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KEY POINTS

� AKI is a common complication of ARDS and portends a poor prognosis.

� AKI is associated with numerous traditional and nontraditional complications that
conspire to adversely affect the lungs.

� Key considerations in the management of AKI complicating ARDS include close attention
to fluid balance, maintenance of euvolemia, avoidance of hypophosphatemia while on
RRT, and continuous dialogue between nephrologists and critical care specialists.

� Clinicians should recognize that patients with AKI can be expected to require mechanical
ventilation longer and wean longer than other patient populations.

� AKI is common in COVID-19 disease and is predominantly caused by sepsis
pathophysiology.
INTRODUCTION

Acute kidney injury (AKI) is a common complication in patients with acute respiratory
distress syndrome (ARDS) with studies reporting up to 35% incidence rate. The com-
bination of AKI and ARDS portends worse outcomes including higher mortality and
increased hospital length-of-stay.1–3 Recently, the novel SARS-CoV-2 (or COVID-
19) has emerged as the most significant viral pandemic in the modern era, and has
further highlighted the important relationship of organ-organ crosstalk in the critically
ill. In this article, we explore the interrelationship between the kidneys and the lungs in
the setting of ARDS. We emphasize key clinical information including definition,
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epidemiology, pathophysiology, and treatment strategies important for any critical
care clinician. Finally, we also describe the current understanding of AKI in SARS-
CoV-2 infection given the high incidence of AKI in this population.
DEFINITIONS OF ACUTE KIDNEY INJURY

Early studies of hospital and intensive care unit (ICU)-acquired AKI were limited by the
lack of a uniform, standard definition.4,5 Before 2004, more than 30 different definitions
of AKI had been described, which created difficulties in validating diagnostic and ther-
apeutic interventions.5 The first collaborative efforts to define and stage AKI was per-
formed by an international, multidisciplinary group in 2004 by the Acute Dialysis
Quality Initiative (ADQI)5 and then in 2005 by the Acute Kidney Injury Network.4

More recently, the Kidney Disease: Improving Global Outcomes (KDIGO) society
developed rigorous evidence-based clinical practice guidelines in 2012 for the evalu-
ation and management of AKI.6 Their proposal included a modified definition of AKI by
combining the ADQI and Acute Kidney Injury Network definitions, and is now the most
used definition and classification system (Table 1).
Although the 2012 KDIGO criteria for AKI have now been successfully imple-

mented, some limitations exist.7 First, these criteria do not include identification of
an underlying cause. AKI is a heterogeneous disease with a variety of causes
requiring different diagnostic and therapeutic interventions. As such, the clinical
context is always key, and outcomes may differ depending on the underlying cause.
Second, the heavy reliance on serum creatinine in the AKI definition has several
drawbacks.7 Although serum creatinine is routinely available and its measurement
is standardized across institutions, creatinine may be affected by many nonrenal dis-
ease states,8–10 is a late marker of kidney function decline, and does not rise until a
substantial amount of kidney function has been lost.11 As a result, the contributions
of AKI to systemic diseases may be underappreciated because AKI is typically diag-
nosed late in the hospital course and may be incorrectly regarded as a consequence
of systemic disease even though it may occur simultaneously or even before other
complications.12 Third, oliguria is an excellent early marker of AKI,13 but it is less
readily studied.
Table 1
KDIGO diagnosis and staging criteria for AKI

Stage Serum Creatinine Urine Output

1 1.5–1.9 times baseline
or
�0.3 mg/dL (�26.5 mmol/L) increase

<0.5 mL/kg/h for 6–12 h

2 2.0–2.9 times baseline <0.5 mL/kg/h for �12 h

3 3 times baseline
or
�4.0 mg/dL (�353.6 mmol/L) increase
or
Initiation of renal-replacement therapy
or
Patients <18 y, decrease in estimated
glomerular filtration rate <35 mL/min/1.73 m2

< 0.3 mL/kg/h for �24 h
or
Anuria �12 h

Data from Kellum JA, Lameire N, Group KAGW. Diagnosis, evaluation, and management of acute
kidney injury: a KDIGO summary (Part 1). Crit Care. 2013;17(1):204.
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CLINICAL OUTCOMES OF ACUTE KIDNEY INJURY AND ACUTE RESPIRATORY
DISTRESS SYNDROME

AKI is a common complication and associated with a high mortality in the hospital and
ICU settings. AKI may complicate up to 20% of all hospital admissions.14 In the ICU,
up to 57% of patients develop AKI, and approximately 13% require renal-replacement
therapy (RRT).15,16 More importantly, AKI is associated with a high mortality,14 and an
international study evaluating more than 23 countries and 54 ICUs found that the hos-
pital mortality ranged between 40% and 60%.17 Another multinational cross-sectional
study investigating AKI using the KDIGO criteria demonstrated that AKI is an indepen-
dent predictor of in-hospital mortality across all stages of AKI with exponential in-
crease in hazard ratios from mild/stage 1 disease (hazard ratio, 1.7) to severe/stage
3 disease (hazard ratio, 6.7) even after adjustment for covariates.15 Strong associa-
tions with mortality in AKI is also true across many different settings and populations,
including aortic surgery,18 cardiac surgery,19 decompensated cirrhosis,20 and bone
marrow transplant.21 Furthermore, AKI can increase the risk of long-term adverse out-
comes with one large systematic review demonstrating an increased risk of mortality,
myocardial infarction, and development of end-stage renal disease.22

Clinical Outcomes of Acute Kidney Injury Complicating Acute Respiratory Distress
Syndrome

AKI is a common complication in patients with ARDS. A secondary analysis from the
landmark ARDSnet trial demonstrated that approximately 24% of participants with
ARDS developed AKI.23 One prospective, multicenter ICU study showed that 44.3%
of ARDS patients also had AKI with a median time to diagnosis of 2 days after
ARDS.24 After adjustment for cofounders, mechanical ventilation (MV) with ARDS
had a high likelihood of developing AKI.
AKI complicating ARDS portends a poor prognosis. In the ARDSnet trial, the 180-

day mortality rate was much higher in those with AKI versus those without (58% vs
28%)25 and this association was confirmed in other prospective studies.24 Similarly,
another study evaluating oliguric renal failure and lung injury found that the survival
rate was much lower compared with the entire cohort of patients studied (Fig. 1).26
Fig. 1. ARDS complicated by severe AKI has increased mortality compared with ARDS alone.
(Adapted from Cooke CR, Kahn JM, Caldwell E, et al. Predictors of hospital mortality in a
population-based cohort of patients with acute lung injury. Crit Care Med.
2008;36(5):1412-1420; with permission.)
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Severe AKI requiring RRT was associated with up to 50% mortality,27 and one retro-
spective study demonstrated increased ventilator days (10 vs 7 days) and duration of
weaning (41 vs 21 hours) in those with ARDS complicated by AKI versus ARDS
alone.28

THE EFFECT OF ACUTE KIDNEY INJURY ON THE LUNGS

Traditional complications of AKI, such as electrolyte derangements, uremia, and fluid
overload, have long been considered to contribute to the poor pulmonary outcomes
associated with AKI; however, research over the last two decades highlights the
importance of nontraditional consequences of AKI (Table 2).29 The importance of
nontraditional complications to outcomes after AKI is evidenced by the fact that
RRT is well known to correct the traditional complications of AKI, yet the mortality
of AKI requiring RRT in the ICU is 50% to 60%.30–33 Thus, improving mortality rates
in patients with AKI requires therapies targeted beyond modifications and improve-
ments to RRT.
AKI and its effects on the lungs has been well studied in animal models.34,35 AKI-

mediated lung injury is associated with lung inflammation characterized by increased
levels of pulmonary cytokines, chemokines, and neutrophil accumulation.36–39 The
proinflammatory cytokine interleukin (IL)-6 increases in the plasma by 2 hours of
AKI36,37 and is a major mediator of lung inflammation post-AKI.36,40 These findings
are clinically relevant because patients with AKI develop increased plasma IL-6 within
2 hours41 and increased IL-6 is associated with prolonged MV41 and increased mor-
tality.42 Additional characteristics of AKI-mediated lung injury in animal models include
dysregulation of salt and water channels,43 pulmonary vascular congestion,39 T-cell
accumulation,44 and apoptotic and necrotic cell death.45,46 Unlike direct lung injury,
AKI lung injury is not characterized by significant epithelial injury and the alveolar
space is devoid of inflammatory cytokines and neutrophils.47

THE EFFECT OF ACUTE RESPIRATORY DISTRESS SYNDROME ON THE KIDNEYS

Around the time of the ARDSnet trial, several papers demonstrated that protective
lung strategies were associated with reduced serum cytokine/chemokine levels and
Table 2
Traditional and nontraditional complications of AKI

Traditional Complications of AKI Nontraditional Complications of AKI

Recognized for >50 y Newly appreciated and studied in the past 20 y

May contribute to increased
mortality of AKI

May contribute greatly to AKI mortality

Typically corrected by renal-replacement
therapy

Requires therapy beyond renal-replacement
therapy

Include
Hyperkalemia
Acidosis
Hyperphosphatemia
Hypocalcemia
Fluid overload
Pericarditis
Uremic bleeding

Include
Respiratory complications/inflammatory lung

injury
Sepsis
Cardiac dysfunction/injury
Intestinal injury
Liver injury
Immunoparalysis

Adapted from Faubel S, Edelstein CL. Mechanisms and mediators of lung injury after acute kidney
injury. Nat Rev Nephrol. 2016;12(1):48-60; with permission.
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decreased organ dysfunction, including a reduced rate of AKI.23,48,49 The reduced rate
of AKI with low tidal volume ventilation may be caused by the known effects of MV on
renal function.50 Positive pressure ventilation was first shown to decrease renal perfu-
sion in 1947.51 Since then, several studies in experimental models and clinical cohorts
have shown that the use of positive end-expiratory pressure can decrease urine
output likely caused by a reduction in cardiac output.52–55 Positive end-expiratory
pressure has also been shown to alter the normal neurohormonal homeostasis (ie,
renin-angiotensin-aldosterone axis) important for regulation of normal kidney func-
tion,55 resulting in decreased renal perfusion, glomerular filtration rate, and urine
output.52,55–57
TREATMENT STRATEGIES FOR PATIENTS WITH ACUTE RESPIRATORY DISTRESS
SYNDROME AND ACUTE KIDNEY INJURY

Overall, treatment strategies for patients with ARDS and AKI are similar to the treat-
ment of either condition alone. Next we discuss the general approach to ARDS and
AKI, and how care of one may influence overall treatment and physiology when the
two are together.

Acute Respiratory Distress Syndrome Management at a Glance

In general, the identification and treatment of underlying causes for ARDS (eg, sepsis,
trauma, and burns) will ensure optimal outcomes. The supportive treatment options for
ARDS have been well-studied.58,59 First, the landmark ARDSnet trial23 showed a clin-
ically significant reduction in mortality and more ventilator-free days with the use of
low-tidal volume ventilation to prevent significant barotrauma. Second, among pa-
tients with severe ARDS, prone positioning significantly reduced 28-day mortality.60

Third, a conservative fluid management strategy with use of diuretics decreased
ventilator-free days, reduced ICU days, and improved lung function, although a statis-
tically significant mortality improvement was not appreciated.61,62

Fluid Management in Acute Respiratory Distress Syndrome and Acute Kidney
Injury

Fluid overload has consistently been shown to be associated with adverse outcomes
and worse mortality in the critically ill in general, and in patients with AKI in partic-
ular.63–65 Maintaining a net negative fluid balance (and therefore, less pulmonary
edema) can positively affect lung physiology and outcomes in critically ill ventilated
patients61,66; however, clinical equipoise is key, and at some point striving for a net
negative fluid balance is not beneficial once the patient’s dry weight has been
achieved. Several studies in septic shock and ARDS patients have demonstrated
an association between a positive fluid balance and worse mortality, MV duration,
and ICU length of stay.61,67–70 In the FACTT trial, the conservative fluid cohort
(treated with diuretics) was more likely to have a shorter MV duration and shorter
ICU stay compared with a liberal fluid strategy.61 There was also a trend for the con-
servative fluid group to require dialysis less often compared with the liberal fluid
group highlighting that excess fluid administration does not protect against AKI
requiring RRT as had been previously thought. Volume overload can also increase
the risk of intra-abdominal hypertension and the risk of AKI through an overall reduc-
tion in renal blood flow.71,72 In the absence of intra-abdominal hypertension, excess
volume can also increase edema in the renal interstitium thereby leading to worse
AKI.68
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Acute Kidney Injury Management at a Glance

The 2012 KDIGO recommendations for themanagement of AKI has been widely adop-
ted and serve to help the clinician with prognostication and diagnostic/treatment de-
cisions.6 Since its publication, several studies have shown that implementation of
these guidelines may aid in prompt diagnosis and management of AKI in susceptible
populations leading to improved clinical outcomes.73–75

The first step is to obtain an accurate diagnosis of AKI and identify the cause of kid-
ney injury whenever possible. Next, the prevention of worsening injury revolves around
maintaining adequate organ perfusion, avoiding volume overload, avoiding hypergly-
cemia, discontinuing nephrotoxic agents, and renally dosing medications. Lastly,
when such maneuvers are inadequate and the patient develops worsening complica-
tions of AKI (eg, fluid overload, hyperkalemia), RRT is the next appropriate treatment
modality to consider.

Approach to Renal-Replacement Therapy in the Critically Ill Patient with Acute
Kidney Injury

Initiation of RRT requires astute clinical judgment and the collaboration of nephrolo-
gists and intensivists to determine patient suitability. In general, the decision to start
RRT depends on (1) the underlying cause, (2) indications for RRT, (3) patient factors
guiding modality, and (4) specific treatment variables. We briefly summarize important
aspects of RRT for the critical care provider.
First, it is widely accepted that RRT should be initiated in those with severe electro-

lyte derangements (eg, hyperkalemia), severe acidosis, severe uremia, and pulmonary
edema in the setting of oliguria.6 Even with this recommendation, clinical equipoise
must be maintained and current guidelines also recommend considering the broader
clinical context when starting dialysis.
Second, the timing of RRT has been well-studied and the current evidence indicates

that early initiation has no benefits regarding survival. In general, most randomized
controlled trials showed no mortality benefit with an early versus late timing approach
to RRT.30,31,33,76,77 A meta-analysis of seven different randomized clinical trials with
1343 patients showed no benefit with an early RRT approach (95% confidence inter-
val, 0.74 [0.43–1.27]).78 As such, the ultimate timing decision depends on multiple fac-
tors to be addressed and discussed among nephrologists and intensivists.
Third, there is no firm consensus on the optimal RRT modality in AKI. Continuous

RRT (CRRT) is generally preferred over intermittent hemodialysis and prolonged inter-
mittent RRT because of perceived hemodynamic instability in the critically ill. One
recent meta-analysis comparing CRRT, intermittent hemodialysis, and prolonged
intermittent RRT showed no clear advantage of one modality over another on short-
term mortality and dialysis dependence.79

Hypophosphatemia in Continuous Renal-Replacement Therapy

CRRT is associated with a high incidence of severe hypophosphatemia occurring in
up to 70% of patients.80–82 Phosphate is essential for all cells and is important for
cell membrane integrity, bone structure, cell signaling, acid-base buffering, and en-
ergy storage in the form of adenosine triphosphate.83 As such, severe hypophospha-
temia has been implicated in respiratory muscle failure and prolonged duration of
MV.84–86 Additionally, reduced levels of phosphate can impair myocardial contractility
and lead to arrhythmias, which may be improved once hypophosphatemia is cor-
rected.83 Hypophosphatemia has been associated with prolonged MV,87 longer vaso-
pressor duration,87 longer duration of CRRT use,82 longer ICU stays,82 and higher
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doses of CRRT.88 Therefore, it is important to monitor and treat the common compli-
cation of hypophosphatemia in RRT patients.
ACUTE KIDNEY INJURY AND SARS-CoV-2: CURRENT KNOWLEDGE

SARS-CoV-2 is a novel coronavirus that was first reported in December 2019,89 and
has since become the most significant pandemic in the modern era. Initial reports sug-
gested that the rates of AKI were low90,91; however, more recent data suggest AKI to
be a common complication with values reported as high as 37%.91–94 The ICU inci-
dence of AKI is more significantly elevated at more than 50% in multiple studies,
and has been associated with significant mortality.93,95,96 A large registry from the Eu-
ropean Renal Association-European Dialysis and Transplant Association has shown a
high short-term mortality rate of 20% for dialysis and renal transplant patients.97 Inde-
pendent risk factors for AKI included elderly, Black race, diabetes, cardiovascular dis-
ease, hypertension, MV, and vasopressor use.93,98

The pathophysiologic mechanism underlying AKI in COVID-19 is still incompletely
understood. The best evidence to date indicates that the underlying mechanism is
similar to severe sepsis with one case series reporting acute tubular necrosis in
approximately 66% of cases.96 Another important consideration is the cytokine storm
phenomenon experienced in severe COVID-19 ARDS patients, which may lead to hy-
potension and sepsis further compromising renal perfusion. Focal kidney fibrin
thrombi have been identified in histologic specimens, but are not currently thought
to directly contribute to AKI and are instead considered a sequelae of deranged coa-
gulopathy.99 AKI in COVID-19 patients may also be as a result of prerenal azotemia
and tubular injury as a result of toxic insults, such as rhabdomyolysis.100 Collapsing
glomerulopathy is an uncommon, but well-established cause of AKI that is associated
with nephrotic syndrome and has been described particularly in the setting of high-risk
APOL1 alleles.101 Other pathologic features described include membranous glomer-
ulopathy, antiglomerular basement membrane nephritis, and exacerbation of preexist-
ing autoimmune glomerulonephritis, but it is unclear whether these features are related
to COVID-19 or new/preexisting diagnoses.102

Whether SARS-CoV-2 causes direct viral injury to the kidneys is currently controver-
sial. Because SARS-CoV-2 enters cells via the ACE-2 receptors, which are abundant
on the renal proximal tubule, it was thought that directly viral entry was probable. Early
studies demonstrated viral staining in the proximal tubule, but later studies failed to
confirm this. Targeting of ACE-2 receptors by COVID-19 may result in several down-
stream effects, such as hypercoagulation, innate and adaptive immune pathway acti-
vation, and angiotensin dysregulation.103 However, these studies also report on
patient samples that did not demonstrate significant viral particle staining.
At time of submission, there are two therapies approved for use in severe COVID-19

illness (remdesivir and dexamethasone).104 Of note, remdesivir is currently contraindi-
cated in those with a reduced glomerular filtration rate, but recent evidence suggests
that it may be suitable in those receiving RRT.105 The initial concern for remdesivir use
in patients with AKI revolved around the nephrotoxic accumulation of sulfobutylether-
b-cyclodextrin, but evidence suggests there is adequate removal of sulfobutylether-
b-cyclodextrin with dialysis.105,106 The risk of venous thromboembolism seems to
be higher in this syndrome; however, recent critical care guidelines recommend
against full anticoagulation without evidence of venous thromboembolisms, and
recommend typical thromboprophylaxis and monitoring as key.107

The indications for RRT in the management of severe AKI in the setting of COVID-19
disease are the same as for other critically ill patients.94,108 One important distinction is
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the use of anticoagulation because higher incidence of filter clotting during CRRT in
COVID-19 disease has been reported.109–111 Several studies have reported distinct
perturbations in the clotting cascade in COVID-19 patients including thrombocyto-
penia and prolonged prothrombin/partial thromboplastic time, which may contribute
to the high incidence of filter clotting.110,112,113 CRRT filter clotting is an important
concern because it can lead to blood loss and lost time on RRT. ADQI guidelines
for the management of AKI in COVID-19 patients recommend the use of anticoagula-
tion if not otherwise contraindicated, monitoring for impending signs of circuit failure,
and establishing center-specific stepwise escalation options for CRRT anticoagula-
tion.94 Finally, as the pandemic continues, there is concern about dialysis and
CRRT availability, including consumables, machines, and staff.114 Critical shortages
were seen during the initial surge in New York City and similarly experienced abroad;
therefore, preparation of resources in the coming months is key.114,115

SUMMARY

AKI is a common complication during hospital and ICU stays, and is particularly
problematic when coexisting with ARDS. Previous studies have highlighted that
AKI is an independent predictor for death in patients who are critically ill with acute
lung injury. Clinical and experimental data indicate that there is significant crosstalk
between injured kidneys and the lung, and that AKI exerts a multitude of deleterious
effects on the lung via fluid overload leading to cardiogenic pulmonary edema,
cytokine excess leading to noncardiogenic pulmonary edema, and others. The
organ-organ effects of kidney and lung injury have been especially poignant in
the era of the novel SARS-CoV-2 virus where the existence of both complications
portends a poor prognosis. In summary, AKI complicating ARDS is a common phe-
nomenon that contributes to a significant burden of disease, and clinical recogni-
tion of this syndrome aids the clinician in management and prognostication in the
critically ill.

CRITICAL CARE POINTS
� AKI in conjunctionwith ARDS portends a poor prognosis and can help guide the intensivist in
goals of care discussion.

� AKI can affect the lungs in multiple ways via traditional (eg, volume overload) and
nontraditional (eg, systemic inflammatory mediators) complications.

� Maintaining appropriate fluid balance and ensuring adequate treatment of the underlying
cause of ARDS are crucial.

� If a patient becomes anuric, renal-replacement therapy should be considered. Initiation and
management of such treatment should involve a continuous dialogue between the
intensivist and nephrologist.

� AKI is also a common complication of COVID-19. In general, management of AKI in COVID-19
patients is similar to other disease states. However, special consideration should be made to
potential drug toxicities of new SARS-CoV2 agents; and the increased prevalence of
hypercoagulability in this population.
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