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Abstract: Activated cytotoxic CD4 T cells (HLA-DR+) play an important role in the control of EBV
infection, especially in cells with latency I (EBNA-1). One of the evasion mechanisms of these latency
cells is generated by gp42, which, via peripherally binding to the β1 domain of the β chain of MHC
class II (HLA-DQ, -DR, and -DP) of the infected B lymphocyte, can block/alter the HLA class II/T-cell
receptor (TCR) interaction, and confer an increased level of susceptibility towards the development of
EBV-associated autoimmune diseases or cancer in genetically predisposed individuals (HLA-DRB1*
and DQB1* alleles). The main developments predisposing the factors of these diseases are: EBV
infection; HLA class II risk alleles; sex; and tissue that is infiltrated with EBV-latent cells, forming
ectopic lymphoid structures. Therefore, there is a need to identify treatments for eliminating cells
with EBV latency, because the current treatments (e.g., antivirals and rituximab) are ineffective.
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1. Introduction

CD4 T lymphocytes are well-known for their helper roles in pathogen elimination,
assisting innate immune responses, B cells, and CD8 T cells. However, they can also
perform cytotoxic functions and induce the apoptosis of target cells [1,2]. Cytotoxic CD4 T
lymphocytes (CD4 CTLs) show a phenotype (CD4+, CD45RO+, CD28−, CD27−, CCR7−,
CD62L−, CCR5+, and CXCR3+) that belongs to the effector memory set (TEM), and with
different functional properties to the more classical CD4 T cells that relate them with
terminally differentiated CD4 T cells (CD28−) resulting from chronic stimulation (CD27)
with antigen experience (memory) [3–5]. CD4 TEM cells are multifunctional in terms
of cytokine secretion, express high levels of granzyme B and perforin [6], and may be
important for protection against certain infections in vivo [7]. The acquisition of cytotoxic
activity by CD4 T lymphocytes seems to be regulated by Treg and CD8 T lymphocytes [8],
and they generally do not show activation markers (CD38−, HLA-DR−, and CD69−) [5,9],
remaining in a stationary state until they are activated (HLA-DR+, CD38+, and CD69+) by
their related antigen with strong and repeated activation signals [10], becoming transiently
effector T cells with unpredictable phenotypes [11]. In this regard, it has been observed that
chronically antigen-stimulated mature CD4 helper T cells can be reprogrammed to become
functional CD4 CTLs by inactivating ThPOK expression through a unique mechanism of
plasticity at the post-thymic level [8,10,12]. After antigen removal, they “rest” on any of
the multiple memory subsets [11]. Thus, the avoidance of activated CD4 CTL (HLA-DR+)
is particularly relevant for viruses [8,13], especially for viral infections that infect cells
with HLA class II expression, such as the Epstein–Barr virus (EBV) in B cells, or human
immunodeficiency virus type 1 (HIV-1) in activated CD4 T cells (HLA-DR+), monocytes,
and dendritic cells [9].

Factors Predisposing towards the Development of EBV-Associated Diseases

The control of EBV-transformed cells is left to adaptive immunity; mainly cell-mediated
immunity (CD4 and CD8 T cells) [14]. NK cells are also capable of eliminating cells with
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type II and III latency [15,16]. During the latency phase, cytotoxic CD8 T lymphocytes
(CD8 CTL) that are specific for EBV latency proteins can only eliminate cells with latency II
and III by recognizing the latency proteins, LMP1, LMP2A, and LMP2B, that are present
on the plasma membrane, and EBNA-3A, EBNA-3B, and EBNA-3C, which are presented
on the major histocompatibility complex (MHC) class I of EBV-transformed B cells [15,17].
Hence, MHC class I genes are implicated in an individual’s susceptibility to EBV infec-
tion and the development of EBV-associated cancer, as they encode proteins required for
the presentation of foreign antigens, such as viral antigens, from the cellular interior to
cytotoxic CD8 T lymphocytes [18]. In contrast, CD8 CTLs fail to recognize latency I B
cells (only expressing EBNA-1), as EBNA-1 is presented within the MHC class II on these
cells [17,19–22], and, therefore, only CD4 CTLs can recognize this latency antigen [21].
This is where viral glycoproteins (gps) play several important roles in the development of
EBV-associated diseases, with entry into target cells being the main role [23]. Five viral
gps play an important role during B cell infection: the glycoprotein of the viral envelope,
gP350/220, interacts with CD21 or CR2 (the receptor of the C3d component of the com-
plement system) [24–26], and gp42 binds to the β1 domain of the β chain of B cells’ MHC
class II (HLA-DQ, -DR, and -DP), whereas gB and gH/gL promote membrane fusion [23].
Following EBV fusion with the lipid bilayer of the cell, gp42 becomes peripherally linked to
the β1 domain of the β chain of the HLA-DR-DQ or -DP of the infected B lymphocyte, and
consequently, alters the HLA class II/T-cell receptor (TCR) interaction [23,27,28], thereby
reducing CD4 T-cell activation [29] and EBNA-1 presentation on MHC-II molecules. Thus,
the gp42-β1 interaction influences EBV entry into the cell, and it also acts as an immune
evasion mechanism by forming a new gp42-MHC-II complex that alters the antigenic
presentation to T cells [27,30,31]. This could explain why EBV-associated autoimmune dis-
eases or neoplasms are related to the β DRB1* and DQB1* alleles (Table 1). Since EBV was
transferred to a hominid ancestor approximately 12 million years ago, and as the DRB1*04,
*03, and *02 lineages are the oldest [32], it may be thought that those individuals with
the DR2-DQ6, DR3-DQ2, or DR4-DQ8 haplotypes—against which, the immune evasion
mechanisms of this virus have evolved the most—may be less resistant to the infection,
and have a greater risk of developing EBV-associated diseases. This would also depend
on glutamic acid 46 (E46) and arginine 72 (R72) from HLA class II, which are essential for
a stable interaction between Gp2 and MHC-II [33], where E46 is preserved in all HLA-
DR,-DP alleles, but only in a small subset of HLA-DQ alleles: β * 02 (β * 0201, β * 0202,
and β * 0203) [34]. Therefore, depending on the tissue infiltrated by the B cells with EBV
latency in an individual with ancestral MHC-II alleles and an infection of other cell types
by the increased expression of MHC-II as a result of increased IFN-γ, one type or another
of EBV-associated disease may develop (Figure 1).

Table 1. Main haplotypes related to genetic predisposition to develop diseases associated with EBV.

EBV-Associated Diseases

DR2-DQ6 (DRB1*1501, DQA1*0102, DQB1*0602)

Positive correlation with:

• Systemic lupus erythematosus [35–38]
• Sjögren’s syndrome [39,40]
• Multiple sclerosis [41,42]
• Myalgic encephalomyelitis/chronic fatigue syndrome [43,44]
• Late-onset/acquired myasthenia gravis [45,46]
• Fulminant type diabetes [47]
• Hodgkin’s lymphoma [48–51]

Negative correlation with:

• Diabetes mellitus type 1 [47,52]
• Graves’ disease [53]
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Table 1. Cont.

EBV-Associated Diseases

DR3-DQ2 (DRB1*0301, DQA1*0501, DQB1*0201)

Positive correlation with:

• Systemic lupus erythematosus [38]
• Multiple sclerosis [54]
• Diabetes mellitus type 1 [55,56]
• Celiac disease [57–59]
• Graves’ disease [60,61]
• Sjögren’s syndrome [39,40]
• Early-onset myasthenia gravis [45,62,63]

DR4-DQ8 (DRB1*04, DQA1*03, DQB1*0302)

Positive correlation with:

• Multiple sclerosis [54]
• Diabetes mellitus type 1 [55,56]
• Celiac disease [57–59]
• Rheumatoid arthritis [23,64]
• Hashimoto’s thyroiditis [60,61]
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cosa, B cells form ectopic lymphoid aggregates that allow for the generation of antigen-specific im-
mune responses. These ectopic lymphoid structures generate a favorable environment for the trans-
formation of EBV-latent B cells into proliferating blasts, to become memory B cells. (3) In addition, 
NK cell activation occurs, both in response to the first inflammatory stimulus, and to restrict B cell 
transformation by EBV. Exposure to foreign antigens from the first stimulus or to viral antigens 
from EBV leads to activation of CD4 T cells and release of IFN-γ, followed by upregulation of MHC-
II on epithelial cells, which favors the acquisition of a nonprofessional antigen-presenting cell phe-
notype. (4) In addition, the presence of foreign antigens could also lead to terminal differentiation 
and activation of EBV-latent B lymphocytes, allowing the transition from the latent to the lytic phase 
of the virus. (5) The newly generated viral particles then infect more epithelial cells through 
gp42/MHC-II interaction, leading to further inflammation and ultimately to latent EBV infection. 
Furthermore, this chronic inflammation elicits a cytokine response, leading to increased B-cell re-
cruitment and perpetuation of the viral infection. (6) Latent EBV epithelial cells could enter a lytic 
phase, releasing new virions, lyse as a consequence of the T-cell response, or undergo neoplastic 

Figure 1. Sequence of EBV infection, chronic inflammation, autoimmunity, and/or cancer in the
mucosa of genetically predisposed patients. (1) An infection or any inflammatory stimulus recruit
leukocytes in the mucosa, including both latency I B cells (EBNA-1) and healthy B cells. (2) In the
mucosa, B cells form ectopic lymphoid aggregates that allow for the generation of antigen-specific
immune responses. These ectopic lymphoid structures generate a favorable environment for the
transformation of EBV-latent B cells into proliferating blasts, to become memory B cells. (3) In
addition, NK cell activation occurs, both in response to the first inflammatory stimulus, and to
restrict B cell transformation by EBV. Exposure to foreign antigens from the first stimulus or to viral
antigens from EBV leads to activation of CD4 T cells and release of IFN-γ, followed by upregulation of
MHC-II on epithelial cells, which favors the acquisition of a nonprofessional antigen-presenting cell
phenotype. (4) In addition, the presence of foreign antigens could also lead to terminal differentiation
and activation of EBV-latent B lymphocytes, allowing the transition from the latent to the lytic phase
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of the virus. (5) The newly generated viral particles then infect more epithelial cells through
gp42/MHC-II interaction, leading to further inflammation and ultimately to latent EBV infection.
Furthermore, this chronic inflammation elicits a cytokine response, leading to increased B-cell re-
cruitment and perpetuation of the viral infection. (6) Latent EBV epithelial cells could enter a lytic
phase, releasing new virions, lyse as a consequence of the T-cell response, or undergo neoplastic
transformation. (7) The mechanisms of immune evasion of EBV latency (epithelial cells and B cells)
involve decreased activation and decreased cytotoxic capacity of EBNA-1-specific CD4 T cells through
the release of IL-10 and EBV miRNAs contained in exosomes, which could suppress the expression of
target genes in the viral or host genome to maintain latent EBV infection. (8) This altered immuno-
surveillance leads to increased proliferation of EBV-latent B- and epithelial cells, which increases
the risk of neoplastic transformation or autoimmune disease in genetically predisposed patients
with EBV-susceptible MHC-II ancestral alleles. (9) Presentation through MHC-II/gp42 of native
cellular autoantigens or viral EBNA-1, which can undergo posttranslational modifications, such as
citrullination, and form neoantigens, could trigger the activation of autoreactive CD4 T cells and the
formation of autoantibodies against tissue cells. (10) Other phases of virus latency or the lytic phase
would be controlled by NK cells, and CD4 and CD8 T cells, with specificity for EBV lytic proteins.

Other factors that contribute to the development of autoimmune diseases are sex
hormones and sex chromosomes [65,66]. In fact, estrogens decrease the CD4/CD8 ratio,
and increase B-cell survival and the release of immunoglobulins [66]. For instance, elevated
estrogen levels (estradiol and estriol) during pregnancy have a protective effect by sup-
pressing Th1-responsive autoimmune diseases, but on the other hand, by increasing the
survival of autoreactive B cells, they may trigger or enhance Th2-responsive autoimmune
diseases [47,65,66]. In autoimmune diseases, there may also be differences in gender and
cytokine responses. Whereas men with multiple sclerosis, rheumatoid arthritis, or type 1
diabetes may have an increased Th2 autoimmune response, women may have an increased
Th1 autoimmune response [67–70]. This increase in the survival of self-reactive B cells gen-
erated by estrogen in women would raise the chances of the presentation of viral antigens
(EBNA-1), thus increasing the risk of presenting viral antigens with cross-reactions to their
own antigens, and thus, generating autoimmune responses of a cellular type (Th1).

It is also important to mention that during viral infections, there is a bidirectional
cycle between the immune and neuroendocrine systems, where on the one hand, the
cytokines released by the innate or adaptive immune response stimulate the release of
glucocorticoids, and on the other hand, the glucocorticoids suppress the synthesis and
release of these cytokines, protecting the host from damage that is caused by an overactive
immune response. In addition, they cause a shift from cellular (Th1/inflammatory) to
humoral (Th2/anti-inflammatory) immune responses [71]. Thus, in those individuals
that are genetically weak against a virus, where there is poor control of viral infection
by cell-mediated immunity, this could lead to a chronic infection, with a continuous
innate response. In the case of poor control of EBV, there would be a continuous release
of IFN-γ by circulating NK cells and amygdalin CD56bright NK cells to restrict B cell
transformation by EBV. However, cell-mediated immunity is needed to eliminate infected
cells [15,72]. IFN-γ can be released via adaptive or innate immunity in the antiviral response,
and it stimulates the release of glucocorticoids [71]. As such, if there is a continuous
production of this cytokine by NK cells in individuals that are genetically weak against
EBV, it would then increase the release of cortisol to protect the host from immune damage,
and, as a consequence, cause a lower cellular response (Th1) and a shift to the humoral
response, further chronicling the infection, and even contributing to the development of
autoimmune diseases.

2. EBV-Associated Diseases

In this review, we will focus on EBV-associated diseases that develop as a consequence
of alterations in CD4 CTL function and activation.
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2.1. Burkitt’s Disease

Burkitt’s lymphoma (BL) cell lines are latent I (EBNA-1); therefore, they can only be
recognized and eliminated by EBNA-1-specific CD4 CTLs [73,74], since EBNA-1 is not
present in MHC class I molecules in transformed B cells [73]. In BL, the reduced Th1 (IFN-γ)
response of EBNA-1-specific CD4 CTLs may be due to increased levels of IL-10 and Treg
cells [75]. Both regulatory T-1 (Tr1) cells [76] and infected B cells [77] may contribute to
human IL-10 release by increasing EBNA-1-specific responses in favor of Th2, in BL [75].
These CD4 T lymphocytes with a Th2 cytokine pattern and poor cytolytic activity can
sustain primary B-cell infection, and even induce tumor B-cell expansion through IL-4 and
IL-13 release, and CD40 contact [8,78,79]. Additionally, BL cells present multiple defects
in HLA class II-mediated antigenic presentation, resulting in a decrease in CD4 T cell
activation [80], where gp42 could be the cause of the block against HLA-II/TCR interaction
by its binding to the β chain of the MHC class II (HLA-DQ, -DR, and -DP) of the infected B
cell [23,29]. This might suggest that BL cells with latency I could evade the surveillance
of EBNA-1-specific CD4 CTLs in a host with a genetic predisposition (HLA-II alleles) for
developing BL, through a decrease in the activation of CD4 T cells by blocking the HLA
class II/(TCR) interaction by gp42 and the release of IL-10 by decreasing the Th1 response,
increasing the proliferation of Treg cells and the Th2 response. Although the involvement
of HLA-II molecules in BL is suspected [80,81], there is currently insufficient evidence
to suggest a genetic predisposition for developing the disease based on HLA-II alleles.
Therefore, further research is needed to confirm this hypothesis.

Similarly, some children infected by malaria (caused by the Plasmodium falciparum
parasite) have demonstrated a decrease in EBV-specific Th1 responses, thus increasing the
risk of developing BL [75]. Malaria also promotes the proliferation and increased response
of Treg cells, and consequently, an increase in IL-10 and a decrease in the activation of CD4
T cells [75]. This decreases the activation and Th1 response of CD4 CTLs that are specific
to other pathogens, such as EBV, increasing the risk of developing BL [75]. In addition,
the use of chloroquine (CQ) in regions of Africa against malaria has been associated with
an increased lytic replication of EBV, further contributing to the development of endemic
BL [82–84]. Hydroxychloroquine treatment can increase intracellular pH, and it inhibits
lysosomal activity in antigen-presenting cells (APCs), thus preventing processing and
antigen presentation in MHC class II molecules to CD4 T cells [85]. Consequently, it
reduces the activation and the differentiation of CD4 T cells and cytokines produced by
CD4 T cells and B cells (e.g., IL-1, IL-6, and TNF) [85]. Therefore, since EBNA-1 presentation
in MHC class II molecules is inhibited by the use of CQ or hydroxychloroquine, B cells
with type I latency cannot be recognized by EBNA-1-specific memory CD4 T cells. This,
together with a decrease in CD4 T-cell activation caused by CQ, would increase the risk of
developing BL.

In early HIV-1 infection, when CD4 T cell levels remain elevated, but CD4 T-cell
function begins to be compromised, patients may develop BL [17,86]. This occurs mainly
because HIV-1 preferentially infects activated CD4 T cells (HLA-DR and a high expression
of CCR5) and resting memory CD4 T cells, causing increased activation (HLA-DR), prolif-
eration, and apoptosis, as the expression of MHC class II molecules in these cells facilitates
HIV-1 replication [87–89]. Thus, a large percentage of antigen-specific CD4 T cells could
die as a result of productive or abortive HIV infection; thus reducing the generation and
the maturation of pathogen-specific memory CD4 T cells [90]. It has been suggested that
characteristics such as the phenotype, function, and location of CD4 T cells may have a
direct influence on their likelihood of being infected and depleted by HIV infection [90]. For
example, the susceptibility of Mycobacterium tuberculosis- and cytomegalovirus-specific
CD4 T cells to HIV infection has been linked to the specific characteristics of these cells,
and different rates of the depletion of these cells could be a determining factor in the
timing of reactivation of these pathogens during HIV infection [90]. Thus, although the
total number of CD4 T cells is normal during the early HIV-1 infection stage, there is a
depletion of pathogen-specific activated memory CD4 CTLs that are needed to control
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the cells with pathogen latencies (including EBV), which results in an increase of the risk
of developing reactivations and malignancies associated with these pathogens [90]. This
could be occurring in 55–60% of Burkitt’s lymphomas that are associated with EBV latency
I in AIDS patients and in other neoplasms with a higher association [88,91].

2.2. X-Linked Lymphoproliferative Disease

The deterioration of CD4 T-cell responses is believed to be responsible for the EBV-
induced infectious mononucleosis that is seen in patients with X-linked lymphoproliferative
disease, who have a mutation or deletion in signaling lymphocyte activation molecule
(SLAM)-associated protein (SAP), an inhibitor of the T cell costimulatory molecule, SLAM
or CDw150 [17]. SLAM (or CDw150) is an auto-ligand that is expressed in memory T cells
(CD45ROhigh), activated T cells, activated B cells, activated dendritic cells, and activated
macrophages [92,93]. It plays an important role in the interaction between T cells and
antigen-presenting cells, where it acts as a co-receptor in TCR-dependent responses [93].
Furthermore, it regulates the cytotoxicity of T cells, the induction of interferon-γ in Th1
cells, and the redirection of Th2 clones to a Th1 or Th0 phenotype [94]. In contrast, SAP
is expressed in CD4 (Th1 and Th2), CD8, and NK cells, and at very low levels in EBV-
transformed lymphoblastoid cell lines (LCL), but not in primary B cells [94]. The SLAM–
SAP interaction induces the synthesis of Th2 cytokines, exerts a downward modulation
of Th1, and inhibits the activation and expansion of effector T cells [95–97]. Consequently,
the mutation or deletion of the SAP gene would result in the absence or non-functioning
of the SAP protein, and it would lead to abnormal activation of the T cells, and an in-
creased production of Th1 cytokines, as SLAM signaling increases IFN-γ (Th1) secretion
and antigen-specific proliferation [92,93,98]. Although patients with XLP present a state of
immune hyperactivation, they fail to control EBV infection, resulting in severe and often
fatal infectious mononucleosis [99]. In contrast, patients with XLP do not show the same de-
gree of vulnerability to other herpesviruses, such as herpes simplex virus, cytomegalovirus,
and varicella zoster, which can cause fatal infections in individuals with other immunodefi-
ciencies [99]. This highlights the unique role of EBV in the pathogenesis of XLP, and the
critical role of SAP in anti-EBV immunity [99]. The loss of SAP in T cells leads to altered
interactions with B cells, whereas interactions with other APCs remain intact, as SAP
potentially regulates T- and B-cell interactions by producing surface proteins or by secreting
cytokines necessary for B-cell development [99–101]. As EBV predominantly infects B cells,
these are the main lytic and latent antigen-presenting cells from EBV to CD8 and CD4 T
cells [99]. However, they can be cross-presented by dendritic cells (DCs). Therefore, CD8
and CD4 T cells that are deficient in SAP are not activated when infected B cells specifically
present the viral antigen on MHC class I or MHC class II molecules [99]. Although EBV-
specific memory CD8 and CD4 CTLs have been formed through cross-presentation by DCs,
they would fail to recognize and eliminate EBV-transformed B cells [99]. However, this
does not affect the cellular responses of CD8 and CD4 T cells against other infections such
as cytomegalovirus or influenza, as these pathogens do not predominantly infect B cells,
and their antigens are predominantly presented by other APCs (monocytes and dendritic
cells) [99].

Since the elimination of latent I B cells (EBNA-1) requires the activation of EBV-specific
memory CD4 CTLs that are capable of recognizing EBNA-1 presented on MHC class
II molecules after macroautophagy in EBV-transformed B cells [21], the absence or non-
functioning of the SAP protein in these T cells would alter the interaction between the
EBV-transformed B cell and the cytotoxic CD4 T cell, preventing the recognition/activation
of the CD4 CTL and the elimination of the EBV-transformed B cell. This would increase
the risk of developing EBV-associated malignancies in patients with XLP. Therefore, XLP
patients who survive primary EBV infection may develop B-cell lymphoma [99]. It has been
suggested that in both X-linked lymphoproliferative syndrome and sporadic hemophago-
cytic lymphohistiocytosis, EBV LMP1 inhibits the expression of the SAP gene, causes the
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abnormal activation of T lymphocytes, upregulates Th1 cytokines (IFN-γ), and increases
macrophage activation, which can lead to the development of hemophagocytosis [98].

2.3. Systemic Lupus Erythematosus

Systemic lupus erythematosus (SLE) is a complex autoimmune disease with multi-
organ inflammation and varied clinical presentations [102,103]. It is characterized by a
loss of self-tolerance with the activation of self-reactive B- and T cells, leading to the
production of autoantibodies and tissue lesions [102]. EBV is one of the environmental
factors linked to the development of SLE in genetically predisposed patients, since EBV
antigens exhibit structural molecular mimicry with common SLE antigens [103]. Patients
with SLE have leukopenia (including lymphopenia) [104,105], increased EBV viral load in
PBMC compared to healthy controls [103,104], and express higher levels of the four viral
mRNAs (BZLF-1, LMP-1, LMP-2, and EBNA-1) in PBMC compared to immunocompetent
EBV carriers and patients with infectious mononucleosis [106,107]. This, together with
increased levels of IgG antibodies against early diffuse EBV antigen (EA/D) [108] in patients
with SLE, indicates the reactivation of the virus. Given the increased expression of the three
latent-state mRNAs (LMP-1, LMP-2, and EBNA-1), this also suggests an increase in the cells
with EBV latency [106,107]. Thus, they present a defective control of cells with EBV latency
due to impaired function (a lower production of IFN-γ) of cytotoxic EBV-specific CD8 T
cells [104,109], although Kang et al. observed an increase in EBV-specific CD4+ CD69+
(activated) T cell responses compared to controls [104]. However, Cassaniti et al. observed
that EBV-specific CD4 and CD8 T cells had a lower production of IFN-γ in response to
viral antigens, compared to controls [110]. These differences in the response of EBV-specific
CD4 T cells in patients with SLE may be due to the use of different periods of stimulation
(6 h versus 24 h between Kang et al. and Cassaniti et al.) and/or the EBV-specific antigens
used [104,110]. Additionally, Draborg et al. reported a significantly reduced amount
of activated (CD69+) T cells (CD4 and CD8) and the production of IFN-γ after ex vivo
stimulation with EBNA-1 or early diffuse antigen (EBV-EA/D) in SLE patients, indicating
that SLE patients have less EBV-specific T cells compared to controls, or that the EBV-specific
T cells of SLE patients are not activated after stimulation with EBV antigens [111]. Draborg
et al. did not observe that the activation of T cells was the result of a general T-cell defect,
since they were activated after stimulation with the SEB superantigen [111]. Contrarily,
Cassaniti et al. demonstrated a significantly lower T-cell response to non-specific mitogen
(NSM) in patients with SLE compared to healthy subjects [110]. There is also an inverse
relationship between EBV EA-specific T cells and the disease activity of SLE patients, and
between EBV-specific T cells (EBNA-1 and EA) and the antibodies directed against EBV
(EBNA-1 IgG, and IgG EA) [111]; that is, SLE patients have high EBV antibody titers, but
very few EBV-specific lymphocytes, whereas controls show high levels of EBV-specific T
cells and few EBV-directed antibodies (except for EBNA1 IgG) [111]. Activated EBV-specific
CD4 T cells with a Th1 response are essential for the control of EBV infection, and this is
also reflected in SLE patients, where higher viral loads are associated with lower numbers
of EBV-specific CD69+ CD4+ T cells producing IFN-γ [104]. Thus, there is a poor level of
control of latent EBV infection in SLE, with a shift of immune reaction to a humoral response
(Th2) in an attempt to control viral reactivation [111]. In general, the overproduction of
Th2 cytokines promotes the hyperactivity of B cells and humoral responses, and a decrease
in the specific antiviral Th1 response [112]. Patients with SLE have a deficient production
of IL-2 by T lymphocytes, and an increased Th2 response, due to increased levels of
IL-10 [112–117]. However, in SLE, there is also a self-reactive response of CD4 Th1 cells, as
occurs in lupus nephritis, where both the humoral and cellular self-reactive responses are
involved [118]; that is to say, both of the self-reactive responses are present, but the Th2
humoral response prevails over the Th1. Likewise, patients with SLE show a generally
poor immune response with respect to the healthy controls, suggesting that SLE disease
exerts an immunosuppressive action [110]. This supports the fact that the reactivations
of latent pathogens, such as parvovirus B19, cytomegalovirus, or EBV, are increasing and
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producing outbreaks of the disease [119]. It even supports an increase in the risk of cancer,
e.g., non-Hodgkin’s lymphoma, in patients with SLE [120–122]. The immune response
of SLE is similar to the Th2 response in lepromatous leprosy, since Mycobacterium leprae
can not only generate symptoms that mimic lupus outbreaks, including the production of
autoantibodies, but they can also act as a trigger for lupus reactivation [119,123]. There
are several clinical manifestations of leprosy, including lepromatous leprosy, which is
characterized by low antigen-specific cellular immunity, but a high humoral immunity
(Th2), and tuberculoid leprosy, which is the result of a high cellular immunity with a
Th1 response [124,125]. Lepromatous leprosy exhibits an impaired cellular response to
M. leprae; a significantly reduced T-cell response to mitogens, such as phytohemagglutinin;
and increased antibody levels to M. leprae antigens [126,127]. Additionally, as in the SLE,
there is an increase in the levels of antibodies against EBV that suggests a deteriorated
cellular response against EBV as a consequence of the infection by M. leprae [126,127].

The autoimmune response in SLE may be due to the EBNA-1 antigen showing molec-
ular mimicry with common lupus antigens (including Ro, Sm B/B′, and Sm D1), be-
cause the EBNA-1 antibodies cross-react with dsDNA or with the spliceosomal protein,
Sm [103,104,128–130]. Therefore, immunization with EBNA-1 leads to the generation of
antibodies against dsDNA or Sm in patients with a genetic predisposition to develop
SLE. The haplotypes associated with SLE are those containing the allele HLA-DRB1*15:01
(HLA-DRB1*1501–HLA-DQA1*0102–HLA-DQB1*0602) [35–38] and the DRB1*03:01 allele
(HLA-DRB1*0301–HLA-DQA1*0501–HLA-DQB1*0201), with the HLA-DRB1*1501 allele
being of the highest risk [38]. The DRB1*1501 allele also carries the highest risk for lep-
rosy [131,132]. As both pathologies are associated with the infection by an intracellular
pathogen that is capable of altering the immune system, they present the same degree
of deterioration in the specific cellular response to antigens, and an increase in the levels
of antibodies against these pathogens. It seems that the DRB1*1501 allele, together with
infection by EBV or M. Leprae, predisposes towards the development of SLE or lepromatous
leprosy, respectively, with an increase in the Th2 response, and, consequently, an increase
in the levels of antibodies.

2.4. Sjögren’s Syndrome

Sjögren’s syndrome (SS) is a chronic autoimmune disease that affects the exocrine
glands, mainly lacrimal and salivary, generating severe dryness of the eyes and mouth,
as a result of lymphocytic infiltration [133–135]. The diagnosis of SS is based on the
presence of antibodies against the SSA (Ro) and/or SSB (La) antigens, or by means of a
biopsy with a characteristic SS pattern [134]. EBV infection has been associated with the
development of SS, as salivary gland biopsies from SS patients contain increased levels
of EBV DNA compared to normal salivary glands, indicating increased viral reactivation
and the inability of the immune system to control cells with EBV latency [133,136]. In
addition, the presence of latent infection (EBERs) by EBV has been observed in SS salivary
glands forming functional structures that are similar to ectopic germinal centers that
favor the in situ activation of B cells and the differentiation of plasma cells, leading to
viral reactivation (BFRF1) [137]. The ectopic lymphoid structures of the salivary gland
mimic many characteristics of B- and T-cell follicles, allowing a process that is similar
to the germinal center to develop [137,138]. This suggests that the ectopic lymphoid
structures serve as a reservoir for EBV latency, facilitating the growth and the persistence
of EBV through the generation of plasma cells [137,138]. They may even participate in
the development of autoimmunity, due to the close association between the production of
human anti-EBV IgG antibodies (anti-EBNA-1 and anti-VCA) with the local production
of anti-Ro/La, which has been observed in an SS/SCID mouse chimera model [137]. This
could indicate an antiviral humoral response that is closely related to autoimmunity, driven
by local antigenic stimuli with molecular mimicry to EBV proteins, is present in the ectopic
lymphoid structures of SS patients [130,137,139]. Therefore, it could explain the elevated
levels of anti-EBV antibodies in the serum of SS patients [140,141]. Interestingly, it has
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been observed that anti-EBV antibodies (anti-EBNA-1 and anti-VCA) cross-react with SS
autoantigens [130,137,139], and that anti-Ro/La autoantibodies precipitate proteins that
form complexes with EBER [142]. In addition, EBNA-1 mimics Ro 52 [130], and EBV early
antigen D proteins exhibit cross-reactivity with α-fodrin and lipocardin [143].

As in SLE, patients with SS also present a decreased T-lymphocyte response against
EBV, along with elevated antibody titers (EBNA, VCA, and EA) against EBV [136,137,140,141].
Although EBV is present in the salivary gland epithelial cells among normal individuals,
the salivary gland epithelial cells of SS patients express elevated levels of HLA-DR antigens,
which allows them to present EBV antigens to T cells [133]. This may be due to the
ineffective control of EBV latency by the T cells of genetically predisposed patients (DR3
and/or DR2) [39,133], which leads to an increase in infected epithelial cells with increased
HLA-DR expression to present the viral antigens. This increases the risk of presenting viral
antigens with cross-reactivity to self-antigens.

An analysis of the cytotoxic immune response in ectopic lymphoid structures with
EBV persistence in SS salivary glands showed an increase in cytotoxic CD4/B-granzyme B-
positive T cells that appeared to substitute for cytotoxic CD8 T cells [137,144]. Furthermore,
increased levels of cytotoxic CD4 T cells in the peripheral blood have been observed to
correlate with an increased infiltration of these cells into the salivary glands, and increased
disease activity and severity in SS patients [144]. This could indicate that these cells are
behind the cellular autoimmune response against the tissue. It could even be the case
that their formation and proliferation take place in the ectopic lymphoid structures of the
salivary glands as a consequence of the presentation of autoantigens from the tissue.

Therefore, both the EBV-latent B cells of ectopic lymphoid structures and EBV-infected
epithelial cells participate in the development of SS in genetically predisposed individuals
by presenting viral antigens with a cross-reaction to self-antigens [137]. This alteration
in antigen presentation could be due to the interaction of gp42 with the MHC class II
alleles of SS risk. This shows how EBV drives specific deregulation, promotes the survival
of self-reactive B-cell clones, and alters tolerance to self. Moreover, this immunological
alteration that is caused by EBV avoidance mechanisms in SS patients could explain why
they are at greater risk of developing cancer, especially lymphomas [133,136,145].

SS has been associated with the same risk haplotypes as SLE DR2-DQ6 (DRB1*1501,
DQA1*0102, and DQB1*0602) and DR3-DQ2 (DRB1*0301, DQA1*0501, and DQB1*0201) [39].
Even the heterozygous genotype, HLA-DRB1*1501–*0301, further increases susceptibility
to SS [39,40]. Hence, many SS patients may also develop SLE [146] and autoimmune
thyroiditis [147–149].

2.5. Multiple Sclerosis

Recently, in a longitudinal study, it has been observed that the risk of developing
multiple sclerosis (MS) increased 32-fold after infection with EBV, and not with other viruses,
thus demonstrating that it is the main risk factor for its development [150]. Furthermore,
there is a significantly higher incidence of EBV-induced B-cell transformation in patients
with MS compared to healthy subjects, which supports the presence of a higher number of
circulating B cells with EBV latency in MS [151,152]. This is also reflected in elevated IgG
antibody levels against the EBV-latent protein, EBNA-1, but not against EBV lytic proteins,
such as early diffuse antigen (EA-D) [153]. However, other researchers did observe increases
in IgG-EA [154–157] and IgA-EA [158] in patients with MS, suggesting that high levels of
IgG and IgA-EA might correlate with disease reactivation and activity [156,158]. There is
also an increase in cells with EBV latency that contributes to the inflammatory response in
active MS lesions [159]. Therefore, it seems that in MS, there is a poor level of control over
the EBV-latent cells, which leads to a rise in the levels of EBV-latent cells and reactivations.
Despite this, there is an increased response of CD4 and CD8 T cells to EBV, particularly to
EBNA-1, in patients with MS compared to controls [160–163]. However, it seems that they
do not manage to effectively control latent infection, and/or that their increase is the result
of the cellular autoimmune (anti-myelin) response. Patients with MS show increased levels
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and responses of activated CD4 (central memory and effector memory) T cells (HLA-DR)
that are specific to EBNA-1 with a Th1 phenotype, which partially cross-react with myelin
antigens, compared with healthy carriers of the virus [41,164]. EBNA-1-specific CD4 T cells
with myelin cross-reaction produce IFN-γ, but they differ from EBNA-1 monospecific CD4
T cells in their ability to produce interleukin-2, indicative of a polyfunctional phenotype, as
found in chronic HIV-1 or controlled EBV viral infections [41]. There are sex differences
in the responses of lymphocytes to myelin peptides (myelin basic protein (MBP), myelin
oligodendrocyte glycoprotein (MOG), and proteolipid protein (PLP)), where, on the one
hand, women with MS show responses that are biased by IFN-γ (Th1), with T cell-mediated
demyelination, and on the other hand, men with MS show responses that are biased by IL-5,
which may predispose towards more destructive antibody-mediated demyelination [68].
This suggests that men with MS present a Th2 response that probably serves to suppress
Th1-dominated responses to IFN-γ [68]. This matches with men with MS having fewer
gadolinium contrast-enhanced lesions, but a higher proportion of black holes compared
to women, indicating that men with MS are more likely to develop more destructive and
less inflammatory lesions than women [165]. Furthermore, unlike the predominant lesion
pattern III of MS, with the infiltration of Th1-responding T cells, the pattern II of MS is
characterized by antibody/additive-associated demyelination and an accumulation of
Th2-responding CD4 T cells that assist B cells in antibody production, along with few
Th1-responding T cells, which may also contribute to the humoral response by promoting
B cell activation [166–168]. Consequently, the Th2-responsive MS pattern II would be
more frequent in men with MS. Another study observed that myelin basic protein (MBP)-
specific Th2 cells can cause experimental autoimmune encephalomyelitis (EAE), but only
in association with T-cell immunodeficiency in RAG-1-deficient mice [168]. This reflects
that both self-reactive responses, humoral (Th2) and cellular (Th1), can develop different
patterns of MS [166]. It also suggests that the polarization change of a self-reactive response
from Th1 to Th2 with treatments would be useless, as it occurred in an experimental
model of autoimmune encephalomyelitis induced by MOG, where the immunological
deviation of Th1 cells to Th2 after tolerance with soluble MOG led to a higher production
of autoantibodies and severe EAE [169].

By pairing patients and controls according to the expression of MS-associated HLA
class II alleles, Lunemann et al. suggested that risk alleles, such as HLA-DRB1*1501,
predispose towards the selection of cross-reacting EBNA-1 epitopes, and that a higher
total number of cross-reacting EBNA-1-specific T cells, generated in a susceptible HLA
environment, might contribute to the development of MS [41]. This cross-reaction may
be due to the fact that there are two pentapeptic sequence coincidences between EBNA-1
and the myelin basic proteins: QKRPS and PRHRD [170]. In addition, Mescheriakova et al.
observed that MS patients had higher levels of EBNA-1 IgG than their healthy siblings and
their healthy non-biologically related spouses [171]. Siblings had intermediate levels, and
spouses had low levels of EBNA-1 IgG [171]. This suggests a strong genetic contribution
to the humoral response to EBNA-1 in MS, associated mainly with the HLA-DRB1*1501
allele [171]. Whether it is typed as Dw2, DR2, DR15, or DRB1*1501, the presence of the
1501 allele of the HLA-DRB1 gene is associated with an increased susceptibility to MS [42].
Therefore, the DR2-DQ6 haplotype containing this allele (DRB1*1501, DQA1*0102, and
DQB1*0602) is the highest risk factor, although other haplotypes have been associated with
MS, such as DR3-DQ2 (DRB1*0301, DQA1*0501, and DQB1*0201) and DR4-DQ8 (DRB1*04,
DQA1*03, and DQB1*0302) [42,54,172,173].

Despite the increased response of EBNA-1-specific CD4 T cells with the Th1 phenotype
in most MS patients, Grytten et al. found a 14% increase in cancer risk over the years among
MS patients compared to the controls, especially in respiratory organs, urinary organs, and
the CNS [174]. Both patients with MS and their siblings had an increased risk of suffering
cancer compared to population-based controls. Additionally, the siblings of MS patients
demonstrated a higher risk of developing hematological cancers compared to MS patients
and controls [174]. Other studies have reported an increased susceptibility for developing
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Hodgkin’s lymphoma in first-degree relatives of MS patients [175] and among MS patients
parents [176]. Several genetic studies have indicated a common mechanism between
Hodgkin’s lymphoma and MS, suggesting that genetics and epigenetics are common risk
factors for both diseases [174,177]. Therefore, EBV infection in a family environment could
be the environmental factor that causes the development of MS or hematological cancer
among MS patients that are siblings, since the same epigenetic factors probably regulate
both diseases [174,177]. This genetic risk could be the HLA class II alleles (especially HLA-
DRB1) of the host, which are associated with EBV infection, predisposing some to develop
MS and others to develop hematological cancer in the same family environment. Both MS
and Hodgkin’s lymphoma have been associated with the HLA-DRB1*1501, DQA1*01:02,
and DQB1*06:02 haplotypes [48–51,178].

2.6. Myasthenia Gravis

Myasthenia gravis (MG) is an autoimmune disease mediated by acetylcholine recep-
tor (AChR) autoantibodies that target the neuromuscular junction, ultimately leading to
skeletal muscle weakness and fatigue [179]. The thymus plays an important role in the
pathogenesis of MG [180]. Calvalcante et al. showed the persistence and reactivation of
EBV in the B cells and hyperplastic thymus plasma cells of patients with MG, suggesting
that EBV may contribute to intrathymic B cell dysregulation and altered tolerance in MG
patients associated with thymic tumors, probably through the activation and immortaliza-
tion of self-reactive B cells with EBV latency [181]. Therefore, they associated EBV with
B-cell-mediated autoimmunity in MG [181]. Furthermore, the increased expression of CD21
(one of the EBV entry receptors) on the AChR-specific B cells of MG patients supports the
contribution of EBV to the activation and expansion of autoreactive B cells in MG [181,182].
An increase in the expression and activation of TLR3 was also observed in patients with
MG and thymoma compared to controls, correlating with EBER1 levels [181]. This supports
the activation of TLR3 signaling by EBER in MG-associated thymomas. Moreover, TLR3
induces thymic overexpression of the alpha subunit, AChR, and promotes an anti-AChR
autoimmune response [180], which supports the hypothesis of an EBV contribution to
B-cell-mediated autoimmunity through TLR3 in MG thymomas [181]. Finally, the activa-
tion of TLR3 signaling by EBER favors the production of IFN type I and inflammatory
responses, which contribute to the recruitment of peripheral B cells [181].

As for the CD4 T cells, most patients with MG have self-reactive CD4 T cells that are
specific for AChR, and that probably participate in the synthesis of anti-AChR antibodies
through interactions with B cells [183]. These self-reactive CD4 T cells exhibit an inflam-
matory Th1 response to AChR subunits via the production of the cytokine, IFN-γ [184].
Apart from thymoma, MG has also been associated with an increased risk of developing
extrathymal malignancies, such as lymphoid neoplasms [185,186].

Although MS and MG are distinct autoimmune diseases, some studies suggest a
comorbidity [187], which could occur due to a common genetic predisposition, provided
that both diseases present a higher number of Th1 and Th17 cells, together with their
associated cytokines, IL-1, IL-6, IL-17, IFN-γ, and TNF-α [187]. Furthermore, the Treg cells
of these patients have numerous dysfunctions [188]. HLA-DRB1*1501 has been identified as
the highest-risk allele for late-onset/acquired MG [45,46]. In contrast, the DRB1*0301 allele
and the DQB1*0201 allele have been associated with early-onset MG [45,62,63]. Therefore,
MS, Hodgkin’s lymphoma, and late-onset MG have a common genetic predisposition: HLA-
DRB1*1501, DQA1*01:02, and DQB1*06:02 [45,46,48–51,178]. However, an environmental
factor—in this case, an EBV infection whose gp42 glycoprotein interacts with the domain
β1 of the MHC-II chain β—may be necessary for these diseases to develop.

2.7. Rheumatoid Arthritis

EBV has been associated with one of the environmental factors contributing to the
development of rheumatoid arthritis (RA). As these patients have elevated levels of an-
tibodies against latent and replication proteins (Epstein–Barr viral capsid antigen, early
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antigen, EBNA-1, and EBNA-2), and are less efficient in neutralizing EBV-infected cells,
they are more likely to have significantly higher numbers of circulating EBV-infected B
cells, and have an elevated EBV viral DNA load in peripheral blood mononuclear cells
(PBMC) compared to controls [23,136,189]. Thus, RA patients are at an increased risk of
developing EBV-associated Hodgkin’s and non-Hodgkin’s lymphomas [23,136,190,191].
T-cell-mediated responses to EBV replication cycle proteins and EBV gp110 have been
documented in the joint fluid from RA patients [23,189]. Lymphocytes from RA patients
also respond poorly to PHA, Candida, and herpes simplex type I (HSV1) antigens [192,193].

EBNA-1 can undergo citrullination, and EBV can generate anti-citrullinated peptide
antibodies (ACPA), these being highly specific diagnostic markers for RA [20,189,194,195].
However, citrullination is a generalized post-translational modification of proteins that
can occur under physiological conditions and under any inflammatory context, at dif-
ferent anatomical sites [196]. Therefore, citrullination alone cannot explain the onset of
citrulline-specific autoimmunity. Some host genetic factors might be involved in the devel-
opment of RA. It has been shown, both functionally and by peptide-HLA crystal structure
determination, that citrullinated peptides are preferentially presented by RA-associated
HLA-DRB1 risk alleles [64,197]. These HLA-DRB1 alleles present a five amino acid se-
quence (R/QK/RRAA) called a shared epitope (SE) [23]. Both HLA-DRB1*0401 and other
alleles with the shared epitope, such as *0404 and *1001, can present various citrullinated
peptides [64]. Only these MHC class II molecules with the shared epitope have a higher
affinity for the citrulline-containing peptide, and as a consequence, this leads to the activa-
tion of autoreactive CD4 T cells [197].

In addition, several EBV antigens share similarities with self-antigens; more specif-
ically, the glycine/alanine repeats in EBNA-1 resemble synovial proteins, and the EBV
glycoprotein gp110 contains a copy of the shared epitope (SE), leading to an immune
response against HLA-DR molecules with the particular shared epitope [189]; that is, anti-
bodies against an EBV-encoded protein (gp110) have sequence homology with QKRAA(SE)
of HLA-DR4 [23]. Additionally, it has been proposed that HLAII–gp42 interactions in ge-
netically predisposed individuals with SE-positive DRB1 alleles (DRB1*0401, *0404, *0405,
*0408, *0409, *0101, *0102, *1001, and *1402) facilitate EBV entry and infection, which may
ultimately result in uncontrolled EBV infection and, consequently, RA onset [23].

The infiltration of memory autoreactive cytotoxic CD4 T cells (CD45RO+) in the
synovial joints of patients with RA, together with the genetic association with RA-associated
HLA-DRB1 risk alleles, suggests that CD4 T cells are directly involved in the development
of RA [64]. These autoreactive CD4 T cells are antigen-experienced (CD45RO+), reactive to
citrulline, and they exhibit Th1 response by expressing CXCR3+ [64].

Anti-citrullinated protein antibodies (ACPA) have been described to react to multiple
citrullinated peptides from EBNA-1 and EBNA-2 [194,198]. This indicates that EBV proteins
may be involved in the generation of the ACPA response [194]. Therefore, EBNA-1, by un-
dergoing citrullination upon its presentation on MHC class II molecules following macroau-
tophagy in EBV-latent B cells [20,189,194,195], is a major candidate in the generation of
ACPA- and EBNA-1-specific autoreactive CD4 CTLs in individuals with RA-associated
HLA-DRB1 risk alleles. As EBNA-1-specific memory CD4 T cells [198] may cross-react with
citrulline in individuals with SE-positive HLA-DRB1 risk alleles, EBV infection coupled
with this host’s HLA-DRB1 genetic predisposition may contribute to the pathophysiology
of RA by reducing the immune system’s ability to control EBV-transformed cells, causing
an increased exposure to EBV antigens, and chronic inflammation [189].

2.8. Type 1 Diabetes Mellitus

Type 1 diabetes mellitus (T1D) is caused by insulin deficiency arising from the destruc-
tion of pancreatic β cells of the pancreatic islets of Langerhans [47]. Islet antigen-reactive
T cells are the main cells that destroy pancreatic β cells, but islet-reactive B cells also play
a key role in antigen presentation to T cells, and in the production of cytokines and islet
antigen-specific autoantibodies (islet AAb) [199]. Perforin-mediated lysis by cytotoxic
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T lymphocytes is the main factor necessary for β-cell killing. However, the presence of
IFN-γ is also necessary [200], since islet beta cells express HLA class II antigens after
their expression is induced by IFN-γ, in combination with tumor necrosis factor (TNF) or
lymphotoxin (LT) [201]. The phenotypes of infiltrating CD4 and CD8 T cells are in central
memory (T CM, CD45RO+ CD27+) and in effector memory (T EM, CD45RO+ CD27-), with
a clear predominance of CD8 versus CD4 T cells [202]. B cells are also found in the pancre-
atic islets of healthy individuals. Arif et al. described the existence of two different types of
insulitis in post-mortem pancreas samples with newly diagnosed T1D: one with a higher
number of CD20+ B cells, considered to be a more aggressive form of the autoimmune pro-
cess, compared to the other type of insulitis with low numbers of B cells [202,203]. Subjects
with a higher number of CD20+ B cells have the autoimmune response phenotype (islet
AAb++ and IFN-γ >> IL-10), whereas subjects with the other type of insulitis, with low B
cell numbers, have the phenotype (islet AAb± and IFN-γ << IL-10) [203]. IL-10-secreting β-
cell-specific CD4 T cells (Th2) have potent regulatory properties, and are present in healthy
subjects and relatively enriched in older adults with T1D [203]. Moreover, IL-10-mediated
autoreactivity is frequently detected in T1D patients’ siblings who are AAb negative and
that have a very low risk of developing diabetes [203,204]; that is, antibody-negative first-
degree relatives have a balance of proinflammatory and regulatory T cells, suggesting that
even a moderate regulatory response may be sufficient to prevent the development of
clinical T1D in genetically predisposed individuals [204]. Indeed, CD4+ CD25+ Tregs that
are specific for viral antigens associated with the development of T1D successfully arrest
the course of T1D [205]. It has been suggested that β-cell antigens might be similar to these
viral antigens, and they could promote the activation of diabetes-preventive CD4+ CD25+
Tregs (specific for these antigens) [205].

However, there is disagreement in the literature as to whether T1D is a Th1- or Th2-
mediated autoimmune disease, or both [70]. These discrepancies may depend on factors
such as gender, disease duration, and different phases of the autoimmune response [70].
Women with T1D appear to have a higher Th1 response than men [69], and men have
higher levels of IL-4 (Th2) than women with T1D [70]. This is similar to what occurs in
MS, where men with MS are at higher risk of developing a Th2-responsive MS pattern II
compared to women with MS, who show a Th1-biased response [68]. Therefore, there is no
protective role of the Th2 response in these autoimmune diseases, and even increased IL-10
in both autoimmune diseases accelerates autoimmune destruction [67,68]. In the case of
T1D, IL-10 can promote necrosis through the occlusion of the microvasculature, thereby
reducing the viability of larger islets, and it can also promote the Th2 response of CD4 T
cells that assist B cells in the production of autoantibodies [67,199]. Lesions in T1D patients
with a Th1 response are characterized by an infiltration of T cells (CD8 and CD4), where
islet β cells die by apoptosis, sparing the surrounding exocrine tissues [67]. In contrast, the
lesions of patients with T1D with a Th2 response are characterized by a paucity of T cells,
with an infiltration of eosinophils, macrophages, and fibroblasts, where the islet β cells
are killed by necrosis [67]. Thus, both the cellular (Th1) and humoral (Th2) autoreactive
responses may be involved in the development of T1D.

The HLA class II haplotypes that confer an increased risk for developing T1D in hu-
mans are HLA-DR3-DQ2 or HLA-DR4-DQ8 [55,56]. In contrast, the DRB1*1502-DQB1*0601,
and DRB1*1501-DQB1*0602 alleles are negatively associated with type 1A diabetes [47,206].
The association between these HLA class II alleles and the development of T1D indicates
that HLA-II-restricted CD4 T cells play an important role in the pathogenesis of the dis-
ease [56]. Therefore, with these data, we suggest that in T1D-associated alleles patients, the
EBV infection of B cells may result in the presentation of viral determinants that act as pep-
tide mimics to trigger the cross-reactivity of memory CD4 T cells with diabetes-associated
antigens [34]. These EBV-infected B cells could influence the activation and proliferation of
these autoreactive memory T cells with a Th1 phenotype through chronic exposure to the
viral antigen. Both EBV-infected B cells and EBV antigen-specific CD4 CTLs that are cross-
reactive with diabetes-associated antigens would infiltrate pancreatic islets. Cross-reactive



Pathogens 2022, 11, 831 14 of 34

CD4 CTLs would release IFN-γ, TNF, and LT, inducing the expression of MHC class II
molecules on β cells, allowing for the infection of β cells by EBV [34,56]. In HLA-DQ β*02
individuals, it would further increase the infection of cells that express only HLA-DQ,
which would otherwise be uninfected in individuals with other HLA-DQ alleles [34]. These
cross-reactive HLA-II-restricted CD4 CTLs could directly eliminate islet β cells, promote
responses by CD8 CTLs, and could stimulate islet-resident macrophages [56]. Cellular
damage and cytokine release as a result of viral infection in a host with T1D-associated
HLA-II alleles could lead to an inappropriate immune response, resulting in islet cell de-
struction and the subsequent development of T1D. The association between EBV with the
development of T1D may also explain the widely divergent age of onset among patients
with T1D, as this onset may correspond temporally with infection [34]. In addition, there is
also an increased risk of developing cancer over the years in patients with T1D [207].

2.9. Fulminant Type Diabetes

The DRB1*0405-DQB1*0401 haplotype has been associated with fulminant type 1 diabetes.
Both homozygotes and heterozygotes with DRB1*0405-DQB1*0401 show a strong pre-
disposition to fulminant type 1 diabetes [208]. The DRB1*1502-DQB1*0601, but not
the DRB1*1501-DQB1*0602 haplotype, has been negatively associated with fulminant
type 1 diabetes [208]. Both DRB1*1502-DQB1*0601 and DRB1*1501-DQB1*0602 were nega-
tively associated with type 1A diabetes, but they were not protective against fulminant type
1 diabetes [47,208]. However, Fujiya et al. described a case with fulminant type 1 diabetes
mellitus where the disease onset was associated with EBV reactivation that developed in
the course of chemotherapy to treat multiple myeloma. This individual had the DRB1*1501-
DQB1*0602 haplotype, with no presence of DRB1*0405-DQB1*0401 [47]. They suggested
that the EBV evasion mechanisms during the lytic phase in a genetically predisposed host
could develop fulminant type 1 diabetes [47]. This is because during the lytic phase, viral
interleukin (IL)-10 (vIL-10), which is capable of suppressing the function of Th1 and NK
cells, is produced and released, leading to the suppression of interferon-gamma (INF-γ) and
IL-2 formation, and the reduced proliferation of CD4 T lymphocytes [47]. This results in an
increased differentiation of CD4 T lymphocytes to a Th2 phenotype [47]. The Th2 response
is usually predominant during pregnancy, in order to protect the fetus from rejection by
the maternal immune system [47]. Many patients have been described to have developed
fulminant type 1 diabetes during pregnancy [47]. This indicates that the onset of the disease
occurs under the conditions of a predominant Th2 response. An elevated Th2 response is
characterized by the absence of the probability of the occurrence of autoimmune diseases
with a Th1 response, reduced cell-mediated immunity, and reduced protection against
viral infection (reduced virus-specific CTLs) [47]. Therefore, those individuals with HLA
class II alleles that are associated with fulminant type 1 diabetes (DRB1*0405-DQB1*0401 or
DRB1*1501-DQB1*0602) and an increased Th2 response, as a consequence of EBV evasion
mechanisms, may develop the disease upon increased pancreatic β-cell destruction by viral
infection [47].

2.10. Celiac Disease

Celiac disease (CD) is a chronic autoimmune enteropathy of the small intestine, char-
acterized by an immune system response against deamidated gluten gliadin from the
diet in genetically predisposed individuals, generating mucosal surface impairment and,
consequently, abnormal nutrient absorption [209,210]. Antigen-presenting cells present
deamidated gliadin to CD4 T cells, generating both antigen-specific (Th1) and humoral
(Th2) autoimmune responses [209,211]. Th1 cells stimulate CD8 T cells and natural killer
(NK) cells, leading to enterocyte apoptosis due to the cytotoxic activity of all three cell
types [209,211]. Th2 cells stimulate B cells to differentiate into plasma cells that produce
autoantibodies (anti-tTG and antigliadin) [209].

CD occurs in patients with T1D with a prevalence range of 4.4–11.1%, compared to 0.5%
for the general population [57]. The mechanism of association of these two diseases involves
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a shared genetic background: the HLA haplotypes, DR3-DQ2 (DRB1*0301, DQA1*0501,
and DQB1*0201) and DR4-DQ8 (DRB1*04, DQA1*03, and DQB1*0302) [55–59]. In addition,
it has also been linked to EBV infection [212]. In HLA-DQ β*02 individuals with CD,
as in T1D, it would further increase the EBV infection of cells expressing only HLA-DQ
that would otherwise be uninfected in individuals with other HLA-DQ alleles [34]. This
suggests that EBV could underlie the development of both pathologies in a host with T1D-
or CD-associated HLA-II alleles. Consequently, the infiltration of EBV-latent cells, followed
by the formation of ectopic lymphoid aggregates in the intestinal mucosa in response
to any inflammatory stimulus, leads to an increase in IFNγ [213–215]. This cytokine
upregulates the MHC class II expression of nearby cells, including enterocytes, allowing for
the presentation of self-tissue antigens and deamidated gliadin [213]. Therefore, individuals
with CD-associated HLA-II alleles that are susceptible to EBV may present deamidated
gliadin as a foreign antigen, which may trigger the development of autoimmune disease.
In addition, CD has also been associated with an increased risk of developing cancer,
particularly gastrointestinal tract and intestinal lymphoma cancers [216,217].

2.11. Autoimmune Thyroiditis

The same could occur in autoimmune thyroiditis (Hashimoto’s thyroiditis (HT) and
Graves’ disease (GD)), as they are highly prevalent in patients with T1D [218], and they
have been associated with EBV infection [219,220]. A common predisposition has been
demonstrated for all autoimmune endocrinopathies, specifically for T1D and thyroid
autoimmunity [53]. Badenhoop et al. described that the HLA DQA1*0501 allele was signifi-
cantly more frequent in T1D (60%), GD (65%), and Addison’s disease (70%) than in controls
(43%) [53]. DQA1*0501 is associated with DQB1*02, which is a risk allele in both CD and
T1D [221]. In contrast, the DQB1*0602 allele confers protection against T1D and GD [53].
Another study showed that the DRB1*04, DRB1*0301, DRB1*0101, DRB1*0101, DQB1*0201,
and DQB1*0302 alleles confer susceptibility to T1D and autoimmune thyroiditis [60]. Par-
ticularly, DR3 (DRB1*03-DQB1*02-DQA1*05) has a predisposing effect for GD, and DR7
(DRB1*07-DQB1*02-DQA1*02) has a protective effect for GD [61]. In contrast, the DR4 hap-
lotype is associated with HT [61]. GD, which is characterized by hyperthyroidism caused
by thyrotropin receptor (TSHR)-stimulating antibodies, shows an increased Th2 response
(IL-4 and IL-10), and thus, increased humoral immunity [222,223]. In contrast, the pre-
dominance of cell-mediated immunity and thyroid tissue damage in HT implies a Th1
origin [223]. However, Rapaport et al. suggest that it is incorrect to classify GD and HT as
Th1 or Th2 origin diseases, since in both GD and HT, the autoimmune response comprises
elements of both responses (Th1 and Th2) [224]. Furthermore, they propose that GD is a
stage prior to HT, where thyroid-stimulating antibodies (TSAbs) (Th1-related IgG1) appear
in the early humoral autoimmune response, which immediately activate the TSHR and
cause hyperthyroidism (GD) [224]. Subsequently, there is a compensatory increase in TSH
secretion that maintains the thyroid with a sufficient reserve until it is overwhelmed by
massive thyroid follicle destruction and fibrosis, both by cytotoxic T cells (Th1) and by
increased levels of antibodies against thyroid peroxidase (TPO) and thyroglobulin (Tg)
(Th2-related IgG4), which arise after chronic immune stimulation (over a number of years),
resulting in thyroid failure (HT) [224]. Most patients with GD also have autoantibodies
against TPO, but they present autoantibodies against Tg less frequently [224]. Additionally,
TPO and Tg autoantibodies may comprise IgG4, as well as IgG1 subclasses, implying
contributions from both the Th2 and Th1 responses [224].

The haplotype associated with GD is DR3-DQ2, and the haplotypes associated with
SLE are DR3-DQ2 and DR15-DQ6. Thus, lupus patients with the DR3-DQ2 haplotype may
have an increased risk of developing GD [225–227]. However, in SLE, CD4 T lymphocytes
present a Th2 response, and Th1 lymphocytes and IFN-γ have been shown to be important
for the immune pathogenesis of SLE [225]. Thus, an increase in Th1-responsive lymphocytes
in SLE patients is associated with autoimmune thyroiditis [225,226]. In addition, GD can
mimic SLE, and both autoimmune diseases can occur in the same patient [228].
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3. Discussion

There are several hypotheses linking ectopic lymphoid structures with EBV latency to
the development of autoimmune diseases and cancer [214,215,229–232]. For example, these
structures have been observed with EBV in the brain of patients with MS, in the synovium
of patients with RA, in the salivary glands of patients with SS, in the thyroid of patients
with autoimmune thyroiditis, and in the thymus of patients with MG [137,233–239]. They
have also been observed in the kidneys of patients with lupus nephritis, being associated
with increased renal function impairment [240]. The same occurs in the pancreas of patients
with T1D, where these ectopic lymphoid structures generate autoreactive effector T cells
against pancreatic islets, and they may be important for disease progression [241,242].
However, in the latter two cases, the presence of EBV in the lymphoid aggregates was
not analyzed.

Ectopic lymphoid structures are aggregates of lymphoid cells that are formed in non-
lymphoid tissues due to infectious, autoimmune, or neoplastic processes [214,233,235,243].
Thus, leukocytes circulating in the peripheral blood, including B lymphocytes with EBV la-
tency, are recruited to the affected tissues by inflammatory and antigenic stimuli [214,235,243].
In such tissues, B cells form ectopic lymphoid aggregates that allow for the generation of
antigen-specific immune responses [214,243]. This environment is favorable for EBV-latent
B cells by using a germinal center-like growth program to transform them into proliferating
blasts, and to convert these cells into memory B cells. In addition, antigenic stimuli from
this or other microbes, and the help of T cells, allow for the differentiation of plasma
cells, leading to viral reactivation [137,214,244–248]. Therefore, this model of ectopic lym-
phoid structure formation allows EBV to generate viral reservoirs in any tissue with an
inflammatory process.

These EBV-latent cells perpetuate the inflammatory state in that tissue by releasing
proinflammatory substances, such as EBERs [159,249,250]; by producing abortive reactiva-
tions whose proteins can cause inflammation [251–255]; and by releasing new virions that
provoke an immune response. Both inflammation caused by the first stimulus (infectious,
autoimmune, or neoplastic processes) and inflammation caused by EBV-latent B cells of
ectopic lymphoid structures allow for the exposure of foreign antigens [214], leading to the
activation of CD4 T lymphocytes and the release of IFN-γ. Likewise, IFN-γ could also be re-
leased continuously by NK cells to restrict B-cell transformation by EBV [71]. This increase
in IFN-γ levels upregulates MHC-II in adjacent cells, such as epithelial cells, favoring a
nonprofessional antigen-presenting cell phenotype [213,256]. Consequently, the newly gen-
erated viral particles take advantage of MHC-II expression in order to infect these adjacent
cells through the gp42/MHC-II interaction. This is where the different HLA-II alleles could
play an important role in the resistance to viral infection and antigenic presentation.

Following EBV fusion with the lipid bilayer, Gp42-MHC-II evasion mechanisms in
EBV-latent B cells could give rise to two scenarios leading to the development of EBV-
associated diseases: (1) the inhibition of CD4 T-cell activation in response to exogenously-
provided, processed antigens and peptide epitopes preventing the recognition and acti-
vation of EBV-specific CD4 CTLs, as occurs mostly in EBV-associated malignancies [80];
and/or (2) the induction of activation for viral antigen-specific T lymphocytes that are
cross-reactive to self-antigens, which would develop cellular Th1 and/or humoral (Th2)
autoimmune diseases [20,41,103,104,128,129,164,170,189,194,195]. Thus, the decreased abil-
ity of the immune system to detect and to eliminate EBV latency B cells may be responsible
for causing EBV-associated diseases in some patients (Figure 2), such as autoimmunity
through the prolonged activation of the immune system [257], and/or cancer through
the inhibition of the antiviral-specific Th1 response by an increased Th2 response [75,80].
In EBV-associated autoimmune diseases with a cellular (Th1) and/or humoral (Th2) au-
toreactive response, there is an increase in EBV latency cells, due to defective control by
EBV-specific T lymphocytes [23,111,151,152,189], suggesting that the immune evasion mech-
anisms of these EBV-latent cells outweigh the surveillance of the T lymphocytes, leading to
immunodeficiency. By increasing the number of EBV-latent B cells due to this immunodefi-
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ciency by increasing the Th2 response, the presentation of viral antigens would increase,
and, consequently, there would be an increased risk of generating viral antigen-specific
Th1 cells with cross-reactivity to self-antigens. Hence, in autoimmune diseases, both the
Th1 and Th2 responses are present, but one response usually prevails over the other. This
could occur in individuals with “ancestral” HLA class II alleles that are associated with
the development of these autoimmune diseases (Table 1). EBNA-1 is the main candidate
in generating autoimmune responses (Figure 3) because it undergoes citrullination upon
presentation on MHC class II molecules after macroautophagy [20,189,194,195], and be-
cause it exhibits molecular mimicry with self-antigens [41,128,130,139,170,189], generating
IgG against these self-proteins, and/or a specific cellular response. Thus, EBV-associated
autoimmune diseases, regardless of the cellular or humoral autoreactive response, could
be at an increased risk of developing cancer over the years, as is the case in MS [174]
or RA [23,190,191]. Thus, the presence of B cells with EBV latency in ectopic lymphoid
structures in the tissue where the autoimmune response develops could lead to the de-
velopment of B-cell lymphoma, as has been observed in the salivary glands in Sjögren’s
syndrome [258–261], in the thyroid gland in autoimmune thyroiditis [220,262–264], and in
the central nervous system in MS [265,266]. Even first-degree relatives of patients with MS
have an increased susceptibility for developing Hodgkin’s lymphoma, suggesting that the
same environmental factor (EBV infection) in a family environment with similar genetic
factors (HLA class II) could predispose some to develop an autoimmune disease, and for
others, cancer [175–177]. This indicates that EBV-associated diseases could develop as
a consequence of a previous immunodeficiency caused by this pathogen in genetically
predisposed individuals. Both autoimmunity and cancer are not separate entities from
immunodeficiency, but they could be interconnected processes [257,267]. This can, for
instance, be observed in primary immunodeficiencies, where the development of autoim-
mune diseases and/or cancer is common [257,267,268]. However, it should be added that
the development of EBV-associated neoplasms may not only be associated with the “ances-
tral” MHC-II alleles, but also with certain MHC class I alleles, since, with the exception of
cells with EBV latency I, the rest of the latency types of this virus are controlled by cytotoxic
CD8 T cells [15,17,18].
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expression of MHC-II by enterocytes, further enabling infection of these cells via gp42/MHC-II
interaction, fusing the viral lipid bilayer with the cellular lipid bilayer. Gliadin from the diet is
internalized into enterocytes by endocytosis, and can cross the epithelium via transcytosis, where
they are deaminated by tissue transglutaminase-2 (tTG), thus interacting with antigen-presenting cells.
In this case, B cells with EBV latency capture the tTG–gluten complex or deamidated gliadin through
the BCR, where they process and present them in MHC-II/gp42 to CD4 T cells, activating them, and
generating a cellular autoimmune response against gliadin, and a humoral autoimmune response
(Th2) against gliadin and tTG. (B) In systemic lupus, erythematosus latency I B cells present EBNA-1
on gp42/MHC-II, activating EBNA-1-specific CD4 T lymphocytes that are cross-reactive to common
lupus antigens (Ro, Sm B/B′, and Sm D1) by molecular mimicry, activating Th1 and Th2 cells that
generate the autoimmune response. (C) In rheumatoid arthritis, as EBNA-1 undergoes citrullination
by presentation on MHC class II molecules after macroautophagy in EBV-latent B cells, neoantigens
can be formed, activating Th1 and Th2 cells with an autoimmune response against citrulline. (D) In
Sjögren’s syndrome, EBNA-1 presentation by EBV-latent B cells infiltrating the glands, as well as by
infected glandular epithelial cells, activate Th1 and Th2 cells, with an autoimmune response against
the glandular epithelial cells, causing cell death and generating severe ocular and oral dryness.
(E) In Graves’ disease, the infiltration of cells with EBV latency into thyroid tissue increases IFN-γ
levels in that tissue as a response of CD4 CTLs, increasing MHC-II expression in thyrocytes, and,
thus, allowing infection of these cells by EBV. Both EBNA-1 presentation by EBV-latent B cells
infiltrating this tissue, and by infected thyrocytes, activate Th2 cells that are cross-reactive to thyroid
antigens. These Th2 cells would help B cells to secrete thyroid-stimulating immunoglobulins against
the thyroid-stimulating hormone receptor, resulting in rampant thyroid hormone production and
hyperthyroidism. Subsequently, there would be a compensatory increase in TSH secretion that
maintains the thyroid with a sufficient reserve until it is overwhelmed by massive thyroid follicle
destruction and fibrosis, both by cytotoxic cells (Th1 and CD8) and by the rise of antibodies against
thyroid peroxidase and thyroglobulin, which arise after chronic immune stimulation over the years
by infiltrating EBV latency B cells, as well as via infected thyrocytes, leading to thyroid insufficiency
and, thus, to the development of Hashimoto’s thyroiditis. (F) In type 1 diabetes, EBNA-1 presentation
by EBV latency B cells infiltrating the pancreas, as by infected pancreatic β cells, activate Th1 and
Th2 cells with an autoimmune response against pancreatic β cells, causing cell death and insulin
deficiency. (G) EBV latency I B cells in Burkitt’s lymphoma are defective in gp42/MHC-II-mediated
antigenic presentation, preventing activation and recognition by CD4+ T cells. (H) In multiple
sclerosis, latency I B cells present EBNA-1 in gp42/MHC-II class II, activating EBNA-1-specific CD4
T lymphocytes that are cross-reactive to myelin, activating Th1 and Th2 cells. (I) In myasthenia
gravis, EBV latency B cells infiltrating the thymus causes increased levels of IFN-γ released by CD4
CTLs, increasing MHC-II expression in thymic epithelial cells, and, thus, allowing infection of these
cells by EBV. Both EBNA-1 presentation by EBV-latent B cells and thymic epithelial cells would
activate Th1 and Th2 cells, cross-reacting against the acetylcholine receptor (AChR) by targeting
AChR-expressing myoid cells and the neuromuscular junction, ultimately leading to skeletal muscle
weakness and fatigue.

Thus, EBNA-1-specific cytotoxic CD4 T lymphocytes appear to have a protective
role in vivo, as deduced from their reduction/absence or altered function in the EBV-
associated diseases discussed here, and in other diseases, such as post-transplant lym-
phoproliferative disease (PTLD) [269] and in EBV-related Hodgkin’s and non-Hodgkin’s
lymphomas [15,75,270–273]. It may be that their “exhaustion” is caused by chronic exposure
to viral antigens by participating in the immune response against the virus [214,274–277], or
it may be an effect of the evasion mechanisms of B lymphocytes and macrophages that are
infected by EBV [214,249,278,279]. In both cases, an immunodeficiency would develop that
cannot control viral latency. However, this would not explain why a virus that is present in
90% of the population [280] does not affect all hosts equally, and is even innocuous in most
cases. It is here that the possession of one of the “ancestral” HLA-II alleles, to which EBV
has generated resistance, could favor the development of these diseases.
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Figure 3. Model of EBV-associated autoimmune disease development. Leukocytes circulating in the
peripheral blood, including EBV-latent B cells, are recruited to the affected tissues by inflammatory
stimuli (infectious, autoimmune, or neoplastic processes). (1) Both the inflammation caused by
the first stimulus and that caused by B cells with EBV latency allow for the activation of CD4 T
lymphocytes and NK cells, releasing both IFN-γ. (2) The increase in IFN-γ induces the expression
of MHC class II molecules in the cells of that tissue, converting them into nonprofessional antigen-
presenting cells and allowing infection through gp42/MHC-II interaction. (3) Through MHC-II,
they can present EBNA-1, peptides that undergo post-translational modifications and that can form
neoantigens, such as citrullinated EBNA-1, or self-antigens that are native to the cell itself, activating
CD4 T lymphocytes and generating Th1 and/or Th2 cells with an autoimmune response against the
tissue cells, ultimately causing cell death. (4) Both the neoantigens and native autoantigens can be
released by exocytosis, or in exosomes, and be taken up by antigen-presenting cells. (5) Exosomes
can have EBV latency proteins, such as LMP-1/2A, and viral glycoproteins, such as gp350 and gp42,
in their membrane, since these glycoproteins are present in the cell membrane. Upon internalization
of part of the membrane, an endocytic vesicle is formed, which subsequently fuses with the early
endosome. After inward budding of the endosome membrane, the intraluminal vesicles will form and
give rise to exosomes. They may also contain messenger RNA (mRNA), microRNA (miRNA), and
other products of EBV, such as EBV DNA. (6) Exosomes bind to EBV-latent B lymphocytes or other
uninfected B lymphocytes through the interaction of gp350/CD21 and/or g42/MHC-II, releasing
their contents into the cellular interior. (7) EBV-latent B cells can process and present these antigens
in the MHC-II/gp42 complex, activating Th1 and/or Th2 cells with an autoimmune response against
the tissue cells.

This model supports and completes the hypothesis of autoimmune disease develop-
ment put forward by Pender [215], in which genetic susceptibility (HLA-II) to the EBV
infection of B cells leads to an increased number of latently infected autoreactive memory
B cells, which lodge in organs where their target antigen is expressed, and act there as
antigen-presenting cells. However, Pender did not discuss the role of gp42 in this suscepti-
bility, nor how the possession of certain ancestral alleles that are related to the B1 domain of
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HLA-II, where gp42 binds, might favor a greater weakness to infection or altered antigenic
presentation. He also failed to mention how Gp42-MHC-II evasion in EBV-latent B cells
and IL-10 could inhibit CD4 T-cell activation, with these and other evasion mechanisms
being responsible for the immune evasion of EBV latency I cells. Pender posited that the
defective control of EBV-latent cells in autoimmune diseases was only the fault of CD8
T cells, this being insufficient to explain the decreased cytotoxicity of T cells, as he also
discusses [215]. He further posits that autoreactive B cells are directed to organs containing
the target antigen, when these autoreactive B cells could be formed from EBV latency I B
cells entering the damaged tissue in response to an inflammatory stimulus, forming ectopic
lymphoid structures where antigens from that tissue could be presented as foreign antigens.
It could also be due to the increase in non-professional antigen-presenting cells in that
tissue via an increase in IFN-γ.

Our hypothesis also supports that of Mangalam et al., where they describe the same
ancestral haplotypes raised by us (HLA-DR2DQ6, DR4DQ8, and DR3DQ2), and their role
in the development of most autoimmune diseases [281]. However, they did not associate
EBV infection as a differential factor between healthy and diseased individuals with the
same susceptible haplotypes.

It should be mentioned that this model not only explains the development of the
diseases described here, but also others, such as EBV-associated gastric carcinoma, where
the formation of ectopic lymphoid structures in the gastric mucosa in response to infection
by Helicobacter pylori or another inflammatory process causes the infiltration of B cells
with EBV latency in the lymphoid aggregates, and the subsequent infection of epithelial
cells when expressing MHC-II, due to an increase in IFN-γ [282–286]. Finally, the immune
evasion microenvironment generated by these EBV-transformed cells and the clonal growth
of EBV-latent epithelial cells would lead to the development of the disease [282,285,286].
This model could even explain the involvement of EBV in the development of chronic
fatigue syndrome or myalgic encephalomyelitis [214,278] and long COVID-19 [287]. Both
diseases present similar EBV reactivations and chronic symptoms, which could suggest a
common EBV immunopathology [278,287–289]. In the case of persistent COVID-19, the
inflammation caused by the SARS-CoV2 infection of tissues would recruit B cells with
EBV latency, where ectopic lymphoid aggregates could form and give rise to viral reactiva-
tions. Likewise, it could also help us to understand why the EBV-associated autoimmune
diseases, long COVID-19, and chronic fatigue syndrome/myalgic encephalomyelitis are
more common in women [290–295]. Estrogens, by increasing B-cell survival [66], would
allow for a greater permanence of ectopic lymphoid aggregates with EBV latency in the
inflamed tissues of patients with “ancestral” HLA-II alleles, and, therefore, a chronification
of symptoms. In the case of autoimmunity, this would also favor humoral and cellular
autoimmune responses [47,65,66].

Finally, it should be added that EBV-associated autoimmune diseases involve au-
toreactive cellular (Th1) and/or humoral (Th2) responses, but Th1 to Th2, or Th2 to Th1
polarization would be futile, as it could exacerbate the autoreactive humoral response or
the autoreactive cellular response, respectively [169]. In other words, it would fail to cure
the autoimmune disease. This suggests that the problem lies with antigen-presenting cells
(professional and non-professional) with EBV latency, which are those that promote an
autoreactive Th1 and/or humoral Th2 cellular response, presenting viral antigens with
molecular mimicry with self-antigens, or presenting antigens from the inflamed tissue itself
as foreign. Hence, there is a need to find and to design therapies that can eliminate all
types of EBV latency cells, because the current treatments (e.g., antivirals and rituximab)
are ineffective (Figure 4C,D) [296–299].
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Figure 4. Different treatments against EBV latent cells. (A) Schematic model of treatment with DNA
demethylation agents followed by adoptive immunotherapy of EBV-specific T cells and antiviral
agents. Administration of low-dose DNA demethylation agents restores the expression of MHC class
II molecules and induces the expression of LMP1, EBNA-2, EBNA3A, and EBNA-3C, allowing the
transformation of EBV latency 0 and I B cells into latency II and III B cells. They also induce the
transformation of EBV latency I epithelial cells to latency II. In this way, the recognition of these
cells by EBV-specific T cells is improved. EBNA-1-specific CD4 T cells can only recognize latent I
cells exhibiting EBNA-1 in MHC class II molecules, since EBNA-1 is poorly immunogenic. DNA
demethylation agents induce lytic infection and apoptosis in EBV-transformed B cells and epithelial
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cells. Antiviral agents prevent viral replication. (B) Model of anti-gp42 antibody treatment.
(1) Schematic representation of packaging into EBV virions, where the viral nucleocapsid acquires its
final lipid envelope by budding in the trans-Golgi network (TGN). (2) It is then transported to the
plasma membrane in secretory vesicles and released from the cell. Finally, after this whole process, vi-
ral glycoproteins, such as gp42 and gp350, from the secretory vesicles remain in the plasma membrane
of the cell. (3) These glycoproteins can be detected by specific antibodies, such as anti-gp42. Fol-
lowing anti-gp42 binding, cells with gp42 on their membrane can undergo: (4) antibody-dependent
phagocytosis by activated macrophages, (5) complement-mediated cytotoxicity leading to cell lysis,
(6) direct death mediated by natural killer cells, (7) and antibody-dependent cellular cytotoxicity
mediated by perforin and granzyme cytokines. (8) Exosome formation begins via endocytosis, where
part of the membrane, together with membrane receptors and viral glycoproteins, are internalized,
forming an endocytic vesicle, which subsequently fuses with the early endosome. (9) During the
maturation process of the early endosome, it communicates with the Golgi apparatus through the
exchange of vesicles in a bidirectional manner, forming the late endosome or multivesicular body
(MVB). (10) Inward budding of the endosome membrane forms the intraluminal vesicles that will
be released into the extracellular space as exosomes. (11) In the case of exosomes with viral glyco-
proteins present on their membrane, anti-gp42 binding triggers antibody-dependent phagocytosis
by activated macrophages. (C) Anti-CD20 monoclonal antibodies (rituximab) also act through
complement-dependent cytotoxicity, antibody-dependent cellular phagocytosis, antibody-dependent
cellular cytotoxicity, and the induction of apoptosis. (D) Antivirals prevent viral replication by
inhibiting viral DNA synthesis.

Therefore, we propose that the use of a DNA demethylating agent (Figure 4A), such
as decitabine, in low doses and for a short-course treatment, followed by immunother-
apy with EBV-specific CTLs [300] in genetically predisposed individuals (HLA-II) with
EBV-associated disease could be beneficial [300]. The prior use of a DNA demethylating
agent, such as decitabine, could be useful in transforming EBNA-1-expressing (poorly
immunogenic) latency I B cells [21] to latency II and III [300], thus allowing EBV latency
B cells to be better recognized and eliminated by self EBV-specific cytotoxic T lympho-
cytes via immunotherapy. In addition, decitabine would restore HLA-II expression in
EBV-transformed LCL [301,302], and would induce lytic infection and apoptosis in EBV-
transformed epithelial cells [303,304]. Antivirals (Figure 4A) might also be necessary to
prevent virus replication by enhancing lytic infection. Another alternative treatment that
could be viable would be the creation of glycoprotein-specific antibodies (gp42 and gp350)
that mediate the destruction of EBV-infected cells through antibody-dependent cellular
cytotoxicity (ADCC), or the development of an EBV vaccine that enhances the production
of these types of antibodies (Figure 4B).

4. Conclusions and Future Directions

Future research efforts should focus on better defining those HLA class II alleles with
a greater genetic predisposition to EBV infection, and on the development of the diseases
discussed here, so that therapies can be sought to completely eliminate EBV in these
patients, and, thus, prevent the development of these or other diseases that are associated
with this pathogen.
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