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Abstract—Goal: In this study, we demonstrate that a
deep neural network (DNN) can be trained to reconstruct
high-contrast images, resembling those produced by the
multistatic Synthetic Aperture (SA) method using a 128-
element array, leveraging pre-beamforming radiofrequency
(RF) signals acquired through the monostatic SA approach.
Methods: A U-net was trained using 27200 pairs of RF sig-
nals, simulated considering a monostatic SA architecture,
with their corresponding delay-and-sum beamformed tar-
get images in a multistatic 128-element SA configuration.
The contrast was assessed on 500 simulated test images
of anechoic/hyperechoic targets. The DNN’s performance in
reconstructing experimental images of a phantom and dif-
ferent in vivo scenarios was tested too. Results: The DNN,
compared to the simple monostatic SA approach used to
acquire pre-beamforming signals, generated better-quality
images with higher contrast and reduced noise/artifacts.
Conclusions: The obtained results suggest the potential
for the development of a single-channel setup, simultane-
ously providing good-quality images and reducing hard-
ware complexity.

Index Terms—Deep learning, monostatic configuration,
synthetic aperture imaging, ULA-OP system, ultrasound
beamforming.

Impact Statement—The proposed deep-learning-based
beamforming approach could allow for the realization of a
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very simple ultrasound imaging system, producing good-
quality images and potentially achieving a 128:1 reduction
of the transmission/reception channels number.

I. INTRODUCTION

U LTRASOUND (US) imaging is a versatile and widely
used medical imaging technique [1]. Considering that

traditional US systems are known for their complex hardware,
involving multiple transducers, advanced beamforming algo-
rithms, and significant processing power, lately there has been
an increasing focus on simplifying US imaging systems for
cost reduction, improved portability, and enhanced accessibility,
without sacrificing image quality and diagnostic capabilities [2].

Plane/diverging wave compounding [3] and Synthetic Aper-
ture (SA) US imaging [4], [5] enable full dynamic synthetic
focusing, at the expense of a higher processing load. SA imaging
softens the requirements on the number of electronic transmis-
sion channels: its multistatic configuration, where one element
at a time transmits and all the array elements are active during
reception, is commonly referred to as Synthetic Transmit Aper-
ture (STA), while the configuration where only a single element
transmits/receives the echoes is usually denoted as monostatic
Synthetic Aperture Focusing (SAF) [6]. Although SAF involves
a lower processing load and requires a simpler system (ideally
with a single channel only), reconstructed images have poor
contrast when beamformed with the standard Delay and Sum
(DAS) algorithm. Besides, the use of unfocused waves with
single-element transmission/reception compromises the signal-
to-noise ratio (SNR).

Deep learning (DL) has emerged as a powerful paradigm in the
field of artificial intelligence [7], which has found great use in US
medical imaging for classification, detection and segmentation
of anatomical structures [8], [9], [10], [11], [12], [13], [14], [15],
[16], [17], [18].

While such techniques have been mostly applied to already
beamformed images, DL has been also investigated for applica-
tion to raw channel data and beamformed images for “front-
end” tasks, like data compression and recovery [19], image
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enhancement [20] and beamforming [21], [22], also coupled
with segmentation [23] or speckle reduction [24].

Different studies focused on the application of neural net-
works to ultrafast and SA imaging, with the goal of simplifying
the imaging system by minimizing the number of transmissions
[25], [26] or samples in time and space [27], [28] required to
obtain good-quality images, for example considering a reduced
number of transducers only [27], [28], [29], [30].

In this paper, we propose a proof-of-concept of a DL-based
approach to perform the reconstruction of B-mode images
with improved SNR and contrast in monostatic SAF imaging,
expanding on our preliminary study presented in [31]. The
approach relies on the use of a U-Net, trained to learn the
mapping between the raw radiofrequency (RF) data acquired
using SAF and the corresponding DAS-beamformed image ob-
tained with STA using a 128-element array. This could allow
for the realization of a very simple system, with good-quality
images, potentially achieving a 128:1 reduction of the required
number of transmission/reception channels. The feasibility of a
real-time ultra-portable, single-channel system was tested on
a research scanner, connected to a host PC equipped with a
mid-range graphics processing unit (GPU), which enabled a∼30
Hz frame rate. The proposed proof-of-concept is a cost-effective
leap forward in the democratization of US, for home- and
self-monitoring (not diagnostic) ultra-portable systems without
the need of specialized clinical personnel.

II. MATERIALS AND METHODS

A. Synthetic Aperture Configurations

Two different SA configurations were considered. Monostatic
SAF employs one transmitting element at a time in the transducer
array. After each transmission, the same element is used to
receive the backscattered echoes. Once all the N elements have
transmitted/received the ultrasonic wave, signals are syntheti-
cally focused to generate the final image [4], [6]. If sii(t) are
the N RF echo signals, the beamformed value pSAF(x, z) in the
image point with coordinates (x, z) is computed as:

pSAF (x, z) =

N∑
i=1

sii(t− τii(x, z)), (1)

where

τii(x, z) =
2
√

(x− xi)
2 + z2

c
(2)

is the wave travel time from the i-th element with coordinates
(xi, 0) to point (x, z) and vice-versa, while c is the speed of sound.

The second approach considered is STA [4], [6]. In this case,
each time a single element is used to transmit, while all the N
elements are used in reception. Synthetic focusing is performed
as follows:

pSTA(x, z) =

N∑
i=1

N∑
j=1

sij(t− τij(x, z)), (3)

TABLE I
SIMULATION PARAMETERS

TABLE II
NUMERICAL PHANTOM PROPERTIES (TRAINING SET)

where

τij(x, z) =

√
(x− xi)

2 + z2 +
√

(x− xj)
2 + z2

c
(4)

is the travel time from the i-th transmitting element with coordi-
nates (xi, 0) to point (x, z), and back to the j-th receiving element
with coordinates (xj, 0).

Since more receiving elements are used in STA and synthetic
two-way dynamic focusing is implemented, images show a
higher SNR and contrast than those obtained with monostatic
SAF; on the other hand, a more complex system with N channels
is required and N2 signals have to be beamformed.

B. Training and Test Set

The DNN was fed with a set of N pre-beamforming RF signals,
obtained from monostatic SAF, and was trained to learn how to
reconstruct the corresponding STA image. The input/output data
size was 256×128.

We synthetically produced the training data through Field II
[32], [33] in Matlab (The MathWorks, Natick, MA, USA), con-
sidering the scan parameters in Table I. The numerical phantoms
consisted of a homogeneous background including elliptical
targets (also overlapping) of different sizes and echogenicities
(Table II). Two phantom subgroups were generated, the first
comprising a random number (from 1 to 30) of targets and in
some cases also a single highly-reflecting point scatterer, while
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TABLE III
NUMERICAL PHANTOM PROPERTIES (TEST SET)

the second one containing exactly 100 targets, in order to have
a variable target density within the dataset.

The training dataset included 13600 pairs of SAF RF signals
- STA target images. Moreover, data augmentation was applied
by horizontally flipping both signals and images to obtain the
full dataset (27200 input/output pairs).

The input SAF RF signals were band-pass filtered and then
undersampled [34] considering 256 samples, as explained in the
Supplementary Materials available online.

STA target images were instead obtained by DAS-
beamforming the simulated RF signals (with fs = 20 MHz), then
through compounding and envelope detection; the generated
images were undersampled (256 samples along the time/depth
axis), normalized by the average value measured in a uniform
speckle region, and logarithmically compressed in dB. Finally,
a dynamic range of 60 dB (i.e., [−30; +30] dB) was considered.

Data were then normalized to facilitate the DNN learning
process: RF signals were standardized with respect to the whole
dataset, while target images were rescaled in the range [0; 1] by
applying MinMax normalization [35].

The test set included both 500 simulated images of virtual
phantoms, containing 1 or 2 circular non-overlapping targets
(Table III) and experimental data. These latter were acquired on
a commercial US phantom (model 040GSE, CIRS Inc., Norfolk,
VA, USA) and a healthy volunteer, using the ULA-OP 256
research system [36], [37] with a linear array (LA533, Esaote
s.p.a., Florence, Italy) working at 5 MHz. In this case, for
each scenario, 20 consecutive frames were acquired and the
corresponding 128 RF signals per frame were first band-pass
filtered, undersampled (256 samples) and averaged to improve
the SNR, before feeding them as input to the network. The in vivo
protocol was approved by the institutional review board on ethics
of the University of Florence (approval number 309/2024).

C. DNN Architecture

The developed architecture (see Fig. 1 and Supplementary
Materials available online) is based on the U-Net [38], drawing
inspiration from the DNN proposed by Nair et al. [23].

Training was conducted with a mini-batch approach, and a
custom loss function was implemented combining the Mean
Absolute Error (MAE) and Structural Similarity Index Measure

Fig. 1. Block diagram of the proposed convolutional neural network,
inspired by the U-Net architecture implemented in [23].

(SSIM) [39]:

L = wSSIM ·
(
1− 1

M

M∑
i=1

SSIMi

)

+ wMAE · 1

M

M∑
i=1

MAEi, (5)

where M represents the batch size (16 in our case) and i denotes
the i-th example within the batch. The inclusion of MAE allowed
for a pixel-wise assessment of image dissimilarity, while the
addition of SSIM provided a more perceptually-oriented com-
parison. The weights wSSIM and wMAE are hyper-parameters
used to balance the contributions of the two terms. Following
an empirical investigation, we determined that wSSIM=1 and
wMAE=10 resulted in a satisfactory configuration.

Adam optimizer, with a constant learning rate of 1e-4, was
employed. Early stopping with a patience of 10 epochs was used,
which made training stop after 39 epochs.

The DNN was implemented using Tensorflow and Keras
libraries, and trained on the Kaggle platform.

D. Performance Evaluation Metrics

To quantitatively compare the contrast performance of SAF,
STA and the DNN, we computed the contrast ratio (CR) and gen-
eralized contrast-to-noise ratio (gCNR) [40]. Besides, we used
the non-parametric Mann-Whitney U test, with a significance
value α=0.05, to compare the median contrasts of targets in
test images. The Peak Signal-to-Noise Ratio (PSNR) [23] was
evaluated to assess the image reconstruction quality of SAF and
DNN with respect to STA.

Further details are provided in the Supplementary Materials
available online.

III. RESULTS

A. Results on Simulated Data

Fig. 2 illustrates two simulated test examples, comparing
output images of DNN, SAF (obtained from the input RF signals
through DAS beamforming) and STA (i.e., the target images).
The DNN generates higher-quality images than SAF, accurately
capturing both hyperechoic and anechoic targets, while in SAF
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Fig. 2. Synthetic phantom images obtained with SAF+DAS, STA+DAS and with the DNN: (a) two anechoic targets and (b) an anechoic target
plus a small hyperechoic target. Images are displayed over a 60 dB dynamic range (log-scale).

Fig. 3. Boxplots representing the CR and gCNR in simulated test
images obtained with SAF+DAS beamforming (blue), STA+DAS beam-
forming (red) and with the DNN (black), grouped by target echogenicity.

the shallower anechoic targets are barely visible. Furthermore,
the DNN has learnt to deal with images where targets with
different echogenicity are present (Fig. 2(b)).

Fig. 3 shows the boxplots for the computed contrast metrics.
CR and gCNR for the DNN’s outputs demonstrate statistically
significant improvements compared to SAF images, both for
hyperechoic and anechoic targets. Besides, the CRs achieved by
the DNN and STA are comparable for the hyperechoic targets,
while for the anechoic ones the DNN shows worse performance
than STA. Conversely, DNN achieves similar gCNR results
compared to STA for anechoic targets and even outperforms it in
the hyperechoic case. Further analyses and results are provided
in the Supplementary Materials available online.

Finally, the average PSNR computed on the whole simu-
lated test set is 18.86±0.95 dB for DNN vs. STA images, and
15.32±1.03 dB for SAF vs. STA images.

B. Results on Experimental Data

Fig. 4(a) and (b) shows example images obtained from RF
signals acquired experimentally on the CIRS phantom. Fig. 4(a)
shows two anechoic targets (radius=2.6 mm), at z=17.1 mm
and 45.6 mm depth, and a highly reflecting scatterer. Fig. 4(b)
shows a hyperechoic target (radius=3.9 mm) and a gray-scale
target (with +6 dB natural contrast) at z=31.1 mm depth, with
two sets of highly reflective scatterers at different depths.

The DNN accurately reconstructs the shallower anechoic
target, which is not visible in the SAF case, but it struggles

to reproduce the anechoic target at high depth, clearly visible
in STA. Here, it is important to remember that the DNN was
exclusively trained using artificially generated examples that did
not account for acoustic attenuation effects, which impact the
SNR for signals coming from deeper regions.

The following contrast values were achieved by the SAF,
STA and DNN methods: for the shallower anechoic target,
CR=−0.87 dB, −20.9 dB, and −31.8 dB, gCNR=0.41, 0.97
and 1, respectively; for the deeper target, CR=−6 dB, −21.9
dB and −8.5 dB, gCNR=0.52, 0.99 and 0.79, respectively.

Regarding the hyperechoic targets in Fig. 4(b), the DNN
acceptably reconstructs both the circular target with higher
echogenicity and the scatterers, also removing some of those
artifacts at shallower depths in the SAF image. The CR achieved
by the DNN is 13.1 dB, while that of SAF and STA images is 5.8
dB and 9.8 dB, respectively. The DNN also achieves a gCNR
of 0.96, while that of SAF and STA images is 0.47 and 0.7,
respectively. On the other hand, the less echogenic target (i.e.,
the one with +6 dB natural contrast at x=−4.05 mm, z=31.1
mm), only slightly glimpsed in the STA image (Fig. 4(b)), is
hardly discernible in both SAF and DNN images.

Finally, Fig. 4 also shows some example images obtained
from the pre-beamforming signals collected during in vivo ac-
quisitions, i.e., a longitudinal (c) and transversal (d) section of
the carotid artery, and images of a volunteer’s abdomen (e) and
thigh (f). Here, the DNN produces images with higher quality
than those obtained through SAF, even if they seem to present a
slight blur effect as compared to STA ones. Artifacts affecting
SAF images at shallow depths appear significantly reduced in
the DNN case; some artifacts are still present, especially in the
deeper noisy regions and within the main targets. However, noise
at the higher depths is visible in STA images too. The lumen of
the vascular structures is generally well reconstructed, as well
as the surrounding hyperechoic vessel walls and tissues. This is
not true in SAF images, where, for example, the lumen of the
carotid artery is barely visible.

The contrast was measured in the transversal carotid images,
as an example, considering one region inside the carotid lumen
and one in the adjacent thyroid, obtaining CRs of 3.5 dB, −21.9
dB, −15.2 dB, and gCNRs equal to 0.5, 0.95 and 1 with SAF,
STA and the DNN, respectively.
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Fig. 4. Experimental phantom/in vivo images obtained with SAF+DAS, STA+DAS and the DNN, representing: (a) two anechoic targets with a
single scatterer and (b) a hyperechoic target with several scatters in the CIRS phantom (in this last case, a +6 dB gray-scale target can be also
noticed); (c) the longitudinal and (d) cross section of a carotid; (e) the abdomen and (f) thigh of a volunteer. Images are displayed over a 60 dB
dynamic range (log-scale).

Comparisons between simulated and experimental results are
provided in the Supplementary Materials available online.

IV. DISCUSSION

This work proposes a U-Net architecture to implement the
beam-formation process of signals acquired with a monos-
tatic SAF approach, generating good-quality images, like those
achievable with STA imaging using a 128-element array. The
DNN consists of almost 15M parameters and, without any
code/network optimization, it takes approximately 13 ms on
average to process a single signal set. We preliminary assessed
the feasibility of a real-time implementation by exploiting the
ULA-OP 256 research scanner, connected to the LA533 probe
and implementing the SAF scan sequence, for the experimental
tests. A real-time frame rate of about 30 Hz was achieved. Details
on this feasibility test, together with a video, are provided in the
Supplementary Materials available online.

Other papers in the literature investigated the task of system
requirements simplification using DL-based methods to gener-
ate enhanced images using a reduced set of elements [27], [28],
[29], [30]. However, to the best of our knowledge, our work
proposes an even stronger reduction of the channels number
potentially required by the hardware system, i.e., from 128 to
generate the target images, to 1 single channel only in the input

data case. Furthermore, such an idea is tested by addressing the
task of image reconstruction starting from raw pre-beamforming
RF signals.

Simulation results demonstrate that the DNN is generally well
able to reproduce anechoic and hyperechoic targets, with similar
or higher gCNRs than those achieved by STA. Importantly, with
the DNN contrast is significantly higher than that of SAF images
on average and with reduced variability. Moreover, grating lobe
artifacts, at the shallower depths in SAF images, are attenuated
in DNN ones. The PSNR also confirms that the network is
generally well able to reproduce images similar to the target
ones.

Concerning the speckle, the DNN generally tends to make
it more uniform, with some blurring effect mainly visible at
the lower depths. This can primarily be attributed to the use of a
suboptimal network architecture. Factors such as the feature map
size in the bottleneck, influenced by the input image dimensions
and number of pooling layers, and the receptive field size,
determined by convolutional kernels, could all contribute to
the loss of high-frequency information. Additionally, pixel-wise
loss functions, such as MAE, can introduce blurring artifacts. To
improve the speckle pattern, perceptual losses like SSIM could
be prioritized or an adversarial term could be included. It should
also be considered that in input SAF images, in the shallower
regions, strong artifacts due to grating/side lobes are present,
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which may affect the DNN ability to clearly reproduce the
underlying structures, causing such blurring in output images.

Resolution was not quantitatively evaluated here, as our
primary objective was to enhance contrast with respect to
SAF. However, looking at the transversal profiles of simu-
lated anechoic, hyperechoic, and point-like targets provided
in the Supplementary Materials, it can be observed that lat-
eral resolution is not worsened by the DNN as compared to
SAF.

Experimental images further confirm that the DNN is well
able to reproduce hyperechoic and anechoic structures, remov-
ing artifacts that affect SAF images, which can be clearly seen,
for example, in the in vivo images at depths around 10 mm. The
quality of in vivo STA images remains the highest. However,
it should be considered that our work represents a proof-of-
concept of a new approach that could simplify the US hardware
requirements for ultra-portable systems, which are to be mainly
meant for non-diagnostic applications and even for non-expert
users.

Some limitations of the present study should be highlighted
too. First, the network was trained on simulated data only,
without additive noise, which is typically not Gaussian and
complex to model, and without tissue attenuation effects, which
would have required a ×30 longer simulation time (1.7 hours
vs. 3 minutes on the used PC), not feasible considering that
13600 datasets were generated. This is likely to explain why
the network is not always able to well reproduce the struc-
tures of interest (especially anechoic regions) at the higher
depths in real experimental cases, where such a phenomenon
is non-negligible. However, in our case, it would have not
been feasible to experimentally generate thousands of data (an
order of magnitude which can be also found in other works in
the literature on ultrasound image reconstruction applications
[19], [21], [23]).

Besides, to generate training SAF and STA images, no
apodization or other weighting techniques were applied, which
could have further improved the quality of input images or target
results. This was done to compare the different methods without
introducing further degrees of freedom in the processing chain,
while primarily focusing on demonstrating if generating images
of acceptable quality with a single element/channel system could
be feasible thanks to DNNs.

In the future, improvements could be achieved by modifying
the architecture and training setup, for example by exploring
alternative architectures offering a more comprehensive per-
spective of the data, or by optimizing training parameters, such
as the selection of an adjustable weighting factor to combine the
loss terms used.

Also, to address the challenge of limited generalization abil-
ity on experimental data, additional phantom and in vivo im-
ages could be incorporated into the training set. Regularization
methods could be employed, leveraging a limited number of
experimental examples to encourage the network to learn shared
features present in both the training and test data. Finally, since
our objective is to deploy the network on a portable device, it
could be further optimized by reducing its size, thus making it
lighter and more compact.

Potential changes can also be introduced by modifying the
task itself. In this study, we selected images in a STA configura-
tion as our targets, as STA provides high-quality images while
keeping the single-element transmission approach used for the
inputs. Nonetheless, different target images obtained with any
other imaging modality providing high contrast/resolution could
be used to improve the network outputs.

V. CONCLUSION

In conclusion, the proposed study demonstrates that, by
implementing a DL-based beamforming strategy, a potential
128:1 reduction of the number of hardware channels in the US
system could be possible, still achieving images with adequate
quality, which could have a valuable impact on the democra-
tization of US, for home- and self-monitoring (not diagnostic)
ultra-portable systems without the need of specialized clinical
personnel.
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