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Abstract: Although previous studies have reported the use of nixtamalization for mycotoxins reduc-
tion in maize, the efficacy of calcium hydroxide and other nixtamalization cooking ingredients for
mycotoxin reduction/decontamination in sorghum and other cereals still need to be determined. The
current study investigated the effect of five nixtamalization cooking ingredients (wood ashes, calcium
hydroxide, sodium hydroxide, potassium hydroxide, and calcium chloride) on the reduction of
Fusarium mycotoxins in artificially contaminated maize and sorghum using liquid chromatography-
tandem mass spectrometry. All tested cooking ingredients effectively reduced levels of mycotoxins
in the contaminated samples with reduction initiated immediately after the washing step. Except for
the calcium chloride nixtamal, levels of fumonisin B1, B2, and B3 in the processed sorghum nixtamal
samples were below the limit of detection. Meanwhile, the lowest pH values were obtained from the
maize (4.84; 4.99), as well as sorghum (4.83; 4.81) nejayote and nixtamal samples obtained via calcium
chloride treatment. Overall, the results revealed that the tested cooking ingredients were effective
in reducing the target mycotoxins. In addition, it pointed out the potential of calcium chloride,
though with reduced effectiveness, as a possible greener alternative cooking ingredient (ecological
nixtamalization) when there are environmental concerns caused by alkaline nejayote.

Keywords: cooking ingredients; food safety; Fusarium mycotoxins; LC-MS/MS; maize; nixtamaliza-
tion; sorghum; food processing

Key Contribution: The study revealed the potential of other nixtamalization cooking ingredients
(sodium hydroxide, potassium hydroxide, and calcium chloride), aside from the commonly used
calcium hydroxide, for the reduction of mycotoxins in maize and sorghum during nixtamalization.
Moreover, it pinpoints calcium chloride as an alternative cooking ingredient for nixtamalization
when there are environmental concerns.
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1. Introduction

Mycotoxins are secondary fungal metabolites that often contaminate agricultural
commodities in the field or during storage [1–4]. The fungal species producing these
mycotoxins are particular members of the Fusarium, Aspergillus, Penicillium, and Alternaria
genera that pose serious health-related challenges in humans as a result of their toxigenic
characteristics [5,6]. Fusarium mycotoxins, such as fumonisin B1 (FB1), fumonisin B2 (FB2),
fumonisin B3 (FB3), deoxynivalenol (DON), 3-acetyl deoxynivalenol (3-ADON), 15-acetyl
deoxynivalenol (15-ADON), nivalenol (NIV), and zearalenone (ZEN), among others [7], are
of serious concern as they cause economic losses, trade barrier and human health problems
like anorexia, diarrhea, cancer, and immunosuppression [1,8].

Nixtamalization is a major processing procedure employed in the preparation of
some maize-based products including masa, tortillas, tortilla chips, and pozole [9]. It is a
special food-processing technique in that it can cause several physicochemical modifica-
tions to maize kernels, contribute to flavor and affect mycotoxins whereby the latter (i.e.,
mycotoxins) might be degraded, modified, or released/bound in food [10].

In line with Escalante-Aburto [11], this processing technique (nixtamalization) can
be grouped into three categories, namely, classic, traditional (involving the commonly
used calcium hydroxide and other nixtamalization cooking ingredients), and alternative
technologies. The classic nixtamalization, used in Mexico and Central America, involves the
application of wood ashes [12] substituted with lime in traditional nixtamalization to ensure
higher levels of pericarp removal [11]. Several authors, including Figueroa et al. [13],
Ramírez-Jiménez et al. [14], Ramírez-Araujo et al. [15], and Enríquez-Castro et al. [16]
have reported the use of lime as a traditional nixtamalization process, which according to
Schaarschmidt and Fauhl-Hassek [10] is an effective as well as a promising technique for
reducing mycotoxins while enhancing nutrient availability in maize. Nonetheless, the use
of calcium hydroxide has been linked with environmental pollution issues arising from
the disposal of its by-product, nejayote (wastewater), which usually has a high pH [17].
Other alkaline ingredients for nixtamalization, such as sodium hydroxide and potassium
hydroxide, have also been used in the food industry [12]. For instance, sodium hydroxide
is used to pre-cook grains for pozole preparation [12,18]. Based on environmental pollution
issues caused by conventional nixtamalization, ecological nixtamalization, an alternative
technology involving the use of calcium salts such as calcium chloride, calcium sulfate,
and calcium carbonate, has been proposed with a reduced pH of the residual solution as a
key advantage [11].

Although cereals like maize and sorghum contain essential nutrients [19], they are
susceptible to natural contamination by toxigenic fungi accompanied by the production
of mycotoxins [20,21]. This study, a MycoSafe-South project, thus, investigated the effect
of some selected cooking ingredients for nixtamalization (wood ashes, calcium hydrox-
ide, sodium hydroxide, potassium hydroxide, and calcium chloride) on the reduction
of Fusarium mycotoxins in artificially-contaminated maize and sorghum grains during
nixtamalization. The study is of immense importance as most investigations involving the
use of calcium hydroxide during nixtamalization for mycotoxins reduction focused solely
on maize with none on sorghum. Besides, no study has been carried out to establish the
effect of wood ashes, sodium hydroxide, potassium hydroxide, and calcium chloride on
the reduction of Fusarium mycotoxins in maize and sorghum during nixtamalization.

2. Results and Discussion
2.1. Influence of Different Nixtamalization Cooking Ingredients on Fusarium Mycotoxins during
Nixtamalization of Maize

In this study, the effect of nixtamalization processing steps on Fusarium mycotoxins
during the production of nixtamalized maize and sorghum was investigated. The substrate
(maize and sorghum grains) used as starting materials were tested and had Fusarium
mycotoxins concentrations below the limit of detection (LOD) (Table 1). After artificial
inoculation with toxigenic Fusarium verticillioides, six toxins (FB1, FB2, FB3, DON, NIV,
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and ZEN; Table 2) were detected in the maize samples confirming this cereal as an ideal
medium for the production of the targeted Fusarium mycotoxins [22].

Table 1. Estimated percentage recovery, limit of detection, and quantification (µg/kg) of Fusarium mycotoxins in maize and
sorghum following LC-MS/MS analysis.

Mycotoxins Maize
LOD

Maize
LOQ

Maize
Recovery

Sorghum
LOD

Sorghum
LOQ

Sorghum
Recovery

FB1 1.0 2.9 100.0 0.8 2.4 107.0
FB2 0.6 1.7 99.0 0.2 0.7 100.0
FB3 0.6 1.7 102.0 0.5 1.6 90.0

DON 3.1 9.2 102.0 N/A N/A N/A
NIV 3.5 10.6 99.0 N/A N/A N/A
ZEN 1.1 3.5 107.0 N/A N/A N/A

N/A: Not applicable; LOD: Limit of detection; LOQ: Limit of quantification; FB1: fumonisin B1; FB2: fumonisin B2; FB3: fumonisin B3;
DON: deoxynivalenol; NIV: nivalenol; and ZEN: zearalenone.

Table 2. Concentrations of Fusarium mycotoxins in purchased maize, inoculated maize, and washed maize and estimated
percentage reduction after washing following LC-MS/MS analysis.

Fusarium
Mycotoxins

Purchased Maize
(µg/kg)

Inoculated Maize
(µg/kg)

Washed Maize
(µg/kg)

Reduction
(% R)

FB1 <LOD 2470.5 b ± 346.4 661.5 a ± 243.6 73.2
FB2 <LOD 604.7 b ± 84.9 204.6 a ± 79.7 66.0
FB3 <LOD 409.0 b ± 59.5 162.9 a ± 24.8 60.0

Total FBs <LOD 3884.3 b ± 482.0 1029.0 a ± 344.3 73.5
DON <LOD 330.9 b ± 17.6 224.3 a ± 67.9 32.3
NIV <LOD 104.9 ± 15.5 <LOD 100.0
ZEN <LOD 15.9 a ± 2.5 15.0 a ± 4.9 6.2

Values are the means of five replicates ± standard error. Means followed by different letters are significantly different (p < 0.05). LOD: Limit
of detection; FB1: fumonisin B1; FB2: fumonisin B2; FB3: fumonisin B3; Total FBs: FB1 + FB2 + FB3; DON: deoxynivalenol; NIV: nivalenol;
and ZEN: zearalenone.

According to Karlovsky et al. [23], water-soluble mycotoxins, including DON [24],
may be removed by washing the outer layer of grains, while Humpf and Voss [25] noted
that the water-solubility characteristics of fumonisin mycotoxins such as FB1, FB2, and FB3
determine the rate at which they may be affected by grain washing. In this experiment,
washing of the inoculated maize samples led to a significant reduction (p < 0.05) in the levels
of the detected mycotoxins except for ZEN, where there was no statistically significant
difference (p = 0.74) in the mycotoxin content before and after washing (Table 2). NIV was
completely depleted at this stage, which reflects its high solubility in water as pointed
out by Karlovsky et al. [23]. Similarly, the low solubility of ZEN in water also explains
the non-significant difference (p > 0.05) of this mycotoxin in the washed and unwashed
samples. Generally, results of the mycotoxin levels obtained after washing are in agreement
with the predicted solubility values for FB1 and FB2 (>20,000 mg/L), DON (36,000 mg/L),
NIV (64,600 mg/L), and ZEN (117 mg/L) previously established by Karlovsky et al. [22].
In addition, the total fumonisin reduction by washing (74%) was found to be in line with
that obtained in previous studies by Humpf and Voss [26] (73%), Matumba et al. [27], as
well as Shetty and Bhat [28] (74%).

Cooking is a major thermal processing step during nixtamalization [12]. The results
obtained after cooking showed that potassium hydroxide was the most effective cooking
ingredient for the reduction of FB1, FB2, FB3, and DON, while ZEN was most effectively
reduced by calcium hydroxide treatment (Figures 1 and 2). Park et al. [29] pinpointed potas-
sium hydroxide as a feasible compound for alkaline hydrolysis of FBs. The concentration of
ZEN found below the LOD in maize samples cooked with calcium hydroxide indicates that
in addition to the isomerization of trans-ZEN to cis-ZEN in maize, this cooking ingredient
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attacked the lactone ring of ZEN, leading to the degradation of ZEN into an undetectable
biotransformation product(s) [10].

For the steeping step, calcium chloride was found to be the least effective in reduc-
ing FB1 and ZEN. Moreover, calcium chloride in addition to wood ashes gave the least
reduction for DON. This suggests that incomplete dehulling involved in the use of calcium
chloride [11] led to a decrease in the reduction of fumonisins (FBs) content. The research
outcome is consistent with Fandohan [30] who observed that removal of pericarp, referred
to as dehulling, brought about a reduction in FBs concentrations. The ineffectiveness of
wood ashes for the reduction of DON, with respect to other alkaline cooking ingredients,
supports the point made by Santiago et al. [12] that wood ashes mainly consist of calcium
carbonate with a lower alkaline pH value as compared to calcium hydroxide, sodium
hydroxide, or potassium hydroxide. All cooking ingredients tested gave similar reduction
results for FB2; however, the alkaline cooking ingredients gave the highest FB3 reduction
levels in maize. To an extent, this agrees with Schaarschmidt and Fauhl-Hassek [10] find-
ings where it was reported that alkaline cooking allows the leaching of FBs into the water
during maize steeping. In addition, according to Santiago et al. [12], wood ashes contain
traces of calcium hydroxide which, in a way, explains the non-significant difference in
the potential of wood ashes and calcium hydroxide to reduce FB3. In the final nixtamal
(after rinsing and drying), calcium chloride had the least reducing effect on all Fusarium
mycotoxins in maize but there was no statistically significant difference in the ability of
all the tested nixtamalization cooking ingredients to reduce ZEN. Ryu et al. [31] earlier
noted that the use of chemical treatments for ZEN reduction in foods has not recorded any
desired result.

As shown in Figure 1 and in line with Schaarschmidt and Fauhl-Hassek [10], the
incomplete mycotoxins reduction recorded after rinsing and drying step in some instances
(wood ashes and calcium chloride—FB2; wood ashes, potassium hydroxide and calcium
chloride—FB3) may be due to the release of mycotoxins from matrix components of maize,
which depends on the processing condition. This also explains the decreased percentage
reduction for ZEN in the final nixtamal following potassium hydroxide treatment after
rinsing and drying when compared to that obtained after steeping (Figure 2).

Although the accumulation of hydrolyzed and biotransformed products was not
investigated in this study, it is important to note that there is a possibility of the presence
of modified mycotoxins in the final nixtamal as a result of the solubility, changes in the
structure, and molecular masses of the parent mycotoxins [32]. According to these authors,
i.e., Freire and Sant’Ana [32], these modified mycotoxins produced via processing may be
toxic to human health.

2.2. Influence of Different Nixtamalization Cooking Ingredients on Fusarium Mycotoxins during
Nixtamalization of Sorghum

Assessment of the influence of the selected cooking ingredients on Fusarium myco-
toxins (FB1, FB2, and FB3; Table 3) contents during sorghum nixtamalization process was
performed using artificially contaminated sorghum samples. Results showing the effect of
washing on the reduction of target mycotoxins in the fungal-inoculated sorghum samples
are highlighted in Table 3.
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Figure 1. Reduction of fumonisins during the processing of nixtamalized maize samples using different nixtamalization cooking ingredients. Values are the means of five
replicates ± standard error. Means followed by different letters are significantly different (p < 0.05) according to Tukey post-hoc test.
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Table 3. Concentrations of Fusarium mycotoxins in purchased sorghum, inoculated sorghum, washed sorghum, and
estimated percentage reduction after washing following LC-MS/MS analysis.

Fusarium
Mycotoxins

Purchased Sorghum
(µg/kg)

Inoculated Sorghum
(µg/kg)

Washed Sorghum
(µg/kg)

Reduction
(% R)

FB1 <LOD 816.7 b ± 346 416.5 a ± 244 49.0
FB2 <LOD 1079.3 b ± 134.3 362 a ± 159.6 66.4
FB3 <LOD 1364.8 b ± 196.8 563.3 a ± 212.5 58.7

Total FBs <LOD 3260.9 b ± 397.3 1341.8 a ± 365.3 58.8

Values are the means of five replicates ± standard error. Means followed by different letters are significantly different (p < 0.05). LOD: Limit
of detection; FB1: fumonisin B1; FB2: fumonisin B2; FB3: fumonisin B3; and Total FBs: FB1 + FB2 + FB3.

The reduced levels of these FBs after washing indicate that they are water-soluble and
are easily washed away from the outer layer of the sorghum grains [23]. Schaarschmidt
and Fauhl-Hassek [10] also reported that FBs are soluble and prone to leaching from grains
into steeping and cooking solutions. Interestingly, there was no statistically significant
difference (p > 0.05) in the results obtained from the effect of wood ashes, calcium hydroxide,
sodium hydroxide, and potassium hydroxide during steeping, rinsing, and cooking stages
on the reduction of FBs in sorghum. Calcium chloride, however, had the least potential for
the reduction of these toxins (Figure 3).

As earlier mentioned, the use of calcium chloride involves partial dehulling [11],
which affects its effectiveness for mycotoxins reduction in food when compared to other
alkaline cooking ingredients that ensure better pericarp removal [17]. As discovered in
this study, higher levels of FBs’ reduction were recorded in the nixtamalized sorghum
compared to those of maize. These observations may be attributed to the absence of a waxy
layer in sorghum grain that allowed the rapid uptake of water [33].

2.3. Effect of Different Nixtamalization Cooking Ingredients on the pH Values of Obtained
Nejayote and Nixtamal

Disposal of highly alkaline wastewater, nejayote (pH~ 9–12) remains a huge concern
for food industries that process food by nixtamalization [34]. The nejayote and nixtamal
from maize after calcium chloride treatment were found to have lower pH values (4.84 and
4.99, respectively), which were significantly different (p < 0.05) from those in the samples
(pH range: 9.09–11.67 to 6.71–8.81) obtained via other cooking ingredients (Figure 4A). This
is somewhat similar to the research findings of Pappa et al. [35] where the nejayote obtained
from lime had a pH of 12. It can, thus, be seen that calcium chloride, a form of ecological
nixtamalization, contributes minimally to environmental pollution when compared to
other tested nixtamalization cooking ingredients [11,12].

Calcium chloride treatment also gave the lowest pH values in sorghum negayote
(pH 4.83) and nixtamal (pH 4.81) samples. Interestingly, pH values of the sorghum nejayote
and nixtamal samples after treatment with the different cooking ingredients followed a
similar pattern recorded for maize, i.e., calcium hydroxide > sodium hydroxide > potassium
hydroxide > wood ashes > calcium chloride (Figure 4B). This suggests that in comparison
to other cooking ingredients, the use of calcium chloride for the production of sorghum
nixtamal would raise the least concerns with respect to the problem of environmental
pollution [11].
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Figure 3. Reduction of fumonisins during the processing of nixtamalized sorghum samples using different nixtamalization cooking ingredients. Values are the means of five
replicates ± standard error. Means followed by different letters are significantly different (p < 0.05) according to Tukey post-hoc test.



Toxins 2021, 13, 27 9 of 16

Toxins 2021, 13, x FOR PEER REVIEW 10 of 19 
 

 

Figure 3. Reduction of fumonisins during the processing of nixtamalized sorghum samples using different nixtamalization cooking ingredients. Values are the 

means of five replicates ± standard error. Means followed by different letters are significantly different (p < 0.05) according to Tukey post-hoc test. 

 

Figure 4. Nejayote and nixtamal pH values [(A): Maize; (B): Sorghum]. Values are the means of five replicates ± standard error. Means followed by different letters 

are significantly different (p < 0.05) according to Tukey post-hoc test. 

 

Nejayote Nixtamal

Wood ashes 9.09 6.71

Calcium hydroxide 11.67 8.81

Sodium hydroxide 10.88 7.92

Potassium hydroxide 10.71 7.88

Calcium chloride 4.84 4.99

0

2

4

6

8

10

12

14

p
H

A

c

c

a
a

a
a

cc

b

b

Nejayote Nixtamal

Wood ashes 8.31 7.52

Calcium hydroxide 10.22 10.14

Sodium hydroxide 10.14 10.01

Potassium hydroxide 9.53 9.41

Calcium chloride 4.83 4.81

0

2

4

6

8

10

12

p
H

B

c

a b
b

d

c

a b
b

d

Figure 4. Nejayote and nixtamal pH values [(A): Maize; (B): Sorghum]. Values are the means of five replicates ± standard error. Means followed by different letters are significantly different
(p < 0.05) according to Tukey post-hoc test.
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2.4. Principal Component Analysis of the Maize and Sorghum Data

Principal component analysis (PCA) was performed to assess the association between
the nixtamalization cooking ingredients and their Fusarium mycotoxins reduction patterns
during nixtamalization. The unsupervised clustering method was followed to scrutinize
the data structure of the percentage reduction of each Fusarium mycotoxin during the
nixtamalization process, establish similarities among different cooking ingredients, and
examine the presence or absence of outliers. Two principal components (PCs), i.e., PC1 and
PC2, describing approximately 61% variation in the pareto-scaled data, were generated
for the maize nixtamalization process (Figure 5A). PC1 explained 41.1% of the variance
in the use of the different cooking ingredients for nixtamalization, while PC2 explained
an additional 19.8% variation in the reduction of Fusarium mycotoxins when these cook-
ing ingredients for nixtamalization were used. On the score plot (Figure 5A), a distinct
separation of nixtamal from potassium hydroxide was observed in quadrant 3, while that
produced from calcium chloride treatment was in the fourth quadrant.

In comparison with the clusters of potassium hydroxide and calcium chloride nixtamal,
Figure 5A showed a somewhat close relationship between the clusters of the percentage
mycotoxins reduction pattern of wood ashes, calcium hydroxide, and sodium hydroxide.
The observed clear separation of some of the clusters reflects the differences in the chemical
properties and reactions involved when different cooking ingredients for nixtamalization
were used, which in turn led to notable changes in pH values.

The PCA scores plot of the nixtamalized sorghum samples is presented in Figure 5B.
PC1 and PC2 account for 94.3% of the variation in the nixtamalized sorghum samples data
with clear discrimination into two broad clusters. Mycotoxin reduction in the nixtamal
cooked with calcium chloride was scattered toward the right, while the nixtamal obtained
using other cooking ingredients clustered near the center position, which may be attributed
to their similar chemical properties [12].

These clusters from wood ashes, calcium hydroxide, sodium hydroxide, and potas-
sium hydroxide treatments as shown in Figure 5B, to a large extent, also reflect the earlier
observed similar ability of these cooking ingredients to reduce FBs in sorghum. In contrast,
the nixtamal cooked with calcium chloride showed high variation with major outliers. In
line with Girolamo et al. [36], physico-chemical changes that take place in food during
nixtamalization, like starch gelatinization, can lead to the release of matrix-associated FBs
in the nixtamal. The degree of this gelatinization process depends on the breaking of hy-
drogen bonds of the hydroxyl groups present in the starch chains. Hence, the dissociation
nature of compounds/ingredients used in nixtamalization may significantly affect starch
gelatinization [12].

In the current study, calcium hydroxide, sodium hydroxide, and potassium hydroxide
used as cooking ingredients for nixtamalization were dissociated into hydroxyl ion (OH−),
which easily penetrated the starch granule, breaking the hydrogen bonds between water
molecules and hydroxyl groups of the starch chains. This then led to an increase in the
penetration power of water molecules and an enhanced gelatinization process in samples
obtained from these cooking ingredients [12]. For calcium chloride, the gelatinization of
starch granules is somewhat reduced as it dissociates into Cl−, which triggers the formation
of hydrogen bonds between water molecules while resisting starch hydroxyl groups [17].
Generally, the difference in PCA plots for percentage mycotoxins reduction in maize and
sorghum show that the mycotoxin reduction patterns in cereals are a function of their
food matrices.
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Figure 5. Investigational data analysis with unsupervised chemometric method, principal component analysis of: (A) Maize samples, and (B) Sorghum samples.
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3. Conclusions

This study offers valuable information on the impact of five nixtamalization cooking
ingredients on Fusarium mycotoxins reduction in maize and sorghum during nixtamal-
ization. The experimental results revealed that in addition to FBs produced in maize and
sorghum grains inoculated with F. verticillioides maintained under similar experimental
conditions, other mycotoxins such as DON, NIV, and ZEN were also produced in the
inoculated maize sample. Among the tested cooking ingredients for nixtamalization, cal-
cium chloride was generally found to have the least reducing effect on the concentrations
of the target mycotoxins in the final maize nixtamal. For sorghum, wood ashes, calcium
hydroxide, sodium hydroxide, and potassium hydroxide were also more effective than
calcium chloride in reducing FBs. Notwithstanding, the nejayote and nixtamal obtained
from maize and sorghum treated with calcium chloride had the lowest pH values which
are within the acidic range.

Overall, the research revealed that sodium hydroxide and potassium hydroxide can be
used as alternative nixtamalization cooking ingredients to calcium hydroxide in reducing
these FB analogs in contaminated maize and sorghum during nixtamalization. This further
supports the use of sodium hydroxide for pre-cooking grains in pozole preparation as
practiced in the nixtamalized maize flour industry. Although calcium chloride had the least
significant effect on Fusarium mycotoxins reduction in the final nixtamal when compared
with other cooking ingredients, it may still be used when there are environmental concerns
regarding nejayote disposal. As the levels of parent mycotoxins in the final nixtamal obtained
in this study were below the maximum allowable limit by the European Union, future
studies are required to assess possible modified/bound/hidden mycotoxin products in
the final nixtamal, aside from N-fatty acyl FB, arising from matrix-mycotoxin interaction
during nixtamalization for potential identification and toxicity.

4. Materials and Method
4.1. Chemicals and Reagents

FB1, FB2, DON, deepoxy-deoxynivalenol (DOM), NIV, ZEN, and zearalanone (ZAN)
standards were purchased from Sigma-Aldrich (Bornem, Belgium), while FB3 was from
Promec Unit (Tynberg, South Africa). LC-MS grade methanol, glacial acetic acid, analytical-
grade acetonitrile (Biosolve B. V., Valkenswaard, The Netherlands), analytical-grade
methanol, ammonium acetate, formic acid, calcium hydroxide, calcium chloride, sodium
hydroxide, potassium hydroxide (Merck, Darmstardt, Germany), dichloromethane, ethyl
acetate (Acros Organics, Geel, Belgium), and n-hexane (VWR International, Zaventem,
Belgium) were used including ultra-pure water from Arium® pro Ultrapure Water System
(Sartorius, Goettingen, Germany). Wood ashes were collected within Ghent environment,
Belgium, while GracePure aminopropyl (NH2) solid-phase extraction (SPE) 1000 mg/6 mL
cartridges were obtained from Grace Discovery Sciences (Lokeren, Belgium).

4.2. Preparation of the Growth Media and Inoculation of F. Verticillioides Strains

White maize and sorghum grains purchased at Bio Shop in Ghent, Belgium, were used
for the experiment. Inoculation and incubation with F. verticillioides strains were achieved
using solid potato dextrose agar (PDA) for 7 days at 25 ◦C in order to activate the strain. The
maize and sorghum media were prepared by pouring 500 mL of distilled water in 2000 g
of previously analyzed mycotoxin-free maize/sorghum grains. The media were vigorously
shaken to avoid clumping, kept overnight, and sterilized in an autoclave for 15 min at
121 ◦C. The inoculation procedure as described by Shi et al. [7] and Medina et al. [37] was
followed. This involved placing a piece of 4 mm diameter agar disc taken from the 7-day
old colony of the strain grown on PDA at the center of the maize/sorghum media and
incubating (25 ◦C) for 4 weeks. The media were harvested, dried at 40 ◦C until a constant
weight was obtained, and kept cool prior to the nixtamalization experiment. Inoculated
maize and sorghum samples were analyzed for their Fusarium mycotoxins content as
described in Sections 4.5 and 4.6 after the 4 weeks incubation.
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4.3. Processing of Nixtamalized Maize and Sorghum

The modified method of Villada et al. [38] was used for the nixtamalization process
(Figure 6). Samples were prepared by first washing followed by cooking 100 g of toxigenic
fungal-inoculated maize and sorghum grains with 200 mL purified water.
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Figure 6. Schematic flow diagram of the nixtamalization of maize/sorghum using different nixtamalization cooking
ingredients. (* Points where samples were taken for mycotoxins analysis).

For the cooking process, contaminated maize and sorghum grains were treated with
the different cooking ingredients for nixtamalization, i.e., wood ashes, calcium hydroxide,
sodium hydroxide, potassium hydroxide, and calcium chloride (1 g each), by cooking at
92 ◦C for 40 min in 400 mL of water followed by steeping for 8 h at room temperature and
discarding of the cooking liquor. The nixtamal was rinsed twice using purified water (3:1,
w/v) for 60 s followed by freeze-drying using a Ruckwand VaCo 5 Standard freeze dryer
(Zirbus Technology, Germany). Thereafter, the dried nixtamal as well as all other samples
were milled to fine particle size (<200 µm) using an IKA M20 universal mill (Sigma-Aldrich,
Bornem, Belgium), thoroughly homogenized, stored, and kept at −18 ◦C prior to analysis.

4.4. Preparation of Mycotoxin Standard Solution

Stock solutions of FB1, FB2, FB3, DON, NIV, ZEN, and ZAN were prepared in methanol
at a concentration of 1 mg/mL. DOM (50 µg/mL) was obtained as a solution in acetonitrile.
The working standard solutions were prepared by diluting the stock standard solutions in
methanol and storing them immediately at −18 ◦C. The standard solution mixture of FB1
(5 µg/mL), FB2, FB3, DON (each 10 µg/mL), NIV (40 µg/mL), and ZEN (2.5 µg/mL) was
then prepared from the working standard solutions.
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4.5. Sample Extraction and Clean-Up

Extraction and clean-up of all the samples were performed following the procedure
of Njumbe Ediage et al. [39]. Each sample (3 g) was spiked with internal standards [ZAN
(2.5 µg/mL) and DOM (50 µg/mL)] and allowed to equilibrate in the dark for 15 min.
Twenty milliliters of extraction solvent [methanol/ethyl acetate/water (70/20/10, v/v/v)]
were added to each sample. The mixture was vortexed, agitated for 40 min using an
overhead shaker (Agitelec, Paris, France), centrifuged for 10 min at 4000× g, and the
supernatant transferred into a new centrifuge tube. Ten milliliters of n-hexane was added
to the supernatant and defatting performed by agitation and centrifugation. The lower
phase of the solution was subjected to solid-phase extraction (SPE) and the upper phase
(n-hexane layer) discarded.

SPE involved purification using GracePure amino SPE cartridges. Due to the strong
binding capability of the carboxylic acid functional groups of FBs to the resin of the amino
SPE cartridges, the defatted extract was divided into two portions and subjected to different
clean-up procedures. Each defatted extract (2.5 mL) was transferred to a centrifuge tube
containing a 10 mL solution of dichloromethane/formic acid (95/5, v/v), vortexed, and
centrifuged at 4000× g for 10 min. Thereafter, 12.5 mL part of the defatted extract was
passed through an amino SPE (GracePure, 1000 mg) column, fixed on a vacuum elution
manifold previously pre-conditioned with 10 mL of the extraction solvent. The eluate
from the SPE was collected in a glass test tube. Both portions of the cleaned extracts in
the dichloromethane/formic acid solution and after amino SPE clean-up were combined
and evaporated at 40 ◦C to dryness using nitrogen gas at a gentle flow rate. The residue
was reconstituted in 300 µL of mobile phase containing equal volumes of mobile phase A
[water/methanol/acetic acid (94/5/1, v/v/v) + 5 mM ammonium acetate (0.385 g/L)] and
mobile phase B [water/methanol/ acetic acid (2/97/1, v/v/v) + 5 mM ammonium acetate
(0.385 g/L)] mixed with 200 µL of n-hexane. Prior to injection in the LC-MS/MS, the
reconstituted extract was centrifuged for 10 min at 1000 g and further filtered using Ultra
free PVDF centrifuge filters with a pore size of 0.22 µm (Millipore Bedford, MA, USA).

4.6. Liquid Chromatography-Tandem Mass Spectrometry

Identification and quantification of Fusarium mycotoxins were performed on a Waters
Acquity UPLC apparatus paired to a Quattro premier XE Tandem Mass Spectrometer (Wa-
ters, Milford, MA, USA). The chromatographic conditions were similar to those described
by Njumbe Ediage et al. [39] with a C18 column (150 mm × 2.1 mm i.d., 5 µm) preceded
by a guard column (10 mm × 2.1 mm) of similar material (Waters, Zellik, Belgium). The
analyte injection volume of 10 µL was used with mobile phases A and B set at a flow rate
of 0.3 mL/min following a gradient elution program, and 28 min run time. The instru-
ment was controlled, and data processed using the Masslynx version 4.1 and Quanlynx
version 4.1 software (Manchester, UK). Limits of detection (LOD) and quantitation (LOQ)
were established at 3.33 and 10 times the signal/noise ratio, respectively.

4.7. Statistical Analysis

The influence of different nixtamalization cooking ingredients on the reduction of
Fusarium mycotoxins in maize and sorghum during nixtamalization was evaluated. An
independent-sample T-test was performed where applicable while One-way analysis
of variance (ANOVA) (SPSS®, v26, IBM Statistics for Windows, New York, NY, USA)
of the results at 95% confidence level was carried out with Tukey’s test for the post-hoc
analysis. In addition, Soft Independent Modelling of Class Analogy (SIMCA) software
(version 14.1 Umetrics; Umea, Sweden) was used for the principal component analysis of
the data obtained.
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