H18A—C18—H18B	109.5
O1-C1-N1	122.0 (9)	N6—C18—H18C	109.5
O1—C1—C4	128.4 (9)	H18A—C18—H18C	109.5
N1—C1—C4	109.5 (8)	H18B-C18-H18C	109.5
O2—C2—N2	120.6 (9)	N7—C19—C20	111.3 (8)
O2—C2—N1	123.2 (9)	N7—C19—H19A	109.4
N2—C2—N1	116.2 (8)	С20—С19—Н19А	109.4
N2—C3—C4	123.5 (8)	N7—C19—H19B	109.4
N2—C3—N4	129.1 (7)	С20—С19—Н19В	109.4
C4—C3—N4	107.4 (7)	H19A—C19—H19B	108.0
C3—C4—N3	106.5 (8)	O8—C20—O7	105.9 (8)
C3—C4—C1	122.3 (8)	O8—C20—C19	110.7 (9)
N3—C4—C1	130.6 (8)	O7—C20—C19	110.6 (8)
N3—C5—N4	111.3 (8)	O8—C20—H20	109.8
N3—C5—H5	124.3	O7—C20—H20	109.8
N4—C5—H5	124.3	С19—С20—Н20	109.8
N1—C6—H6A	109.5	O8—C22—C21	103.2 (18)
N1—C6—H6B	109.5	O8—C22—H22A	111.1
Н6А—С6—Н6В	109.5	C21—C22—H22A	111.1
N1—C6—H6C	109.5	O8—C22—H22B	111.1
Н6А—С6—Н6С	109.5	C21—C22—H22B	111.1
H6B—C6—H6C	109.5	H22A—C22—H22B	109.1
N2—C7—H7A	109.5	07-C21-C22	98.3 (18)
N2—C7—H7B	109.5	07—C21—H21A	112.1
H7A—C7—H7B	109.5	C22—C21—H21A	112.1
N2—C7—H7C	109.5	07—C21—H21B	112.1
H7A - C7 - H7C	109.5	C^{22} C^{21} H^{21B}	112.1
H7B-C7-H7C	109.5	$H_{21}A = C_{21} = H_{21}B$	109.7
$N_3 - C_8 - C_9$	110.9 (8)	08-022'-021'	103.0(13)
N3—C8—H8A	109.5	08—C22'—H22C	111.2
C9—C8—H8A	109.5	C21'-C22'-H22C	111.2
N3—C8—H8B	109.5	08—C22'—H22D	111.2
C9 - C8 - H8B	109.5	C21'-C22'-H22D	111.2
H8A = C8 = H8B	108.0	$H_{22} - C_{22} - H_{22} - H_{22}$	109.1
03 - 09 - 04	109.3 (10)	07-C21'-C22'	96.4 (14)
03-09-08	111 1 (8)	07-C21'-H21C	112.5
04 - C9 - C8	109 3 (9)	$C^{22'}$ $C^{21'}$ H^{21C}	112.5
O3-C9-H9	109.0	07—C21'—H21D	112.5
04—C9—H9	109.0	$C^{22'}$ $C^{21'}$ H^{21D}	112.5
	107.0	022 -021-11210	114.0

С8—С9—Н9	109.0	H21C—C21'—H21D		110.0
Hydrogen-bond geometry (Å, °)				
D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
N4—H4···O2 ⁱ	0.86	1.93	2.774 (9)	165
N8—H8····O6 ⁱⁱ	0.86	1.91	2.754 (9)	166
C5—H5····Cl5 ⁱ	0.93	2.80	3.650 (11)	153
C8—H8B····O7 ⁱⁱⁱ	0.97	2.29	3.114 (11)	142
C10—H10C…O5 ^{iv}	0.95	2.46	3.098 (11)	124
C10'—H10B····O5 ^{iv}	0.89	2.57	3.384 (11)	153
C10'—H10C····O5 ^{iv}	0.97	2.46	3.384 (11)	159
C16—H16····Cl1 ⁱⁱⁱ	0.93	2.78	3.560 (11)	143
C19—H19A…O4 ^v	0.97	2.48	3.227 (11)	134
С19—Н19А…О5	0.97	2.53	3.167 (11)	123
C22'—H22D…O1	0.97	2.58	3.242 (11)	126

Symmetry codes: (i) -*y*+1, *x*, *z*+1/2; (ii) *y*, -*x*, *z*+1/2; (iii) -*x*+1, -*y*, *z*; (iv) *x*, *y*, *z*+1; (v) -*x*+1, -*y*, *z*-1.

