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It is estimated that as much as 6-8% population suffers from food allergy or food antigen-related disorders. The prevalence 
keeps rising. So far we do not have identified remedy to treat food allergy. Avoidance of the offending food is the only 
effective method currently. Skewed T helper 2 polarization is one of the major feature in the pathogenesis of food allergy. 
However, the causative mechanism in the initiation of food allergy remains to be further understood. Research in food allergy 
has got giant advance in recent years. Several animal models have been established and used in food allergy study. One of the 
common features of these food allergy animal models is that most of them require using microbial products as adjuvant to 
sensitize animals. This review documents the recent advance in the mechanistic study on concurrent use of microbial products 
and food antigens to study food allergy. (Chen X, Yang PC. Concurrent exposure to microbial products and food antigens 
triggers initiation of food allergy. North Am J Med Sci 2009; 1: 2-8). 
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Introduction 
  
     The aberrant Th2 immune response is believed to be a 
crucial feature of food allergy [1, 2]. The mechanisms of 
developing pathological Th2 responses remain unclear. In 
synergy with antigens, microbial derived adjuvant plays a 
critical role in developing allergic reactions in animal models 
[3-8] whereas the hygiene hypothesis proposes that the 
exposure to microbial products in early life prevents from 
allergic diseases with the mechanisms remained to be further 
elucidated [9-12]. Some researchers suggest that the opposing 
results may be due to the different exposure levels and if the 
exposure to microbial products is with a simultaneous antigen 

exposure [13-15]. Thus, it is possible that concurrent 
exposure to microbial products and food antigens up-
regulates TIM4 (T cell immunoglobulin and mucin-domain-
containing molecule 4) expression in the intestinal antigen-
presenting cells (APCs); the interaction of TIM4 with TIM1 
on naive CD4+ cells leads to Th2 immune polarization and 
thus facilitates the development of allergic reactions to food 
antigens. This review focuses on the recent published 
information to dissect the mechanism by which the 
synergistic effect of microbial products and food antigen 
triggers the initiation of skewed antigen specific Th2 
responses and development of food allergy. 
 

 
Gastrointestinal allergic reactions compromise 
human health and social economy.  
      As many as 4~8% of children and 1~2% of adults have 
the IgE-mediated hypersensitivity to food antigens [16, 17]. 
The prevalence of food allergy and related disorders has 
increased rapidly across the world in the last few decades 
[18]. Research in the area of food allergy has advanced 
greatly in recent years; however the pathogenesis of food 
allergy remains unclear [19].The symptoms of food allergy 
range from slight inconveniences to life-threatening 
anaphylactic shock reactions [17]. Food allergic reaction 
involves not only the intestinal tract, but other body systems 
such as the skin [20], the airway [21] and the cardiovascular 
system [22]. IgE-mediated food allergy is one of the causes 
of eosinophil accumulation in the gastrointestinal tract that is 
a common feature of numerous gastrointestinal disorders [23]. 
Since the food allergic disorders are common throughout the 

world, affecting the males and the females of all ages, races 
and all social classes, they certainly represent a substantial 
burden of morbidity and health service cost [24, 25].  
 
Oral tolerance maintains the homeostasis in 
intestinal tissue  
      Oral tolerance, as characterized by Chase in 1946 [26], 
refers to a state of active inhibition of immune responses to 
an antigen by means of prior exposure to that antigen through 
the oral route. In animal models, oral tolerance appears to be 
a specific consequence of the immune environment in the 
intestine, which favors the generation of T regulatory cells 
[27, 28]. The mechanism of oral tolerance may involve either 
anergy/deletion of CD4+ T cells, or the induction of 
regulatory CD4+ T cells (Tregs) that produce immune 
suppressive cytokines interleukin 10 (IL-10) and/or TGFbeta 
[29, 30]. Such CD4+ Tregs include CD4+CD25+ cells [31, 
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32]. It is postulated that a breakdown in oral tolerance or a 
failure of induction of oral tolerance results in 
hypersensitivity to food antigens [33]. However, it remains 
unclear how the established oral tolerance breaks down or 
fails to develop. 
 
Th2 polarization plays a crucial role in oral 
tolerance impairment and the initiation of 
intestinal sensitization  
      The etiology of food allergy remains unclear; a failure to 
develop or a breakdown in the maintenance of, oral tolerance 
may be responsible [27, 28, 34, 35]. The key feature of the 
disease is a T-helper type 2 (Th2)-predominant allergen-
specific immune response, with the production of IgE 
antibodies specific for the food allergen [1]. Th2 cells are 
produced when type 2 dendritic cells present antigen to the T 
cell's receptor for antigen (TCR) [36]. Contrast to Th1 cells 
which release type 1 cytokines such as IFNγ, the major 
cytokines secreted by Th2 cells are Th2 cytokines IL-4, IL-5 
and IL-13. These cytokines are of major importance because 
IL-4 and IL-13 induce the production of IgE by B cells [37]. 
T cell differentiation is a complex process that is regulated by 
a network of transcription factors [38], including transcription 
factors T-box expressed in T cells (T-bet) and GATA binding 
protein 3 (GATA3) that are considered as the master 
regulators of Th1 and Th2 differentiation, respectively [38, 
39]. (Fig 1). 
 

 
 
Role of SEB in allergic diseases  
      Staphylococcus aureus (S. aureus) is consistently found 
in human’s intestine [40-42]. SEB is one of the enterotoxins 
produced by S. aureus that has multifaceted functions in the 
immune regulation [43-45]. SEB induces vigorous activation, 
proliferation, and cytokine production by T cells that express 
specific TCR variable beta (Vß) chains. Some investigators 
associate SEB with inducing the Th1 pattern inflammation 
[46-48], however, mounting evidence indicates that SEB is 
also involved in the pathogenesis of allergic diseases [43, 49-
52] although the mechanisms have remained unclear. We and 
others have found that the simultaneous exposure to SEB and 
food antigens such as ovalbumin (OVA) enhances 
susceptibility to allergic reactions [43, 53-55]. SEB triggers 

immune cells to release the Th2 cytokines IL-4, IL-5 and IL-
13 [55-58] and enhances antigen-specific immune responses 
[49, 59]. The primed T cells of antigen specificity would be 
further and more potently expanded by SEB [60, 61] while 
naive T cells of the same Vβ specificity would become 
anergized [62]. CD4+CD25+ Tregs play roles in suppression 
of the Th2 reactions [63-65]; however, in SEB-involved 
atopic patients, CD4+CD25+ Tregs demonstrate incompetent 
inhibitory capability in suppression of the Th2 reactions [66]. 
SEB would thus be a potent activator of both cellular and 
humoral arms of the immune system in an antigen-specific 
manner. SEB increases permeability of the intestinal 
epithelium leading to enhanced uptake of the co-administered 
antigen [53]. SEB also induces dendritic cell maturation that 
may enhance antigen presentation by APCs [67].  
 
Adjuvants are required to induce sensitization 
in animal models  
      Adjuvants are substances that are added to vaccines or 
with antigens to improve the immune responses. Such 
adjuvants work by speeding the differentiation of 
lymphocytes. We induce intestinal sensitization in animal 
models using pertussis toxins/vaccines as adjuvants together 
with antigens ([3-6, 68-72]. Cholera toxins [1], Freund's 
adjuvant [73], etc are also commonly used with antigens in 
developing allergic animal models. Microbe-derived toxins or 
their components are commonly used as adjuvants. They 
more likely induce Th1 reactions if used alone [74, 75)] but 
enhance both Th1 and Th2 or Th2 reactions when used 
together with antigens [76, 77]. Similar to the adjuvants 
mentioned above, SEB has been shown to facilitate the 
development of either Th1 reactions [46-48] or Th2 allergic 
disorders [49-52]. 
 
Role of TIM1 and TIM4 in regulation of 
immune function  
      The family of TIMs has been described in the mice 
recently, and their homologous molecules have been 
identified in the human, monkey, and rodent [78]. TIM1 is 
encoded by a gene identified as an 'atopy susceptibility gene' 
(Havcr1) and is expressed on CD4+ T cells after activation. It 
is preferentially expressed in T helper type 2 (Th2) but not 
Th1 cells. TIM1 has been identified as being important in 
asthma and allergy susceptibility although it also associates 
with the hygiene theory because it is the receptor of the 
hepatitis A virus [79-82]. TIM1 plays an important role in the 
activation of Th2 cells and the inhibition of the peripheral 
tolerance [83, 84]. On the other hand, TIM4 is expressed by 
APCs; it is the ligand for TIM1. In vitro stimulation of CD4+ 
T cells with a TIM-1-specific monoclonal antibody and T cell 
receptor ligation enhanced T cell proliferation; in Th2 cells, 
such costimulation greatly enhanced synthesis of interleukin 
4 but not interferon-gamma [83]. In vivo administration of 
either the soluble TIM1-immunoglobulin (TIM1-Ig) fusion 
protein or the TIM4-Ig fusion protein resulted in 
hyperproliferation of T cells, and TIM4-Ig costimulated T 
cell proliferation mediated by CD3 and CD28 in vitro. These 
data suggest that the TIM1-TIM4 interaction is involved in 
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regulating T cell proliferation [34]. Although SEB can bind to 
the TCR to activate T cells directly, SEB also promotes 
dendritic cell maturation as shown by increased expression of 
CD40, CD80 and CD86 [67];  Our previous study  indicates 
that SEB also increases the TIM4 expression in the intestinal 
APCsand increase the histone acetylation at lysine 9 (an 
indicator of gene transcription). 
 
Specific gaps in existing knowledge in the field 
of food allergy research  
      We know that antigens interact with immune cells and 
induce the immune reactions; it has been unclear what 
decides the outcome of immune reactions in the gut: immune-
tolerance or hypersensitivity [16-18]. While the growing 
evidence indicates that SEB plays roles in the regulation of 
both Th1 and Th2 inflammation, the mechanisms have to be 
understood [46, 47, 50, 51]. Emerging evidence strongly 
suggests a critical role of the TIM1 and TIM4 interaction in 
regulation of Th1/Th2 balance [34, 35, 83, 84]. However, the 
role of TIM1 and TIM4 in the immune mechanisms of food 
allergy in the intestine has not been investigated. We have 
established a murine model of intestinal Th2 sensitization and 
food allergy by concurrent exposure to SEB (microbial 
product) and OVA (food antigen). By using this model 
system, we will investigate the role of TIM1 and TIM4 
interaction in the immunopathogenesis of intestinal food 
allergy. Both in vitro and in vivo approaches will be used in 
our studies.  
 
Recent advances 
      We recent found that a significant increase in TIM4 
expression in human DCs was observed in response to SEB 
stimulation via Toll-like receptor (TLR)2 and nucleotide-
binding oligomerization domain (NOD)1 pathway. Coculture 
SEB-conditioned DCs with naïve CD4 T cells induced Th2 
responses that could be abolished using TLR2 or NOD1 or 
TIM4 or TIM1 with counterpart antibodies or RNA 
interference. The results demonstrate that Staphylococcus 
aureus derived SEB promotes the TIM4 production in human 
DCs. The interaction between TIM4 and TIM1 drives naïve 
CD4 T cells to develop to Th2 cells [85]. In another study, we 
determined the role of TIM-4, a recently identified member 
of cell surface molecules, in the pathogenesis of intestinal 
allergy in a murine model. We report that TIM-4 as well as 
costimulatory molecules were up-regulated in intestinal 
mucosal dendritic cells by in vitro or in vivo exposure to SEB. 
SEB-conditioned intestinal dendritic cells loaded with a food 
macromolecule ovalbumin (OVA) induced potent OVA-
specific Th2 lymphocyte responses in vitro and such Th2 
responses were inhibited completely by TIM-4 blockade. In 
vivo exposure to both SEB and OVA resulted in OVA-
specific Th2 differentiation and intestinal allergic responses 
including increased serum immunoglobulin E and Th2 
cytokine levels, activation of OVA-specific Th2 cells 
detected both ex vivo and in situ, and mast cell degranulation. 
Of importance, in vivo abrogation of TIM-4 or its cognate 
ligand TIM-1 by using a polyclonal antibody remarkably 
dampened Th2 differentiation and intestinal allergy. This 

study thus identifies TIM-4 as a novel molecule critically 
required for the development of intestinal allergy [86]. We 
have taken a further step in this series of study. In a project 
with animal model, mouse bone marrow-derived DCs 
(BMDCs) were generated and exposed to cholera toxin (CT) 
or/and peanut extract (PE) for 24 hours and then adoptively 
transferred to naive mice. After re-exposure to specific 
antigen PE, the mice were killed; intestinal allergic status was 
determined. The results showed that Increased expression of 
TIM4 and costimulatory molecules was detected in BMDCs 
after concurrent exposure to CT and PE. Adoptively 
transferred CT/PE-conditioned BMDCs resulted in the 
increases in serum PE-specific IgE and skewed T(H)2 
polarization in the intestine. Oral challenge with specific 
antigen PE induced mast cell activation in the intestine. 
Treating with Toll-like receptor 4 small interfering RNA 
abolished increased expression of TIM4 and costimulatory 
molecules by BMDCs. Pretreatment with anti-TIM1 or anti-
TIM4 antibody abolished PE-specific Th2 polarization and 
allergy in the intestine. We conclude that concurrent exposure 
to microbial product CT and food antigen PE increases TIM4 
expression in DCs and promotes DC maturation, which plays 
an important role in the initiation of PE-specific Th2 
polarization and allergy in the intestine. Modulation of TIM4 
production in DCs represents a novel therapeutic approach 
for the treatment of peanut allergy [87]. 
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