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Familial hypercholesterolemia (FH) is a monogenic lipid disorder which promotes atherosclerosis and
cardiovascular diseases. Owing to the lack of sufficient published information, this study aims to identify
the potential genetic biomarkers for FH by studying the global gene expression profile of blood cells. The
microarray expression data of FH patients and controls was analyzed by different computational biology
methods like differential expression analysis, protein network mapping, hub gene identification, func-
tional enrichment of biological pathways, and immune cell restriction analysis. Our results showed the
dysregulated expression of 115 genes connected to lipid homeostasis, immune responses, cell adhesion
molecules, canonical Wnt signaling, mucin type O-glycan biosynthesis pathways in FH patients. The find-
ings from expanded protein interaction network construction with known FH genes and subsequent
Gene Ontology (GO) annotations have also supported the above findings, in addition to identifying the
involvement of dysregulated thyroid hormone and ErbB signaling pathways in FH patients. The genes like
CSNK1A1, JAK3, PLCG2, RALA, and ZEB2 were found to be enriched under all GO annotation categories. The
subsequent phenotype ontology results have revealed JAK3I, PLCG2, and ZEB2 as key hub genes contribut-
ing to the inflammation underlying cardiovascular and immune response related phenotypes. Immune
cell restriction findings show that above three genes are highly expressed by T-follicular helper CD4+ T
cells, naïve B cells, and monocytes, respectively. These findings not only provide a theoretical basis to
understand the role of immune dysregulations underlying the atherosclerosis among FH patients but
may also pave the way to develop genomic medicine for cardiovascular diseases.
� 2022 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

FH is a metabolic condition where defective uptake of circulat-
ing LDL particles by the liver leads to the elevation of serum
cholesterol levels (Awan et al., 2021). This chronic condition causes
a high cholesterol deposition in the inner walls of arteries, hasten-
ing atherosclerosis and increase the susceptibility to develop pre-
mature cardiovascular diseases (CVD) (Alhabib et al., 2021;
Fantus et al., 2013). The estimated risk of premature CVDs is
Fig. 1. A & B represents the volcano plots built based on their gene expression distributi
represents log2 fold change (FC) verses average log2 expression values. All the up and d
diagram representing the shared DEGs between the two expression datasets (GSE13985
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20-fold higher for FH patients, compared to the general population
(Villa et al., 2017). FH displays genetic heterogeneity. The disease
can be either monogenic or polygenic, with a variety of molecular
etiologies. Up to 80% of the FH patients have heterozygous loss-of-
function (LoF) mutations in the LDLR (Berberich and Hegele, 2019);
while a minority have LoF mutations in the receptor-binding func-
tional segments of APOB (Andersen et al., 2016); or gain-of-
function (GoF) mutations in PCSK9 (Abifadel et al., 2003). Biallelic
LDLRAP1 gene mutations also exist, but to a much lesser extent.
on across the different datasets. C&D shows the mean difference (MD) plots, which
own regulated genes are shown in red and blue dots, respectively. E shows venny
and GSE6088).
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The monogenic forms of FH can be classified as either homozy-
gous FH (HoFH) or heterozygous FH (HeFH) based on the allelic
status of LDLR (Warden et al., (MA)2000.). In the majority of the
investigated populations, HoFH is seen one in one hundred sixty
thousand to three hundred thousand persons, while HeFH is seen
one in two hundred fifty to three hundred persons (Berberich
and Hegele, 2019). In comparison to HeFH, HoFH results in a much
more severe disease manifestation. The latter also increases the
rate of surgical intervention and death in the mid-twenties (Raal
and Santos, 2012). Approximately, 30–70% of the clinically diag-
nosed FH patients, do not carry pathogenic PCKS9, LDLR, or APOB
variants. However, some of them may carry rare frequency LoF
variants in other FH genes like LIPA, ABCG8, APOE or ABCG5. Addi-
tionally, several high frequency allelic variants, which together
act to influence serum LDL-C concentrations, are also reported
(Paththinige et al., 2017).

FH is traditionally studied as a classical Mendelian disease,
where causative variants perturb LDL binding, internalization and
transportation mechanisms, resulting in the elevation of choles-
terol laden LDL levels in the serum (Brænne et al., 2014; Wu
et al., 2014; Marks et al., 2003). However, the effects of individual
variants and the functional interactions between different variants
in the protein is likely to be influenced by the expression status of
that protein (Li et al., 2019). So, there is a greater need to study the
gene expression changes in FH patients, which potentially con-
tributes to atherosclerosis (Soutar and Naoumova, 2007). In this
context, studying high-throughput gene expression profiling tech-
nologies like cDNA microarrays can provide a rapid and quantifi-
able assessment of thousands of genes spanning the whole
genome (Qin et al., 2021). Moreover, unprecedented developments
taking place in statistical modelling and bioinformatics
approaches, over the past few decades, have given us a greater
advantage in investigating the impact of gene expression changes
on protein networks and pathways (Sabir et al., 2019; Sabir et al.,
2020; Banaganapalli et al., 2021; Banaganapalli et al., 2020). Addi-
tionally, they have also assisted in the identification of potential
druggable biomarkers (Huang, 1999).

The new bioinformatic methods like CIBERSORT, TIMER and
EPIC can effectively characterize immune cell composition of dif-
ferent diseases using large-scale gene expression data (Craven
et al., 2021; Xie et al., 2021). Therefore, owing to the lack of suffi-
cient information, this study aims to uncover potential genetic
biomarkers for FH. A broad range of advanced computational
methods, including differential gene expression analysis, protein
network mapping, hub gene identification, functional enrichment
of biological pathways, and immune cell enrichment analysis were
Table 1
The top ten DEGs (FC > 1.5) of two FH datasets (GSE6088 and GSE13985).

Dataset ID adj.P.Val P.Value

GSE6088 224590_at 0.7801 0.1398758
244635_s_at 0.3488 0.0005374
230170_at 0.3488 0.0004439
1568751_at 0.5388 0.0057808
229823_at 0.0684 6.26E-06
206700_s_at 0.6963 0.0550873
211571_s_at 0.6655 0.0305771
201909_at 0.8386 0.2596399

GSE13985 222413_s_at 0.337 0.0004397
204141_at 0.795 0.2467529
213674_x_at 0.389 0.0112819
227510_x_at 0.424 0.0174138
202110_at 0.402 0.0135719
209160_at 0.374 0.0097469
206698_at 0.625 0.0832517
232535_at 0.514 0.0395612
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used to get a deeper understanding about the molecular abnormal-
ities, which contributes to the development of FH and the associ-
ated health complications.

2. Materials and methods

2.1. FH transcriptome datasets

Two FH transcriptomic datasets were taken from Array Express
(Athar et al., 2019). The first dataset (E-GEOD-13985) consists of
the white blood cell expression profiles of five FH patient samples
and five controls (sex, age, body mass index and life style habits
matched participants), generated on the Affymetrix GeneChip
U133 + 2 (Human Genome) (Režen et al., 2019). The second expres-
sion dataset (E-GEOD-6088) included the white blood cell expres-
sion profiles of 10 FH patients and 13 controls (sex, age, body mass
index and life style habits matched participants), generated via the
HG-U133 + 2 chip (Mosig et al., 2008). The complete details of the
study layout, samples used, RNA extraction, and array hybridiza-
tion protocols are discussed in the original publication (Mosig
et al., 2008).

2.2. Raw expression signals, pre-processing, and detection of DEGs

The processing of raw expression signals was performed with
the Bioconductor package in R software program (Irizarry et al.,
2003; Gautier et al., 2004). The noise reduction and standardiza-
tion of the sample data were achieved by uploading .CEL files into
the Bioconductor tool affy program. The unprocessed expression
signals were standardized to median values by applying the Robust
Multiarray Average (RMA) method (Ritchie et al., 2007). The genes
showing 1.5-fold change (FC) expression difference and which
cleared Benjamini and Hochberg’s false discovery rate (FDR) with
p-value � 0.05 were flagged as DEGs (Gentleman et al., 2004).
The volcano and mean plots were generated using R Program
limma package. All the expression probes were referenced against
Entrez gene IDs, and duplicate transcripts were removed. The DEGs
common to both the datasets were identified with Venny 2.1 webt-
ool (www.bioinfogp.cnb.csic.es/tools/venny).

2.3. Network construction and GO-Annotations

The STRING webserver helps in studying the direct or indirect
interactions between expressed proteins (Banaganapalli et al.,
2020). In this context, the DEGs obtained from the above steps
were used to construct the protein–protein interaction (PPI) net-
t B logFC Gene.symbol

1.529775 �4.54401 3.26 XIST
4.026184 �0.40308 2.39 SH3BGRL2
4.10344 �0.26005 2.33 OSM
3.046385 �2.19903 2.16 RGS13

�5.83931 2.81582 �2.58 RIMS2
�2.02216 �3.88611 �2.73 KDM5D
�2.30615 �3.45333 �2.55 VCAN
�1.15613 �4.94637 �2.23 RPS4Y1
4.839746 0.00587 1.490431 KMT2C
1.219486 �5.02419 1.250299 TUBB2A
3.005055 �2.58596 1.145583 IGHD
2.768416 �2.94226 1.12653 MALAT1

�2.90435 �2.73765 �1.32733 COX7B
�3.08477 �2.46598 �1.35891 AKR1C3
�1.89427 �4.20908 �1.3766 XK
�2.31695 �3.61287 �1.45199 RSBN1L

https://www.bioinfogp.cnb.csic.es/tools/venny


Z. Awan, N. Alrayes, Z. Khan et al. Saudi Journal of Biological Sciences 29 (2022) 3287–3299
work with help of STRING database (Szklarczyk et al., 2017). The
maximum enrichment p-value and the minimal average local clus-
tering coefficient values of the PPI networks were < 1.0x10-16

and > 0.4, respectively. The confidence score of > 0.4 and the max-
imum additional interactions of 10 nodes were used to build the
network. Then GO annotation analysis was performed to find the
most significant terms using the Enrichment Analysis Visualization
Appyter (Clarke et al., 2021). This Appyter allows the generation of
scatterplots, bar charts, hexagonal canvas, Manhattan plots, and

volcano plots (https://appyters.maayanlab.cloud/#/Enrichment_

Analysis_Visualizer). All the protein–protein network was illus-
trated using Cytoscape3.8.2 (Shannon et al., 2003).
Fig. 2. A. The PPI network showing interactions between FH genes through nodes and e
GO-terms like biological processes (BP), molecular function (MF), and cellular component
(red) interacting with known FH genes (in yellow).
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2.4. Identification of network clusters

A Cytoscape plugin called as Molecular Complex Detection
(MCODE), was utilized to look for clusters within the PPI net-
works using the default settings like, k-core is equal to 2, node
score of 0.2, degree cutoff of 2, and network depth of 100
(Bader and Hogue, 2003). Then, hub genes were identified based
on the high MCODE scores (>5) using the cytoHubba plug-in of
Cytoscape. Furthermore, subnetworks were created using known
primary and secondary FH candidate genes (LDLR, LDLRAP1,
PCSK9, APOB, APOA2, GHR, ABCA1, SMARCA4, and EPHX2) and hub
genes.
dges. B-E The scatterplots showing functional enrichment of DEGs against different
s (CC) based their p-values. F. PPI network showing interactions between hub genes

https://appyters.maayanlab.cloud/
https://appyters.maayanlab.cloud/
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2.5. Enrichr-GO annotations of cluster networks

The PPI subnetworks created with hub genes and FH candidate
genes were provided as an input to the Enrichr webserver

(https://maayanlab.cloud/Enrichr) (Xie et al., 2021). The GO analy-
sis option available in Enrichr provides biological information
regarding the involvement of PPI subnetworks in Biological-
Processes (BPs), Cellular-Components (CC), Molecular-Functions
(MFs) and pathway database (Kyoto-Encyclopedia of Genes and
Genomes Pathways (KEGG)). The Benjamini-Hochberg (BH) step-
down method was used for statistical assessment of GO terms at
a p-value of < 0.05 and a combined enrichment score of > 20. The
REVIGO tool was then used to summarize GO terms and to remove
redundant terms (Supek et al., 2011).
2.6. Open target phenotype identification

The hub genes selected from GO enrichment network findings

were further explored in the Open Targets Platform. (http://plat-

form.opentargets.org). This webserver provides unified access to
diverse computational tools to query the causality relationship,
including physical binary interactions, enzymatic reactions, or
functional relationships between therapeutic targets and disease
phenotypes. The query gene list was provided as an input option
in the search box and the output was in the form of an evidence
score for a given target-disease pair. The open target platform asso-
ciation score at a < 0.5 cutoff value was considered significant to
detect the expression status of druggable molecular targets.
2.7. Mapping immune cell specific transcriptional signatures

The DICE database was used to understand how key genes
enriched in all GO annotation terms show immune cell specific
variations (https://dice-database.org/genes/). This database pro-
vides comprehensive information on immune cell expression.
Upon providing the query gene list, this tool displays the expres-
sion level of genes in transcripts per million (TPM) on the x-axis,
and cell types are sorted based on the y-axis of box plot graphs.
The DEGs across all the cell types were identified by the DESeq
package. Here, cell sorting is performed in reference to the gene
expression values, arranged from the highest one to the lowest
one. The x- and y-axes show pair-wise comparisons of two cell
types. Statistical significance from log2 fold changes to P values
is demonstrated in an interactive manner.
Table 2
Top 4 gene ontology enrichment terms obtained by Appyters-GO annotations for biolog
Encyclopedia of Genes and Genomes (KEGG) pathways.

Go Process term

BP Regulation of canonical Wnt signaling pathway (GO:006
Regulation of mRNA splicing, via spliceosome (GO:0048
Anion homeostasis (GO:0055081)
Regulation of dendritic cell cytokine production (GO:00

CC Coated vesicle (GO:0030135)
Transcription factor TFIID complex (GO:0005669)
Intracellular membrane-bounded organelle (GO:004323
Endoplasmic reticulum membrane (GO:0005789)

MF Pyruvate transmembrane transporter activity (GO:0050
Cadherin binding (GO:0045296)
mRNA binding (GO:0003729)
Oxidoreduction-driven active transmembrane transport

KEGG Mucin type O-glycan biosynthesis
Alanine, aspartate and glutamate metabolism
Various types of N-glycan biosynthesis
D-Glutamine and D-glutamate metabolism
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3. Gene-Drug interactions

The druggability of the query genes was determined using the
Drug–Gene Interaction database (DGIdb) (Cotto et al., 2018). DGIdb
is a centralized repository for data on drug-gene interactions and
the druggability of each query gene is collected from multiple
sources. The default filters like approved drugs, cytotoxic agents,
and immunotherapeutic drug interactions from nine disease-
agnostic source databases were used during the searching step.
The drug-gene interaction output data of queried genes was fur-
ther filtered based on interaction types (activator or inhibitor)
and molecular category of gene (transporter, domain, surface pro-
tein, G-protein receptor etc.), at a cut-off interaction score of > 0.03.
4. Results

4.1. The analysis of DEGs

The gene expression profile of E-GEOD-13985 dataset revealed
a total of 1363 DEGs (650 upregulated and 713 downregulated).
In E-GEOD-6088 dataset, there were 1266 DEGs (589 up-
regulated and 677 down-regulated). The comparison of DEGs
across the datasets using VENN plot, has detected 115 shared
genes (47 upregulated and 68 down regulated) (Fig. 1A-E). These
shared genes were selected for further functional analysis with
an underlying assumption that they have a critical role in hyperc-
holesterolemia (Table 1).
4.2. Analysis of STRING PPI network and Appyters-GO annotations

PPI networks demonstrate the physical connectivity among dif-
ferent protein partners, and their disturbance could negatively
impact broad range of molecular mechanisms essential for the cel-
lular function. The PPI networks of 115 shared DEGs were
expanded by 10 additional interactor proteins with a confidence
value of > 0.4. The protein–protein interaction network generated
was characterized with 151 nodesconnected to 323 edges with
4.28 Å as the average node degree and avg, local clustering-
coefficient value of 0.473 (Fig. 2A).

GO annotations provide biological knowledge about genes and
their protein products. GO enrichment findings of 115 shared DEGs
with Appyter tool, has shown their annotations in 153 BP, 22 CC,
29 MF, and 10 KEGG pathways. The top key enrichment terms
were, the controlling the Wnt signaling pathway (GO:00060828)
under BP category with an p-value of < 0.0001, coated vesicle
ical processes (BP), cellular components (CC), molecular functions (MF), and Kyoto

p-value q-value

0828) 0.000137 0.063634
024) 0.000201 0.063634

0.000347 0.063634
02730) 0.000347 0.063634

0.001593 0.183228
0.014586 0.244397

1) 0.014996 0.244397
0.026371 0.244397

833) 0.000347 0.052392
0.003165 0.18173
0.00492 0.18173

er activity (GO:0015453) 0.004995 0.18173
0.019385 0.620672
0.020414 0.620672
0.022539 0.620672
0.029401 0.620672

https://maayanlab.cloud/Enrichr
http://platform.opentargets.org/
http://platform.opentargets.org/
https://dice-database.org/genes/
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(GO:0030135) under cellular component category with an p-value
of < 0.001, pyruvate transmembrane transporter activity
(GO:0050833) under molecular functions category with an p-
value of < 0.0003 and mucin type O-glycan biosynthesis pathway
(map00512) under pathways term (p-value of < 0.01) (Fig. 2B-E,
Table 2).
4.3. FH network clusters and Enrichr-GO annotations

In protein networks, protein partners in a cluster share similar
functional characteristics, and hub genes are the biologically inter-
related nodes in cluster. TheMCODE plugin of the Cytoscape identi-
fies the clusters in a given protein network. The protein interaction
network of DEGs revealed a cluster with 33 nodes and 429 edges
with an Maximum Clique Centrality (MCC) algorithm score of
Fig. 3. A. The Clustergram of Enrich tool shows the enrichment of FH genes under diffe
components (CC). The input genes are represented in columns and matrices represents th
gene sets are represented by each dot against the odds ratios. x- and y- axes shows odd
shows interconnectivity between different pathways enriched by hub genes.

3292
26.812. This MCODE cluster was then enriched with 9 FH candidate
genes (APOA2, APOB, GHR, LDLR, LDLRAP1, ABCA1, PCSK9, SMARCA4,
and EPHX2) to extend the PPI network for subsequent analysis
(Fig. 2F). The FH nodes interacting with DEG edges with an average
STRINGDB interactionevidence scoreof >0.5werefilteredout.Of the
FH genes, APOA2 is found interacting with 6 genes (APOB, ABCA1,
TBL1X, CREBBP, EP300, and LDLR), APOB interacting with 8 genes
(PCSK9, ABCA1, LDLR, LDLRAP1, ACTB, GAPDH, AKT1, and APOA2),
GHR interactingwith 7 genes (TP53, GRB2, JAK3, SRC, MAPK1,MAPK3,
and PIK3CA), LDLR interactingwith10 genes (LDLRAP1, GAPDH, ACTB,
AKT1, EGFR, CTNNB1, ABCA1, PCSK9, APO2A, and APOB), LDLRAP1
interactingwith3genes (PCSK9,APOB, and LDLR),ABCA1 interacting
with 12 genes (LDLR, PCSK9, CREBBP, EP300, CDC42, APOPA2, APOB,
AKT1, TBL1X, GAPDH, ACTB, and RHGA), PCSK9 interacting with 14
genes (APOB, KRAS, HRAS, CDC42, AKT1, GAPDH, LDLRAP1, LDLR, ACTB,
rent GO terms like biological processes (BP), molecular function (MF), and cellular
e enriched terms of those genes. B. The volcano plots illustrating the significance of
s ratios and -log(p-value) of the each gene set, respectively. C. The network wiring
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PTEN, MAPK3, ABCA1, TP53, and EGFR), SMARCA4 interacting with 15
genes (EP300, KRAS, HRAS, PIK3CA, NOTCH1, CREBBP, PTEN, AKT1,
TP53, HDAC1, GAPDH, EGFR, ACTB, CTNNB, and MYC).

We used Enrichr-GO enrichment analysis to further understand
how cluster genes in the network are perturbed in the FH condi-
tion. Their contribution in 475 BP, 49 CC, 92 MF, and 31 KEGG path-
ways was discovered. (Fig. 3A-C). The most significant term in the
biological processes category was the regulation of intracellular
signal transduction (GO:1902531) with an p-value of 6X10-11, fol-
lowed by positive regulation of transcription (GO:00045893) with
an p value of 1.31E-10. Under the cellular component category, the
most significant term was the intracellular membrane-bounded
organelle (GO:0043231) with a p-value of 2.51X10-08, followed
by the cell-substrate junction (GO:0030055) with a p-value of
1.98X10-11. Under the molecular functions category, RNA pol
Fig. 4. A. Bar graph represents the significant pathways enriched by DEGs at a p-value of
the hub genes.
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II-specific DNA-binding-TF-binding (GO:00061629) with a p-
value of 6.08X10-07, followed by DNA-binding TF binding
(GO:00140297) with a p-value of 1.03X10-06 were the most signif-
icant terms. In KEGG pathways category, thyroid hormone signal-
ing pathway was the key enrichment term with a P-value of
2.75X10-26 followed by the ErbB signaling pathway with a P-
value of 2.06X10-18. Of all the genes, CSNK1A1, JAK3, PLCG2, RALA,
and ZEB2 were found to be enriched under all GO annotation cate-
gories (Fig. 4A-B, Table 3).

4.4. Open target phenotype identification

The open target platform makes use of the systematic ‘‘experi-
mental factor ontology” (EPO) to identify both direct and indirect
correlations between the target gene and disease phenotype. In
< 0.05. B. The thyroid hormone signaling pathway with red color boxes highlighting



Table 3
Top 4 GO terms after cluster enrichment with the 9 FH genes obtained by Enrichr-GO annotations for biological processes (BP), cellular components (CC), molecular functions
(MF), and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways.

Annotation Term Overlap P-value Adjusted
P-value

Odds Ratio Combined
Score

Genes

BP MAPK cascade (GO:0000165) 13/303 7.48E-16 9.76E-13 44.10362069 1536.088384 CUL3; EGFR; NRAS; PIK3CA; MYC; UBC;
MAPK1; GRB2; KRAS; RPS27A; HRAS; JAK3;
MAPK3

Fc-gamma receptor signaling
pathway involved in
phagocytosis (GO:0038096)

9/71 1.91E-15 9.76E-13 120.3931452 4080.57903 CDC42; HSP90AA1; PIK3CA; SRC; PLCG2;
MAPK1; GRB2; ACTB; MAPK3

Fc-gamma receptor signaling
pathway (GO:0038094)

9/72 2.18E-15 9.76E-13 118.4761905 3999.913746 CDC42; HSP90AA1; PIK3CA; SRC; PLCG2;
MAPK1; GRB2; ACTB; MAPK3

Fc receptor mediated
stimulatory signaling pathway
(GO:0002431)

9/74 2.82E-15 9.76E-13 114.8192308 3846.700768 CDC42; HSP90AA1; PIK3CA; SRC; PLCG2;
MAPK1; GRB2; ACTB; MAPK3

CC Focal adhesion (GO:0005925) 11/387 1.63E-11 8.61E-10 26.0518617 647.0765271 CDC42; RALA; ARF1; SRC; MAPK1; CTNNB1;
KRAS; EGFR; ACTB; RHOA; MAPK3

Cell-substrate junction
(GO:0030055)

11/394 1.98E-11 8.61E-10 25.56657963 630.099147 CDC42; RALA; ARF1; SRC; MAPK1; CTNNB1;
KRAS; EGFR; ACTB; RHOA; MAPK3

Vesicle (GO:0031982) 8/226 2.56E-09 7.41E-08 28.9893578 573.5459587 UBC; PLCG2; AKT1; RPS27A; GAPDH; EGFR;
ACTB; RHOA

Intracellular membrane-
bounded organelle
(GO:0043231)

24/5192 2.51E-08 5.45E-07 7.63622291 133.6477075 CREBBP; HSP90AA1; NOTCH1; HDAC1;
CSNK1A1; CUL3; PTEN; EGFR; ACTB; RHOA;
ZEB2; MYC; UBC; PLCG2; MAPK1; EP300;
AKT1; CTNNB1; GRB2; TBL1X; RPS27A;
GAPDH; TP53; MAPK3

MF GTP binding (GO:0005525) 7/189 2.09E-08 1.31E-06 29.26775148 517.5648946 CDC42; RALA; ARF1; NRAS; KRAS; HRAS;
RHOA

Phosphatase binding
(GO:0019902)

6/114 2.93E-08 1.31E-06 40.86213992 708.7297409 MAPK1; CTNNB1; JAK3; TP53; EGFR; MAPK3

Purine ribonucleoside
triphosphate binding
(GO:0035639)

9/460 3.93E-08 1.31E-06 16.22727273 276.6892164 CDC42; RALA; ARF1; NRAS; HSP90AA1;
AKT1; KRAS; HRAS; RHOA

Kinase binding (GO:0019900) 9/461 4.01E-08 1.31E-06 16.19054204 275.7614857 CDC42; SRC; PLCG2; CTNNB1; GRB2; TP53;
EGFR; ACTB; RHOA
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this context, we explored the association of the above mentioned
CSNK1A1, JAK3, PLCG2, RALA, and ZEB2 genes sourced in cardiac
and immune disorder-related diseases in the Open Target Platform.
Of those five genes, three genes (JAK3, PLCG2, and ZEB2) have
shown a significant overall association score of 0.37 in both cardiac
and immune disorder-related diseases. ZEB2 and PLCG2 genes have
shown stronger associations with coronary artery disease, with an
association value>0.3. JAK3 deficiency is significantly correlated
with a multitude of immune-associated disorders, includes tuber-
culosis, severe combination immunodeficiency, and rheumatoid
arthritis, with a score>0.5 (Fig. 5, Table 4).

4.5. Immune cells expression analysis

The transcript expression analysis of JAK3, PLCG2, and ZEB2
genes has been performed to explore their immune cell type
restriction. The JAK3 is expressed by T-follicular helper CD4+ T cells
(272 TPM), memory TREGs CD4+ T cell (235 TPM), TH2 CD4+ T cell
(213 TPM), naïve CD4+ T cell (201 TPM), naïve CD8+ T cell (190
TPM), TH17 CD4+ T cell (188 TPM), TH1 CD4+ T cell (187 TPM),
naive TREG CD4+ T cell (175 TPM), TH1/17 CD4+ T cell (133
TPM), CD4+ T cell naïve [activated] (126 TPM), activated CD8+ T cell
naïve (96 TPM), NK cell CD56 dim CD16+ (94 TPM), B cell naïve (80
TPM), monocyte non-classical (52 TPM), monocyte classical (27
TPM) (p=<0.001). Of the all-cell types, T-follicular helper CD4+ T
cells has shown highest correlation with naïve CD8+ T cell (log2
fold change or lfc is 1.33), NK cell CD56 dimCD16+ (lfc is 1.49), B
cell naïve (lfc is 1.58), Monocyte non-classical (lfc is 1.95), Mono-
cyte classical (lfc is 2.56) (p=<0.001) (Fig. 6A-C).

For PLCG2, the highest expression was seen in naïve B cells (199
TPM), NK cell CD56dim CD16+ (103 TPM), Monocyte non-classical
(86 TPM) and Monocyte classical (41 TPM) (p=<0.001). Interest-
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ingly, the expression status of PLCG2 gene in naïve B cells is highly
correlated Monocyte classical (lfc is 1.6), T-follicular helper CD4+

cells (lfc is 7.27), naive CD8+ T cell (lfc is 7.43), naive CD4+ T cell
(lfc is 7.85), memory TREGs CD4+ T cell (lfc is 7.74), TH1 CD4+ T cell
(lfc is 8.85), activated naive CD8+ T cell (lfc is 8.31), naive TREG
CD4+ T cell (lfc is 9.11), TH17 CD4+ T cell (lfc is 8.98), TH1/17
CD4+ T cell (lfc is 9.46), TH2 CD4+ T cell (lfc is 9.61) and naive
[activated] CD4+ T cell (lfc is 9.07) (p=<0.001).

In case of ZEB2, non-classical monocyte (TPM 106), NK cell
CD56dim CD16+ (TPM 89), classical monocyte (TPM 84) cells
showed the higher expression over naive B cell (TPM 32), TH1
CD4+ T cell (TPM 7) and activated naive CD8+ T cell (TPM 4)
(p=<0.001). The gene expression status of non-classical monocytes
is highly correlated with Naïve T cell (lfc is 8.31) and naive TREG
CD4+ T cells (lfc is 8.47) (p=<0.001).

4.5.1. Drug-gene interaction analysis
Druggability analysis on the three filtered DEGs, i.e., JAK3,

PLCG2, and ZEB2 was done utilizing the DGidb webserver. Our find-
ings suggest that JAK3 and PLCG2 genes have the potential to act
as therapeutic targets owing to their drug interaction score
of > 0.05. Both of them can be effectively inhibited by Ruxolitinib
and Ibrutinib molecules (Table 5). Whereas, no drug targeting
ZEB2 gene was found in our analysis.

5. Discussion

Over the recent decades, systems biology approaches have been
widely used to study the gene expression datasets available in
open resource databases like GEO and they have identified numer-
ous disease genes and molecules (Sahly et al., 2021; Mujalli et al.,
2020). An integrated bioinformatics method is used in this context



Fig. 5. Open Target Platform based gene-disease phenotype analysis showing the association of JAK3, ZEB2 and PLCG2 genes with cardiac and immune related diseases. The
disease names are mentioned in bubble, the shade and size of bubble color determine based on the gene-disease assocation score of > 0.1.
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to identify relevant genes and pathways associated with FH. With
help of R Affy and Limma packages, we identified 1363 DEGs for
the E-GEOD-13985 dataset and 1266 DEGs for E-GEOD-6088. The
comparison of DEGs from both datasets using VENN plot analysis
has detected 115 shared genes in the blood expression profile of
FH patients.

The GO database is a comprehensive biological resource for
understanding protein function. Each gene or protein is annotated
against GO terms, falling into distinct ontologies like MF, BP, and
CC (du Plessis et al., 2011). The top key enrichment terms enriched
for the 115 shared FH genes are the regulation of canonical Wnt
signaling pathway under the biological processing category, and
3295
mucin type O-glycan biosynthesis pathway (GO:0006488) under
the KEGG pathways category. The canonical Wnt signalling, which
determines cell proliferation and tissue homeostasis, is known to
be modulated by cholesterol through Dishevelled (Dvl) protein.
Dysregulation of Wnt signalling in FH patients supports that hyper
cholesterololemia reduces the risk of cancer development (Sheng
et al., 2014). Moreover, dysregulation of the mucin type O-glycan
pathway may negatively impact the O-glycosylation of class A
repeats in LDLR, whose stable expression is essential for LDL
absorption into cells (Pedersen et al., 2014).

The continuous deposition of cholesterol and other lipids in
the blood vessel wall promotes local hyperplasia, cytokine secre-



Table 4
Top 5 Open Target associated disease phenotypes for the 3 genes that were found common in all Enrichr-GO annotation terms (JAK3, ZEB2, and PLCG2).

Gene name Overall
Association
Score

Genetic
Associations

Somatic
Mutations

drugs Pathways
Systems
Biology

textMining Rna
Expression

Animal
Models

JAK3 T-B + severe combined
immunodeficiency due to JAK3
deficiency

0.79354891 0.86210536 No data No data No data No data No data 0.639792477

Rheumatoid arthritis 0.60889198 No data No data 0.978608 No data 0.459466938 No data No data
Ulcerative colitis 0.58868596 No data 0.455948098 0.845344 No data 0.094824248 0.105747791 0.311929292
Ankylosing spondylitis 0.47300062 No data No data 0.777442 No data 0.012158616 No data No data
Immune system disease 0.4638375 No data No data 0.759913 No data 0.061279424 No data No data

ZEB2 Coronary artery disease 0.37565129 0.61093509 No data No data No data 0.139655214 No data No data
Migraine disorder 0.32028527 0.52684495 No data No data No data No data No data No data
Crohn’s disease 0.28942152 0.47607643 No data No data No data No data No data No data
Inflammatory bowel disease 0.27025168 0.4427197 No data No data No data 0.036475848 No data No data
Acute myeloid leukemia 0.25080082 No data No data No data 0.371977657 0.811412861 No data No data

PLCG2 PLCG2-associated antibody
deficiency and immune
dysregulation

0.69828022 0.78440264 No data No data No data 0.100353358 No data No data

NLRP12-associated hereditary
periodic fever syndrome

0.56458052 0.68230439 No data No data No data No data No data No data

Venous thromboembolism 0.4358949 0.71701402 No data No data No data No data No data No data
Coronary artery disease 0.4320773 0.71073435 No data No data No data No data No data No data
Inflammatory bowel disease 0.40521025 0.6638044 No data No data No data 0.054713772 No data No data

Z. Awan, N. Alrayes, Z. Khan et al. Saudi Journal of Biological Sciences 29 (2022) 3287–3299
tions, macrophage invasions and macrophage foam cell forma-
tion, which are the eventual underlying cause of early onset of
atherosclerosis and cardiovascular diseases (Falk, 2006; Vallejo-
Vaz et al., 2016; Heusch et al., 2014). However, rather than single
gene actions, the chronic disease like atherosclerosis involves the
action of perturbed protein networks, Therefore, based on the
DEGs identified in FH patients, we initially constructed protein–
protein networks and further decomposed it into a functional
cluster. In this context, we extended the protein network cluster
with 9 FH candidate genes (APOA2, APOB, GHR, LDLR, LDLRAP1,
ABCA1, PCSK9, SMARCA4, and EPHX2) and performed their GO
annotations.

Network clusters are characterized by extensive connectivity
between a set of genes, and GO annotations provide their biolog-
ical interpretation (Zhong and Xie, 2007). The top significant GO
terms in the biological processes category were the regulation
of intracellular signal transduction and positive regulation of
transcription, DNA-templated. The dysfunction of lipid homeosta-
sis, PI3K/AKT signaling transduction pathways, monocyte chemo-
taxis, macrophage migration, and neovascularization are some of
the atherosclerotic plaque formation characteristics (Li et al.,
2018; Zhao et al., 2021). The accumulation of LDL particles leads
to the formation and deposition of fibrous plaques in the suben-
dothelial space, the eventual narrowing of arterial diameter leads
to heart ischemia and myocardial infarction (35). In KEGG path-
ways category, thyroid hormone signaling pathway was the key
enrichment term followed by ErbB signaling pathway. Since thy-
roid hormones are known to influence lipid homeostasis in the
liver, hypothyroidism can cause hypercholesterolemia, which is
commonly observed in patients with hypothyroidism (Delitala
et al., 2017). Hypercholesterolemia in hypothyroidism leads to
simultaneous diminishing control by triiodothyronine (T3) of
SREBP-2 protein, which regulate the synthesis of cholesterol by
modifying the HMG-CoA enzyme activity (Duntas and Brenta,
2018). Cholesterol levels are known to influence EGFR signaling
processes by negatively affecting the receptor function and traf-
ficking (Pike and Casey, 2002). Moreover, EGFR inhibition is
shown to be useful for the treatment of hypercholesterolemia in
high-fat-diet-fed Mitogen-inducible gene 6 (Mig-6) Mig-6d/d mice
(Lee et al., 2014). GO results have shown that 5 (CSNK1A1, JAK3,
PLCG2, RALA, ZEB2) network cluster genes were commonly
enriched against all annotation terms. Then open target
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platform-based correlations between the target gene and disease
phenotypes revealed that ZEB2, JAK3 and PLCG2 genes are highly
associated with cardiovascular and immunology related
phenotypes.

The JAK3 is a tyrosine kinase protein, whose critical role in
the cytokine receptor signal transduction pathway is very impor-
tant for T-lymphocyte differentiation and function (Murray,
2007). A defective JAK3 signalling pathway is important for a
multitude of immune-associated disorders, includes atheroscle-
rotic process. Our immune cell restriction analysis findings show
that JAK3 expression is highly correlated with T-follicular helper
CD4+T cells, which stimulate atherosclerosis and additional CVDs
(Methe et al., 2005). JAK3 has been an ideal molecular target for
several immunomodulators (García-Bermúdez et al., 2015;
García-Bermúdez et al., 2015). Ruxolitinib is a dual JAK1 and
JAK2 inhibitor with biological IC50s in the single digit nanomo-
lar range for both kinases. A sixfold selectivity over Tyk2 and
approximately 130-fold selectivity over JAK3 is represented
within the JAK family members (Wu et al., 2019). Ibrutinib
(PCI-32765) is a strong Brutons tyrosine kinase (Btk) inhibitor
with an IC50 of 0.5 nM in cell-free tests. It is shown to act
as a potent inhibitor to Bmx, CSK, FGR, BRK, and HCK, but less
potent to EGFR, Yes, ErbB2, JAK3, and other kinases (van
Vollenhoven et al., 2015).

The second gene PLCG2, drives the hydrolysis of membrane
phospholipids to secondary messengers IP3 and diacylglycerol
using calcium as a cofactor. PLCG2 variants are reported to con-
tribute to autoinflammation and immune dysregulation (Sims
et al., 2017). Our immune restriction analysis findings have con-
firmed the elevated expression of PLCG2 in naïve B cells, NK cells,
and monocytes. The third gene ZEB2 belongs to the Zfh1 family
of zinc finger/homeodomain proteins, which act as DNA binding
transcriptional inhibitors (Bar Yaacov et al., 2018). The activity of
ZEB2 is strongly related to dyslipidemia, metabolic changes, and
CD8 + T cell alterations seen in atherosclerotic plaques
(Fernandez, et al., 2020). Our immune cell restriction analysis
results show that monocytes show higher expression of ZEB2 than
native B cells or TH1 CD4 + T cell. In the hematopoietic system,
Zeb2 together with Tbx21 (Tbet) promotes natural killer (NK) cell
maturation and CD8 + T cells, and inactivation of ZEB2 dysregulates
hematopoiesis with neutrophilia and monocyte loss, which vali-
dates our findings (Li et al., 2017).



Fig. 6. DICE tool shows the expression restriction of (A) JAK3, (B) ZEB2 and (C) PLCG2 genes across 13 immune cells in the form of box plots and pairwise comaprsion graphs.

Table 5
Drug-Gene interaction on DEGs.

Gene Drug Interaction Type & Directionality Sources Query Score Interaction Score

JAK3 RUXOLITINIB inhibitor DTC JAX-CKB GuideToPharmacology 1.83 0.51
IBRUTINIB inhibitor)= GuideToPharmacology 0.38 0.05

PLCG2 IBRUTINIB n/a CGI DoCM 1.14 8.32
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Even though the current study used a thorough bioinformatic
analysis, some technical limitations or weaknesses could not be
ruled out. Owing to the small amount of data, our results could
not be generalized to a larger number of FH patients. The accuracy
of the analytical findings can be improved by enlarging the sam-
3297
ples. Furthermore, while it can be described to certain extent that
hub genes are strongly involved in FH pathogenesis and may
potentially serve as key biomarkers for therapeutic molecules,
future research work on animal models or cell line models is
required to validate our findings.
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6. Conclusion

This studyhasdetected theexpressiondifferencesof115genes in
the FH samples compared to the controls. Functional ontology find-
ingshave linked these genes to intracellular lipoproteinmetabolism,
immune responses, cell adhesion molecules, canonical Wnt signal-
ing, mucin type O-glycan biosynthesis pathways in FH patients.
The expanded protein interaction network construction,GO annota-
tions, and open target analysis has revealed ZEB2, JAK3 and PLCG2
genes as the key hub genes, which connects cardiovascular and
immune response related phenotypes. These findings not only offer
ahypothetical basis for betterunderstanding immunedysregulation
mechanisms underlying the atherosclerosis among FH patients, but
also open the path for the development of therapeutic targets to
reduce the cardiovascular disease burden in FH patients.

Ethical approval

This study does not require any ethical approval as the publicly
available gene expression datasets have been used.

Data availability statement

The article includes all datasets studied for this investigation.

CRediT authorship contribution statement

Zuhier Awan: Conceptualization, Data curation, Funding acqui-
sition, Methodology, Project administration, Validation, Writing –
original draft. Nuha Al-Rayes: Methodology. Zeenath Khan: .
Majid Al Mansouri: Data curation, Validation. Abdulhadi Ibrahim
H. Bima: Validation. Haifa Almukadi: Validation. Hussam Ibra-
him Kutbi: Methodology, Validation. Preetha Jayasheela Shetty:
Methodology, Validation. Noor Ahmad Shaik: Conceptualization,
Validation, Writing – original draft. Babajan Banaganapalli:
Conceptualization, Data curation, Formal analysis, Methodology,
Software, Validation, Visualization, Writing – original draft.

Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgement

The authors extend their appreciation to the Deputyship for
Research & Innovation, Ministry of Education in Saudi Arabia for
funding this research work through the project number (IFPRC-
059-140-2020)” and King Abdulaziz University, DSR, Jeddah, Saudi
Arabia.
References

Awan, Z.A., Rashidi, O.M., Al-Shehri, B.A., Jamil, K., Elango, R., Al-Aama, J.Y., Hegele,
R.A., Banaganapalli, B., Shaik, N.A., 2021. Saudi Familial Hypercholesterolemia
Patients With Rare LDLR Stop Gain Variant Showed Variable Clinical Phenotype
and Resistance to Multiple Drug Regimen. Front Med (Lausanne). 8. https://doi.
org/10.3389/fmed.2021.694668.

Alhabib, K.F., Al-Rasadi, K., Almigbal, T.H., Batais, M.A., Al-Zakwani, I., Al-Allaf, F.A.,
Al-Waili, K., Zadjali, F., Alghamdi, M., Alnouri, F., Awan, Z., Kinsara, A.J.,
AlQudaimi, A., Almahmeed, W., Sabbour, H., Traina, M., Atallah, B., Al-Jarallah,
M., AlSarraf, A., AlSayed, N., Amin, H., Altaradi, H., Cheng, X., 2021. Familial
Hypercholesterolemia in the Arabian Gulf Region: Clinical results of the Gulf FH
Registry. PLoS ONE 16 (6), e0251560.

Fantus, D., Awan, Z., Seidah, N.G., Genest, J., 2013. Aortic calcification: Novel insights
from familial hypercholesterolemia and potential role for the low-density
lipoprotein receptor. Atherosclerosis. 226 (1), 9–15.
3298
Villa, G., Wong, B., Kutikova, L., Ray, K.K., Mata, P., Bruckert, E., 2017. Prediction of
cardiovascular risk in patients with familial hypercholesterolaemia. Eur. Heart J.
Qual. Care Clin. Outcomes. 3 (4), 274–280.

Berberich, A.J., Hegele, R.A., 2019. The complex molecular genetics of familial
hypercholesterolaemia. Nat. Rev. Cardiol. 16 (1), 9–20.

Andersen, L.H., Miserez, A.R., Ahmad, Z., Andersen, R.L., 2016. Familial defective
apolipoprotein B-100: A review. J. Clin. Lipidol. 10 (6), 1297–1302.

Abifadel, M., Varret, M., Rabès, J.-P., Allard, D., Ouguerram, K., Devillers, M., Cruaud,
C., Benjannet, S., Wickham, L., Erlich, D., Derré, A., Villéger, L., Farnier, M.,
Beucler, I., Bruckert, E., Chambaz, J., Chanu, B., Lecerf, J.-M., Luc, G., Moulin, P.,
Weissenbach, J., Prat, A., Krempf, M., Junien, C., Seidah, N.G., Boileau, C., 2003.
Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat.
Genet. 34 (2), 154–156.

Warden, B.A., Fazio, S., Shapiro, M.D., et al., (MA)2000.. Familial
Hypercholesterolemia: Genes and Beyond. Endotext. South Dartmouth.

Raal, F.J., Santos, R.D., 2012. Homozygous familial hypercholesterolemia: current
perspectives on diagnosis and treatment. Atherosclerosis. 223 (2), 262–268.

Paththinige, C.S., Sirisena, N.D., Dissanayake, V., 2017. Genetic determinants of
inherited susceptibility to hypercholesterolemia - a comprehensive literature
review. Lipids Health Dis. 16 (1), 103.

Brænne, I., Reiz, B., Medack, A., Kleinecke, M., Fischer, M., Tuna, S., Hengstenberg, C.,
Deloukas, P., Erdmann, J., Schunkert, H., 2014. Whole-exome sequencing in an
extended family with myocardial infarction unmasks familial
hypercholesterolemia. BMC Cardiovasc. Disorders. 14 (1). https://doi.org/
10.1186/1471-2261-14-108.

Wu, W.-F., Sun, L.-Y., Pan, X.-D., Yang, S.-W., Wang, L.-Y., Veitia, R.A., 2014. Use of
targeted exome sequencing in genetic diagnosis of Chinese familial
hypercholesterolemia. PLoS ONE 9 (4), e94697. https://doi.org/10.1371/
journal.pone.0094697.

Marks, D., Thorogood, M., Neil, H.A.W., Humphries, S.E., 2003. A review on the
diagnosis, natural history, and treatment of familial hypercholesterolaemia.
Atherosclerosis. 168 (1), 1–14.
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