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ABSTRACT The NCBI Gene Expression Omnibus (GEO) provides tools to query and
download transcriptomic data. However, less than 4% of microbial experiments include
the sample group annotations required to assess differential gene expression for high-
throughput reanalysis, and data deposited after 2014 universally lack these annotations.
Our algorithm GAUGE (general annotation using text/data group ensembles) automati-
cally annotates GEO microbial data sets, including microarray and RNA sequencing stud-
ies, increasing the percentage of data sets amenable to analysis from 4% to 33%.
Eighty-nine percent of GAUGE-annotated studies matched group assignments generated
by human curators. To demonstrate how GAUGE annotation can lead to scientific
insight, we created GAPE (GAUGE-annotated Pseudomonas aeruginosa and Escherichia
coli transcriptomic compendia for reanalysis), a Shiny Web interface to analyze 73
GAUGE-annotated P. aeruginosa studies, three times more than previously available.
GAPE analysis revealed that PA3923, a gene of unknown function, was frequently differ-
entially expressed in more than 50% of studies and significantly coregulated with genes
involved in biofilm formation. Follow-up wet-bench experiments demonstrate that
PA3923 mutants are indeed defective in biofilm formation, consistent with predictions
facilitated by GAUGE and GAPE. We anticipate that GAUGE and GAPE, which we have
made freely available, will make publicly available microbial transcriptomic data easier
to reuse and lead to new data-driven hypotheses.

IMPORTANCE GEO archives transcriptomic data from over 5,800 microbial experi-
ments and allows researchers to answer questions not directly addressed in pub-
lished papers. However, less than 4% of the microbial data sets include the sample
group annotations required for high-throughput reanalysis. This limitation blocks a
considerable amount of microbial transcriptomic data from being reused easily.
Here, we demonstrate that the GAUGE algorithm could make 33% of microbial data
accessible to parallel mining and reanalysis. GAUGE annotations increase statistical
power and, thereby, make consistent patterns of differential gene expression easier
to identify. In addition, we developed GAPE (GAUGE-annotated Pseudomonas aerugi-
nosa and Escherichia coli transcriptomic compendia for reanalysis), a Shiny Web inter-
face that performs parallel analyses on P. aeruginosa and E. coli compendia. Source
code for GAUGE and GAPE is freely available and can be repurposed to create com-
pendia for other bacterial species.

KEYWORDS Pseudomonas aeruginosa, biofilms, bioinformatics, gene expression,
genomics

The NCBI Gene Expression Omnibus (GEO) is a public archive of high-throughput
functional genomics data that includes microarray and RNA sequencing (RNA-seq)

data submitted by the research community (1, 2). To date, GEO stores data from more
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than 130,000 studies, with over 3.8 million samples. Each submitted study has a unique
GEO series (GSE) record that provides minimum information as defined in the
Minimum Information About a Microarray Experiment (MIAME) (3) and Minimum
Information About a Next-generation Sequencing Experiment (MINSEQE) (https://www
.ncbi.nlm.nih.gov/geo/info/MIAME.html) guidelines. Unfortunately, these guidelines do
not require researchers to identify experimental groups explicitly, impeding our ability
to use computer programs to reanalyze these data. Recognizing this deficiency and
others, the GEO staff has manually added this information to selected GEO records,
turning them into curated GEO “DataSets” (GDS) and “Profiles,” which allow advanced
data display and analysis provided on the GEO Web portal. In our previous work, we
launched the user-friendly Shiny Web application ScanGEO, which permits investiga-
tors to interrogate the differential expression of a custom list of genes across all GDS of
a species or a subset of studies of interest (4). ScanGEO dramatically facilitates the
rapid analysis of a relatively large number of data sets, which increases statistical
power and allows for the identification of differential gene expression patterns not
possible when examining smaller individual data sets.

While the GDS records are excellent resources for investigators to form data-driven
hypotheses (1), less than 4% of all GSE records have been manually curated into GEO
DataSets (Fig. 1A). Perhaps because manual curation is a labor-intensive and time-con-
suming process, data curation ceased in 2015, despite the rapidly growing number of

FIG 1 GAUGE is designed to increase the number of curated data by detecting the sample groups of annotatable studies. (A) There are disproportionate
numbers of all GEO series (GSE) records and those manually curated with sample group information (GDS). (B) Schematic overview of the microarray data
selection strategy and manual verification of the algorithm (see Materials and Methods for further details). (C) The three core steps of GAUGE generate a
text string distance matrix for sample groups using text-mining techniques, calculate a gene expression distance matrix using experimental data, and use
the Mantel test to assess the correlation between the two matrices to determine whether a study is auto-annotatable.
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submitted studies. Thus, there is an urgent need to develop an automatic way to select
and annotate studies suitable for high-throughput reanalysis. Based on our primary
research interest, we chose to focus our analysis on three common pathogens that
increase morbidity and mortality in cystic fibrosis (CF) patients: Pseudomonas aerugi-
nosa, Staphylococcus aureus, and Candida albicans (5). Besides infecting CF patients,
these opportunistic pathogens infect other immunocompromised individuals, such as
patients with chronic obstructive pulmonary disease (COPD) or burn wounds (6–8).

Others have created tools that facilitate manual curation or automatically identify a
text pattern associated with a particular kind of sample metadata. Zhao Li et al. devel-
oped a Web-based manual curation platform to coordinate curation efforts from differ-
ent curators to reduce curation time (9). A GEO Web portal analysis tool, GEO2R,
requires a user to assign sample groups manually and identifies differentially expressed
genes one study at a time; however, GEO2R supports only microarray studies (1).
Another microarray-only tool, GEOracle, provides a semimanual process for users to
inspect and modify the predicted annotation (10). Pattern-matching techniques have
previously been used to extract sample attributes, such as tissue, gender, and age,
from the metadata of human samples. However, this process requires the manual iden-
tification of domain-specific vocabularies (11). Taken together, none of the existing sol-
utions provide an automated, high-throughput, cross-species, and cross-platform
approach to annotate GEO Series records. Accordingly, we have developed an algo-
rithm, GAUGE (general annotation using text/data group ensembles) that automati-
cally annotates GEO microbial data sets, including microarray and RNA sequencing
studies, thereby increasing the percentage of archived data sets amenable to analysis
from 4% to 33%.

In this study, we report the development of GAUGE, which focuses on automated
sample group detection rather than the curation or extraction of sample information.
We hypothesized that the sample titles from the same sample group are similar to
each other and different from the sample titles of other groups. We also hypothesized
that correctly clustered sample titles should parallel the clustering of expression data
from the same experiment. Using publicly available microbial microarray and RNA-seq
studies, we demonstrated the ability of GAUGE to identify annotatable data and assign
the sample groups with high accuracy.

Existing algorithms to cluster sample replicates and extract labels (10, 11) use text
pattern-matching techniques to identify a reference group for comparison. Since refer-
ence naming conventions are complex and domain dependent, text-matching
approaches, therefore, require the investigator to manually define and update the vo-
cabulary that will be used, limiting the scope of applicable studies. For example,
GEOracle (10) excludes studies whose samples cannot be classified as control group
versus experimental group. To the best of our knowledge, there is no algorithm like
GAUGE, which uses sample titles and expression data to cluster samples and is there-
fore fully automatically applicable to data in any domain.

The sample group information was further used to perform an analysis of variance
(ANOVA) on each GAUGE-annotated study, which allows the user to identify differen-
tial gene expression patterns. Using the GAUGE-annotated ANOVA compendium, we
identified underappreciated P. aeruginosa genes that are frequently differentially
expressed with large fold changes (FCs). More intriguingly, correlation analysis and
Kyoto Encyclopedia of Genes and Genomes (KEGG) (12) pathway enrichment analysis
of the compendium revealed a functional prediction for PA3923, a P. aeruginosa gene
encoding a hypothetical protein. We conducted experiments that supported the pre-
diction that PA3923 is a novel protein involved in P. aeruginosa biofilm formation. The
GAUGE-annotated P. aeruginosa ANOVA compendium created in this study makes
three times more P. aeruginosa data accessible to parallel mining and reanalysis.
GAUGE annotations increase statistical power and, thereby, make consistent patterns
of differential gene expression easier to identify. The GAUGE algorithm can also be
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used to create high-throughput reanalysis compendia for other organisms and
platforms.

RESULTS
GAUGE accurately selects and annotates sample groups, extending the

number of studies that can be systematically analyzed. To establish GAUGE, we
used microarray studies because they have a standardized matrix format containing
expression data. We downloaded 577 microarray studies from three common CF
pathogens and removed those that did not meet our selection criteria (Fig. 1B; see
Materials and Methods for further details). For each of the 368 remaining studies, we
used GAUGE to generate sample group predictions and calculate Mantel test P values.
The Mantel test assesses the correlation between the string distance matrix of sample
titles and the Euclidean distance matrix of gene expression data (Fig. 1C). The string
distance matrix quantifies the similarity between sample titles, and the Euclidean dis-
tance matrix quantifies the similarity between gene expression profiles of samples. We
hypothesized that a substantial correlation between these two independent distance
matrices was unlikely to occur by chance and that a significant positive correlation pro-
vides evidence that sample title clustering might be capable of discerning sample
groups. For studies with small Mantel test P values, the sample group assignments are
most likely meaningful, and the gene expression data reflect the experimental designs.
The conventional P value cutoff, smaller than 0.05, was used to define significance, as
shown in the decision tree used for manual verification (Fig. 2). In our 368 Mantel test
analyses, the P value distribution was skewed toward 0 (Fig. 3A), suggesting that our
algorithm systematically outperforms chance.

To examine GAUGE performance under different alpha levels of the Mantel test,
human curators independently compared the dendrograms of string distance and
Euclidean distance to score the accuracy of automatic sample group assignments using
the defined decision tree with eight decisions: A through H (Fig. 2). Studies with a
Mantel test P value smaller than alpha level fell into categories A, B, C, or D and were
considered GAUGE-annotated studies. With this verification data, we observed that

FIG 2 Decision tree for manual verification. For each tested study, dendrograms of string distance and Euclidean distance are generated and subjected to
manual verification according to the decision tree, with eight possible decisions. The conventional significance level of 0.05 is used for the Mantel test to
define GAUGE-annotated studies. The eight possible decisions’ color theme is applied to Fig. 3 and 4.
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increasing the Mantel test P value cutoff from 0.05 to 0.1 improved the GAUGE auto-
annotation rate by 9% (Fig. 3B) (from 45% to 54%), while increasing the error rate, the
rate of decision D, by only 1% (Fig. 3C) (from 5% to 6%). Furthermore, with a signifi-
cance level of 0.1, we achieved a precision rate of 88.5% (Fig. 3D). The precision rate
was defined as the cumulative percentage of decisions A, B, and C in GAUGE-anno-
tated studies. The curated outcome distribution patterns were similar across three dif-
ferent CF pathogens (Fig. 3E).

To achieve a high validation accuracy, each study was assigned to at least two curators,
and their curation results were compared and integrated to find the final decisions. To vali-
date 368 studies, seven curators spent more than 10h in total. In contrast, GAUGE finished
the task in 5 min with a single R session and a single core running on a Linux machine.

GAUGE annotates RNA sequencing studies with similar levels of performance.
Next, we tested the ability of GAUGE to annotate RNA sequencing data, and we esti-
mated the performance. To skip fastq file download and read alignment, we retrieved
expression data for all available microbial RNA-seq studies from refine.bio (13; https://
www.refine.bio). The RNA-seq data archived in refine.bio were uniformly processed into
gene-level count tables similar to standard series matrix files of microarray studies. We
downloaded all 302 available microbial RNA-seq studies and applied the same criteria
used for microarray studies (Fig. 1B) to select those suitable for GAUGE analysis. A total of
139 microbial RNA-seq studies, including experiments with Saccharomyces cerevisiae, P.
aeruginosa, and Escherichia coli, were used for GAUGE annotation and manual verification.

Applying GAUGE to RNA-seq studies from refine.bio, we observed a distribution of
Mantel test P values similar to that used for microarray studies (Fig. 4A). With a Mantel
test significance level of 0.1, GAUGE automatically annotated 90 out of 139 studies
(65%) (Fig. 4B), with an error rate (decision D) of only 8% (Fig. 4C). Increasing the P
value cutoff from 0.05 to 0.1 raised the annotation rate by 6% without increasing the
error rate (Fig. 4C). Among GAUGE-annotated studies, we achieved an 87.7% precision

FIG 3 GAUGE selects microarray studies and detects sample groups with high accuracy. (A) P value distribution of 368 Mantel tests of microarray studies.
(B and C) Annotation rate (B) and error rate (C) of the manual verification result of 368 microarray studies as the discrimination Mantel test P value
threshold increases from 0 to 1 in 0.01 increments. The annotation rate (B) and error rate (C) are the rates of decisions A, B, C, and D or decision D only,
respectively. The vertical solid and dashed lines indicate the significance levels of 0.05 and 0.1, respectively. (D) Summary of the manual verification result
of GAUGE-annotated microarray studies with a Mantel test P value smaller than 0.1. (E) Results broken down by species. The verification decisions, shown
in different colors, fall into true or false annotation groups. The corresponding precision level of GAUGE-annotated studies, 88.5%, is labeled.
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level (Fig. 4D), with an overall and species-level outcome distribution pattern of man-
ual verification (Fig. 4E) similar to the one observed for microarray studies.

Taken together, GAUGE automatically selected and annotated 33% of microbial
studies, including microarray and RNA sequencing data sets, tested in this report.
Among them, 89% of GAUGE annotations matched group assignments generated by
human curators. This significantly increases the number of studies amenable to sys-
tematic analysis and our ability to generate biological insights, as evidenced below.

GAUGE-annotated ANOVA compendium reveals frequently differentially expressed
genes with undefined functions. We used the sample group information detected by
GAUGE, with a P value cutoff of 0.1, to perform ANOVA. The ANOVA identified differen-
tially expressed genes in a GAUGE-annotated P. aeruginosa compendium of 73 studies,
including microarray and RNA-seq studies, for a total of 1,003 samples. The maximum
absolute log2 fold change (log2 FC) between any two groups was calculated for each gene
in every study. The top 10 most frequently differentially expressed genes (Table 1) were
found to be differentially expressed in more than half of the studies in the compendium,
with at least a median fold change of 3.7 (log2 FC=1.9). Intriguingly, genes that are fre-
quently differentially expressed often have no known functional annotation in the
Pseudomonas genome database (14). For example, in the top 10 most frequently differen-
tially expressed genes, two genes encode proteins with probable functions, predicted by
sequence similarity, and one hypothetical gene, PA3923, has no known function. These
genes respond to numerous treatment conditions and are therefore likely to play impor-
tant roles in P. aeruginosa biology. Notably, PA3923 had a median fold change of .7, and
the increase in PA3923 was associated with an increase in the expression of other genes in
P. aeruginosa that play a role in biofilm formation.

Correlation and pathway enrichment analysis suggest that hypothetical
protein PA3923 plays a role in biofilm formation, a clinically relevant phenotype.
P. aeruginosa biofilms play important roles in clinical outcomes of patients with COPD,

FIG 4 GAUGE automatically selects and detects sample groups from RNA-seq studies with levels of performance similar to those of microarray studies. (A)
P value distribution of 139 Mantel tests of RNA-seq studies. (B and C) Annotation rate (B) and error rate (C) of the manual verification result of 139 RNA-seq
studies as the discrimination Mantel test P value threshold increases from 0 to 1 in 0.01 increments. The annotation rate (B) and error rate (C) are the rates
of decisions A, B, C, and D and decision D only, respectively. The vertical solid and dashed lines indicate the significance levels of 0.05 and 0.1, respectively.
(D) Summary of the manual verification result of GAUGE-annotated RNA-seq studies with a Mantel test P value smaller than 0.1. (E) Results broken down
by species. The verification decisions, shown in different colors, fall into true or false annotation groups. The corresponding precision level of GAUGE-
annotated studies, 87.7%, is labeled.
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cystic fibrosis, chronic wounds, or catheter-associated infection (7, 8, 15). Biofilm forma-
tion contributes to bacterial persistence, and antibiotic resistance determinants make
P. aeruginosa recalcitrant to the host immune system and antibiotic treatment (7).
Thus, there is a critical need to identify new target genes in P. aeruginosa that facilitate
opportunistic infection and biofilm formation.

Several lines of evidence suggest that PA3923 may be involved in biofilm formation.
First, a proteomic investigation has shown that PA3923 protein is exclusively detected
in P. aeruginosa grown in biofilm cultures but not in planktonic cells (16). Second, a
recent report using murine laminin as a bait reveals that three well-characterized pro-
teins (EstA, OprD, and OprG) in the P. aeruginosa outer membrane, as well as PA3923,
have high binding affinities for laminin (17). Laminin is a major component of the host
extracellular matrix (ECM), and bacterial adherence to certain host ECM molecules
plays an important role in biofilm formation (18). Third, our GAUGE-annotated P. aeru-
ginosa ANOVA compendium revealed that in 49% of studies (19 out of 39) in which
PA3923 was differentially expressed, estA, oprD, and oprG were also differentially
expressed (Fig. 5A). A Pearson correlation analysis of the log2 fold change of the tran-
scripts of four laminin-binding proteins across all studies in the compendium shows
that the expression of the four genes are highly correlated with each other (P , 0.001)
(Fig. 5B). Even though estA, oprD, and oprG are not included in the KEGG biofilm forma-
tion pathway (12), estA and oprD mutants have biofilm formation defects compared to
wild-type P. aeruginosa (19, 20). Moreover, the protein level of oprG is upregulated in P.
aeruginosa biofilms compared to that in planktonic cells (21). KEGG pathway enrich-
ment analysis using Fisher’s exact test across the GAUGE-annotated P. aeruginosa
ANOVA compendium shows that the biofilm formation pathway is enriched in differen-
tially expressed genes (false-discovery rate [FDR] , 0.05) in 18 studies. PA3923 was dif-
ferentially expressed in 11 of these 18 studies (61%) (Table 2). This suggests that stud-
ies in which the biofilm formation pathway is enriched have a disproportionately
higher rate of differentially expressed PA3923 than the rate of the whole compendium
(39/73, 53%). Interestingly, for four of the top seven studies in which our analysis
revealed an enriched P. aeruginosa biofilm formation pathway signal, a connection to
biofilm formation was not mentioned in the original publications (Table 2). Taken to-
gether, our analysis suggests that genes producing laminin-binding proteins at the P.
aeruginosa surface, such as EstA, OprD, OprG, and PA3923, are highly coregulated and
may play roles in biofilm formation. Thus, our analyses support the hypothesis that

TABLE 1 Top 10 most frequently differentially expressed genes in 73 GAUGE-annotated P.
aeruginosa studies

Standing Locus tag Gene product description
No. of
studiesa

Median log2

FCb

1 PA0105 Cytochrome c oxidase, subunit II 43 2.882226
2 PA1041 Probable outer membrane protein precursorc 41 2.765857
3 PA3723 Probable FMN oxidoreductasec 41 2.654894
4 PA2851 Translation elongation factor P 41 1.929715
5 PA2445 Glycine cleavage system protein P2 40 3.101212
6 PA4296 Two-component response regulator, PprB 40 3.019888
7 PA3418 Leucine dehydrogenase 40 2.789049
8 PA5172 Ornithine carbamoyltransferase, catabolic 40 2.625181
9 PA1984 NAD1-dependent aldehyde dehydrogenase 39 3.385404
10 PA3923 Hypothetical protein 39 2.942898
aDifferentially expressed genes are determined with an FDR of,0.05 using an ANOVA with sample groups
detected by the auto-annotation algorithm.

bMedian log2 fold change of gene expression in those differentially expressed studies. The log2 fold change was
defined as the maximum absolute log2 fold change between any two groups for each gene in every study.

cThe gene annotation is from the Pseudomonas Genome Database. A function is proposed based on the
conserved amino acid motif, structural feature, or limited sequence similarity to an experimentally studied gene.
FMN, flavin mononucleotide.
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PA3923, a gene of unknown function, encodes a laminin-binding protein and, there-
fore, promotes biofilm formation.

Experimental evidence suggests that PA3923 mediates biofilm on laminin-
coated surfaces. To test the hypothesis that laminin promotes P. aeruginosa biofilm
formation, we performed crystal violet (CV) biofilm assays on laminin-coated 96-well
enzyme-linked immunosorbent assay (ELISA) plates or on bovine serum albumin (BSA)-
coated 96-well ELISA plates as a control (22). Biofilm formation was significantly more
robust on laminin-coated wells than on BSA-coated wells (Fig. 6A). To test the hypothe-
sis that PA3923 protein facilitates the formation of biofilms on laminin-coated surfaces,
we used two PA3923 transposon insertion mutants from the P. aeruginosa PA14 trans-
poson library (PA14NR set) (23) and compared the abilities of wild-type PA14 and the

FIG 5 The P. aeruginosa compendium reveals the correlation between laminin receptors. (A) Venn diagram showing the number
of studies in the P. aeruginosa compendium that have a differentially expressed PA3923, oprD, oprG, or estA signal. (B) Correlation
matrix of log2 fold changes of the four genes across all studies in the compendium. The numbers in the upper triangle are the
Pearson correlation coefficients of gene pairs. ***, P value, 0.001.

TABLE 2 GAPE identifies studies in which the biofilm formation pathway is enriched

GSE no. Titlea PA3923 DEb
Biofilm formation
pathway reportedc Reference

GSE21966 Transcriptional profiling of P. aeruginosa isolated from
3 individuals with cystic fibrosis over time

� 32

GSE62970 Expression data of clinical P. aeruginosa isolates
grown in vitro in minimal glucose medium

� NA

GSE67006 Expression data from P. aeruginosa wild type and
Danr grown as biofilms on DF508 cystic fibrosis
bronchial epithelial cells (CFBEs)

� 33

GSE28719 Gene expression of P. aeruginosa DPA1006/nbvF
mutant in the absence and presence of nitrate

� � 34

GSE39044 Regulon of transcriptional regulator PA2449 in P.
aeruginosa PAO1

� 35

GSE8408 Transcriptomic analysis of the sulfate starvation
response in P. aeruginosa

� 36

GSE78255 Gene expression data from P. aeruginosa PAO1 and
mutator (DmutS) evolved for 940 generations in LB
with and without subinhibitory concentrations of
ciprofloxacin (0.05mg/ml)

� 37

aThe top 7 out of 18 studies have an enriched P. aeruginosa biofilm formation pathway signal. The enrichments are determined with a Fisher’s exact test FDR of,0.05, and
studies are ranked from the smallest FDR.

bChecked if the hypothetical gene PA3923 is differentially expressed (DE) in the study.
cChecked if the study has been reported with an enriched biofilm formation pathway signal in publications.
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two mutants to form biofilms on laminin-coated wells. The mutants, PA3923::TnM_1 and
PA3923::TnM_2, have insertion sites at the 59 end and the 39 end of their PA3923 genes,
respectively (23). Biofilms formed on laminin by both mutants were significantly smaller
(by 33.5% and 49.8%, respectively) than those formed by the wild-type PA14 strain
(Fig. 6B). The mutants’ reduction in biofilm formation could not be attributed to a growth
defect of planktonic bacteria (Fig. 6C). These experiments confirm the hypothesis that
PA3923 enhances biofilm formation on laminin-coated surfaces, as predicted by our analy-
sis of the GAUGE-annotated P. aeruginosa ANOVA compendium.

GAUGE-annotated ANOVA compendia and the GAUGE source code are freely
available. To facilitate the reanalysis of publicly available data for novel hypothesis
generation by microbiologists, we provide the GAUGE-annotated P. aeruginosa and E.
coli ANOVA compendia generated in this study. E. coli studies measured on two
Affymetrix platforms, GEO accession no. GPL3154 and GPL199, were downloaded and
annotated since they contain the largest number of experiment series. The compendia
and the source code can be accessed at https://github.com/DartmouthStantonLab/
GAUGE/. The GAUGE source code can easily be repurposed to annotate other microbial
species, including other clinically relevant ESKAPE pathogens, such as Enterococcus fae-
cium, S. aureus, Klebsiella pneumoniae, Acinetobacter baumannii, and Enterobacter spp.

GAPE, a Shiny app to explore the GAUGE-annotated ANOVA compendia, is
freely available. The Shiny Web tool used in this analysis can be accessed at https://
iamsoshiny.shinyapps.io/gape/. This free tool is particularly useful for users without R

FIG 6 PA3923 transposon insertion mutants have biofilm formation defects on a laminin-coated surface. (A) Quantification of biofilm formation by the wild-
type PA14 strain on laminin-coated ELISA plates and BSA-coated ELISA plates. Each data point indicates the average from six technical replicates. Lines
connect data points from the same clone, a biological replicate, of the wild-type PA14 strain under each condition. (B) Biofilm formation by the PA14 wild
type (PA14WT) and two PA3923 transposon insertion mutants (PA3923::TnM_1 and PA3923::TnM_2) on laminin-coated ELISA plates. Each dot represents a
unique clone from a single colony of each strain. Biofilms were quantified using the crystal violet 96-well plate biofilm assay (OD550). (C) Growth kinetics
(OD600) of bacterial strains used in this study. Three single colonies of each strain were picked randomly to generate three clones as three biological
replicates for all experiments. Bars and lines in panels B and C represent the averages from three biological replicates, with six technical replicates each.
Error bars indicate standard deviations (SD). Linear models in R were used to calculate P values. *, P, 0.05; **, P, 0.01; ***, P, 0.001.
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programming skills to navigate the GAUGE-annotated P. aeruginosa and E. coli ANOVA
compendia and to find differential gene expression as well as pathway enrichment sig-
nals of interests. The source code for GAPE is freely available at https://github.com/
DartmouthStantonLab/GAPE/.

DISCUSSION

The algorithm, data compendia, and online analysis tool presented in this report
contribute to the goal of advancing the FAIR (findability, accessibility, interoperability,
and reusability) data paradigm (24) in three ways. First, the GAUGE algorithm is a gen-
eral-purpose tool, can be applied to any annotation problem where textual metadata
are expected to correlate with quantitative observational data, and is applicable to
both prokaryotic and eukaryotic species. Second, compendia for P. aeruginosa and E.
coli can be downloaded and explored in a full-featured statistical programming envi-
ronment such as R. Finally, our Web portal, GAPE, further extends FAIR data goals
because it requires no special skills to use. The strengths, limitations, and future devel-
opment of each of these systems are further discussed below.

The main strength of GAUGE is that it correctly annotates a substantial number of
unannotated studies without time-consuming human intervention. In our proof-of-princi-
ple experiment, GAUGE speedily annotated about 33% of microbial transcriptomic studies,
with an error rate of less than 7%. As of this writing, the GEO database contains over
130,000 data series (GSE), including 1,200 studies of E. coli. Assuming that it takes about 15
min to manually curate a given study into the GDS format, a human might assign sample
group information to about 30 studies in an 8-h workday. Annotating the E. coli studies
would therefore take more than 40days, which would make it very difficult for anyone to
undertake a systematic assessment of E. coli transcriptomic responses. In contrast, GAUGE
can automatically annotate all suitable E. coli studies and result in a GAUGE-annotated
compendium with a total of 400 data sets in 15 min of CPU time.

The primary limitation of GAUGE is that it can annotate studies only with informa-
tive sample names. For example, GAUGE cannot detect sample groups in studies with
random strings or sample titles that are all numeric. In addition, GAUGE can annotate
studies only in which gene expression responses correlate with sample groups.
Therefore, GAUGE requires higher levels of replication and consistent transcriptional
responses as experimental designs become increasingly complex.

By design, GAUGE is agnostic about what sample groups mean. For example, groups
that contain words like “reference” or “treatment” are not treated in any special way. This
allows GAUGE to identify significant differences between groups in any study, including
those with no obvious references or many possible references. This flexibility is extremely
important in the context of data reuse, where investigators may be interested in group
comparisons that were not of interest to the investigators that performed the experiments
and named the samples. Notably, tools like GAPE use the GAUGE algorithm to rapidly
identify a small number of studies with differential gene expression. Once identified, these
studies can be analyzed with tools like GEO2R (1), GEOquery (25), and limma (26), which
require the user to identify a specific reference group, a step that may require reading the
experimental methods published with the data.

Intriguingly, we found that the studies with incorrect auto-annotations usually had
complex experimental designs with many sample groups. Generally speaking, GAUGE
annotations that were in error were similar to correct annotations but failed to resolve
all experimental groups. In any case, a systematic analysis of a large compendium is
mostly insensitive to a small number of annotation errors. For example, in our proof of
principle, we were successful in making correct predictions about the function of
PA3923 despite an estimated error rate of about 7%.

GAUGE can effectively annotate publicly available transcriptomic data sets, as evi-
denced by our analysis of the P. aeruginosa compendium. Our GAUGE-annotated
ANOVA compendia are interoperable with sophisticated platforms like the R statistical
programming language, which has a significant learning curve. To make our
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compendia useful to a broader audience, we have built online tools that easily perform
differential gene expression and pathway enrichment analyses. Also, we provide the R
source code of GAUGE to enable users to create compendia for other species.

Here, we have demonstrated that GAUGE provides automated and reliable detec-
tion of sample groups with unprecedented performance and speed. We expect that
over 33% of GEO studies (39,000) can be auto-annotated by GAUGE, a huge improve-
ment over the current situation in which fewer than 4% have group annotation.
Increasing the pool of annotated studies greatly extends our ability to study patterns
of differential gene expression.

We have shown that systematic analysis, facilitated by GAUGE, can identify genes that
may have been overlooked in the literature but that nonetheless may play important bio-
logical roles. For example, GAUGE revealed that PA3923, a gene of unknown function, was
differentially expressed in more than 50% of studies and significantly coregulated with
genes involved in biofilm formation. Our follow-up wet-bench experiments demonstrate
that PA3923 does in fact play a role in biofilm formation. However, each of the other genes
in Table 1 requires additional scrutiny. Genes that are more likely to respond in common ex-
perimental designs are more likely to shed light on questions under study than those that
do not. In the same way, though we have demonstrated GAUGE in the context of P. aerugi-
nosa and E. coli, we see no reason why one could not apply GAUGE to S. cerevisiae, which
has over 68,000 samples in GEO, or to other clinically relevant species. Thus, we anticipate
that GAUGE and GAPE, which we have made freely available, will make publicly available
microbial transcriptomic data easier to reuse and lead to new data-driven hypotheses.

MATERIALS ANDMETHODS
The core concept of GAUGE is shown in Fig. 1C. All analyses were conducted in the R software envi-

ronment, except for Entrez Direct (Edirect) (27). Edirect provides access to the NCBI database from a
UNIX terminal window, allowing the user to parse and download information from the GEO database.
The R packages and parameters that we used for developing the algorithm are described below.

Data collection and selection.We used Edirect (27) to parse and collect the metadata, including GSE
number, submission date, sample organism, and URL, allowing the download of series matrix files for all
existing records. This metadata allowed us to identify 736 studies conducted on three pathogens, P. aerugi-
nosa, S. aureus, and C. albicans. The R package GEOquery was used to retrieve series matrix files (25). At first,
we focused on microarray data sets. The series matrix files of array studies were fed into the pipeline shown
in Fig. 1B to be filtered. Studies using multiple platforms, e.g., different array chips, in a single experiment
were excluded from subsequent analyses. Next, the gene expression data and sample titles of each study
were extracted. Studies with low sample sizes or missing series matrix files were also excluded.

All 302 available microbial RNA-seq studies on refine.bio were downloaded. The data were processed
by refine.bio with the following steps before download: (i) aggregating the data by experiment and (ii) skip-
ping the transformation and quantile normalization. We selected 139 studies (9 for E. coli, 19 for P. aerugi-
nosa, and 111 for S. cerevisiae) suitable for downstream analysis based on the selection criteria in Fig. 1B.

GAUGE implementation. The three core steps are illustrated in Fig. 1C. For each qualifying study,
string distance matrices of extracted sample titles were calculated using the stringdist package (28).
Sample title clusters were detected by feeding the string distance matrix into the cutreeDynamic algo-
rithm (29), with the argument deepSplit equal to 4 to detect the smallest clusters. Sample title clusters
were deemed putative sample groups. Studies with a single sample per group were removed from the
analysis since they were not statistically comparable.

Microarray expression values were extracted from downloaded GEO data and log2 transformed if not
already in log space. For RNA-seq data, we used the edgeR pipeline (30) to perform filtering and library
normalization to generate matrices of log2-transformed counts per million (CPM). Next, a Euclidean dis-
tance matrix of preprocessed gene expression data was generated for each study and compared with
the previously calculated string distance matrix using a two-tailed Mantel test with 999 permutations.

GAUGE uses Mantel tests in R (31) to identify cases where sample title clustering and expression
data are more correlated than expected by chance. The Mantel test’s null hypothesis is that there is no
linear correlation between two matrices. In this case, a small Mantel test P value indicates that sample
groups identified by stringdist are more similar to groupings of sample data than can be explained by
chance, suggesting that group assignment inferred by text mining is correct.

P values from Mantel tests and corresponding GSE series numbers were exported as tables for man-
ual verification as defined below. The GAUGE implementation scripts for microarray and RNA-seq experi-
ments can be found at https://github.com/DartmouthStantonLab/GAUGE.

Manual verification. For each study, dendrograms of string distance and Euclidean distance were
generated. Using these dendrograms and the Mantel test P values, human curators manually verified
the sample group assignments produced by the algorithm. Curators followed the decision tree in Fig. 2,
in which the conventional significance level of 0.05 was chosen to make decisions, A to H. Each study
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was curated by at least two independent curators to seek consensus. A third curator was involved when
there was no consensus.

Analysis of manual verification result. The manual verification decisions fell into two categories,
GAUGE annotated or not, as shown in Fig. 2, depending on the significance level. We simulated different
verification outcomes, as the significance level varies from 0 to 1 in 0.01 increments, and calculated the
error rate and annotation rate. The error rate and the annotation rate are the rate of decision D and the
rate of decisions A, B, C, and D of the verification result, respectively. The precision rate is the percentage
of GAUGE-annotated studies with a significance level of ,0.1 that were verified as decisions A, B, and C.

Building GAUGE-annotated ANOVA compendia. P. aeruginosa studies with Mantel test P values of
less than 0.1 were categorized as significantly correlated and correctly annotated. Of these, six studies with-
out proper gene identifiers in the gene expression data table were excluded. Sample group information
detected by GAUGE was used to perform an ANOVA for detecting differentially expressed genes in the
remaining 64 microarray (Affymetrix platform GPL84) and 9 RNA-seq studies. E. coli studies measured on two
Affymetrix platforms, GPL3154 and GPL199, were downloaded and GAUGE annotated since they contain the
most abundant experiment series, and ANOVA analysis was performed to generate the compendium.

GAUGE and Shiny app availability. The source code of GAUGE and the P. aeruginosa and E. coli
ANOVA compendia created in this study can be found at https://github.com/DartmouthStantonLab/
GAUGE. GAPE, the Shiny app, deployed on a free server, is accessible at https://iamsoshiny.shinyapps.io/
gape. The app can be downloaded from https://github.com/DartmouthStantonLab/GAUGE and run on a
local machine. All source code and compendia are available under a GNU general public license (GPLv3).

Bacterial strains and growth conditions. The P. aeruginosa strains used in this study are from the
nonredundant P. aeruginosa PA14 transposon library (PA14NR set) (23) and were kindly provided by
George A. O’Toole. The P. aeruginosa PA14 wild-type strain was steaked onto lysogeny broth (LB) agar
plates to obtain single colonies. LB agar plates with 25mg/ml gentamicin were used to generate single
colonies for the two PA3923 transposon insertion mutants, PA3923::TnM_1 and PA3923::TnM_2, with mu-
tant IDs 41985 and 53704, respectively, in the PA14NR set. All transposon insertion mutant clones were
verified with PCR and Sanger sequencing. Three single colonies of each strain were picked randomly to
generate frozen glycerol stocks for three biological replicates. P. aeruginosa strains from frozen stocks
were used to inoculate overnight LB liquid cultures at 37°C with shaking at 225 rpm. Gentamicin (20mg/
ml) was added to the culture media for transposon insertion mutants.

CV biofilm assay. The biofilm formation abilities of P. aeruginosa strains were assessed using the 96-
well plate biofilm assay, as previously described (22). In brief, P. aeruginosa overnight LB cultures were
centrifuged, and the cell pellets were washed and resuspended in fresh LB. The optical density at
600 nm (OD600) of each culture was determined, and the culture concentration was adjusted to have
1� 107 bacteria per ml in LB by converting the OD to an estimated number of CFU per milliliter using a
standard curve. For biofilm formation on protein-coated surfaces, ELISA plates (catalog no. DY990; R&D
Systems, Minneapolis, MN, USA) were coated overnight at room temperature with 10mg/ml mouse lami-
nin (catalog no. 23017015; Thermo Fisher Scientific, Waltham, MA, USA) or 1% BSA in phosphate-buf-
fered saline (PBS). The plates were subsequently blocked with 1% BSA, followed by fluid aspiration and
air drying before concentration-adjusted P. aeruginosa cultures were added. Adjusted cultures were
grown at 37°C for 18 h. The plates were subsequently washed and stained with 0.1% crystal violet (CV).
The plates were washed to remove excess dye and air dried before the addition of 30% acetic acid to
solubilize the CV. The solubilized CV was quantified in a plate reader at 550 nm.

Growth kinetics of P. aeruginosa strains. Overnight LB P. aeruginosa cultures were centrifuged,
washed, and resuspended in fresh LB before the OD600 for cell concentration adjustment was measured.
Bacteria were seeded at 1� 106 cells per 100ml LB in a transparent 96-well plate. The plate was covered
with a lid and incubated in a plate reader at 37°C for 24 h. The reader was programmed to measure the
OD600 every 10 min after shaking the plate for 5 s.
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