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Abstract

Monocytes are a distinct subset of myeloid cells with diverse functions in early inflammatory

immune modulation. While previous studies have surveyed the role of miRNA regulation on

different myeloid cell lines and primary cultures, the time-dependent kinetics of inflammatory

stimulation on miRNA expression and the relationship between miRNA-to-target RNA

expression have not been comprehensively profiled in monocytes. In this study, we use

next-generation sequencing and RT-PCR assays to analyze the non-coding small RNA

transcriptome of unstimulated and lipopolysaccharide (LPS)-stimulated monocytes at 6 and

24 hours. We identified a miRNA signature consisting of five mature miRNAs (hsa-mir-

146a, hsa-mir-155, hsa-mir-9, hsa-mir-147b, and hsa-mir-193a) upregulated by LPS-stimu-

lated monocytes after 6 hours and found that most miRNAs were also upregulated after 24

hours of stimulation. Only one miRNA gene was down-regulated and no other small RNAs

were found dysregulated in monocytes after LPS treatment. In addition, novel tRNA-derived

fragments were also discovered in monocytes although none showed significant changes

upon LPS stimulation. Interrogation of validated miRNA targets by transcriptomic analysis

revealed that absolute expression of most miRNA targets implicating in innate immune

response decreased over time in LPS-stimulated monocytes although their expression pat-

terns along the treatment were heterogeneous. Our findings reveal a potential role by which

selective miRNA upregulation and stable expression of other small RNAs enable monocytes

to develop finely tuned cellular responses during acute inflammation.

Introduction

Monocytes belong to a subset of circulating white blood cells that can further differentiate into

macrophages and dendritic cells in solid tissues surrounding sites of injury [1]. In vivo and in
vitro studies have shown that monocytes and their derivatives function as an essential compo-

nent of the innate immune system that mediate the host defense, serve as the first line of resis-

tance to microbial attack, modulate tumor-associated immune defense responses, and regulate
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tissue homeostasis [2]. Indeed, the pleiotropic potential of monocytes suggests that their cellu-

lar functions must be tightly regulated in a manner unique from more differentiated myeloid

cell types to enable appropriate, context-dependent responses.

MicroRNAs (miRNAs) are a large class of small noncoding RNAs that post-transcription-

ally regulate mRNAs and subsequently influence essential cellular functions through modula-

tion of gene expression at the RNA or protein level [3]. miRNAs are initially transcribed as

long primary transcripts (pri-miRNA) by mammalian type II RNA polymerases and then pro-

cessed into precursor hairpin intermediates (pre-miRNA) in cell nuclei by an RNase III

(Drosha). After transport to cytoplasm by an export complex, Exportin5-RanGTP, pre-miR-

NAs are further processed by another cytoplasmic RNase III, Dicer, to generate 18–24 nucleo-

tide mature miRNAs through a highly regulated biogenesis process [4]. Mature miRNAs are

then loaded into the RNA induced silencing complex (RISC) which targets specific mRNA

causing translational repression or degradation of the targeted mRNAs [5]. Each miRNA can

potentially target dozens to hundreds of mRNAs, and, thus, miRNAs have been implicated in

regulating multiple and disparate biological pathways [4–6].

Several miRNAs in myeloid cells have previously been identified that impact immune

responses, although results have varied due to different cell types, assay methods, and culture/

stimulation conditions [7, 8] (Table A in S1 File). Expression analyses using oligo-based microar-

ray technology revealed that hsa-mir-155 was highly induced during the maturation of dendritic

cells derived from human monocytes and in monocyte cell lines [9, 10]. This finding was further

confirmed with the identification of other miRNAs, including hsa-mir-9 and hsa-mir-146a, which

were up-regulated in LPS-treated monocytes using a qPCR-based platform [11]. In each study,

however, a genome-wide assessment of small RNA expression profiles was limited due to the use

of oligo-based or qPCR-based assay platforms. Next-generation sequencing (NGS) technologies

have significantly increased the ability to detect low abundant and novel small RNAs (smRNAs)

in numerous human cell types [12–14]. This method enables the isolation and detection of all

small RNAs without a priori knowledge or bias, allowing for global expression profiling of small

RNAs relevant to activated monocytes. Such analyses have also led to the discovery of small RNA

species other than miRNAs that include RNA fragments derived from small nucleolar RNA

(snoRNA) and transfer RNA (tRNA) [15]. While the function of these snoRNA-derived (sdRNA)

and tRNA-derived fragment (tRF) RNAs is obscure, their expression is altered in certain human

diseases [15–17]. Further analyses of the functional role of smRNAs and tRFs may lead to the

development of disease-associated biomarkers or avenues for novel therapeutic strategies.

In this study, we performed deep sequencing to interrogate the expression of small RNAs in

non-stimulated and LPS-stimulated human monocytes from multiple donors. The small RNA

transcriptome mainly consisted of miRNAs but also contained snoRNAs, rRNAs, Y RNAs,

and tRNAs. We find that a small set of miRNAs are stably upregulated following LPS stimula-

tion at two different timepoints and confirm these findings using multiple RT-PCR assays. We

also examine how miRNA upregulation affects target mRNA levels by analyzing the RNA

expression of stimulated monocytes using RNA-seq. Furthermore, we describe, for the first

time, identification of 18 tRNA-derived fragment RNAs in monocytes. Further analyses of

these identified small RNAs may lead to a better understanding of their role in monocyte biol-

ogy and serve as biomarkers to detect monocyte function in human disease.

Materials and methods

Ethics statement

Samples were collected anonymously through an internal blood donor program, the Research

Blood Program in EH&S, that was monitored by the Western IRB Board and was considered
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exempt from IRB approval. All of the blood samples were de-identified when we received and

the consent forms for the use of the samples also were kindly provided by the donors prior to

performing the experiments.

Preparation and lipopolysaccharide (LPS) treatment of human monocytes

Primary human monocytes were freshly isolated from peripheral blood mononuclear cells

(PBMCs) from individual donors using the EasySep Monocyte Enrichment kit from Stem Cell

Technologies (negative selection). Cells underwent analysis by flow cytometry for purity

(CD14-PE) (Becton Dickerson), with donor preps having cell purity greater than 90% for deep

sequencing and further validation. Monocytes were suspended at 10 million/ml in X-Vivo

medium (Lonza) supplemented with 5% AB human serum (Invitrogen) and incubated for 6 or

24 hours with either medium only or with media containing 100 ng/ml lipopolysaccharide

(InVivoGen). All cells (both adherent and suspension) were harvested, washed, and pelleted,

with the cell pellet snap-frozen on dry ice and placed at -80˚C until further analysis.

RNA isolation

Cell pellets containing 10–20 million monocytes each were lysed and homogenized in 1ml of

the Trizol reagent from Life Technologies. Following commercial instructions, sedimentation

of the aqueous and organic phases was carried out by vigorous shaking after adding 0.2 ml

chloroform and subsequent centrifugation of the samples at 14,000 RPM for 20 minutes using

a bench top centrifuge (Eppendorf). The aqueous phase was carefully transferred to a new

1.5ml tube and then mixed with 0.45 ml of 100% isopropanol. The RNA was centrifuged and

precipitated at 14,000 RPM for 20 minutes. After washing with 75% ethanol, the RNA was dis-

solved in DEPC-treated water and its quality and concentration were determined using Bioa-

nalyzer (Agilent) and Nanodrop (Thermo Scientific), respectively.

Small RNA library construction

Barcoded cDNA Libraries were generated from 1ug of total RNA from each human monocyte

sample using the Illumina TruSeq small RNA kit per the manufacturer’s protocol. The small

RNA libraries were further purified by electrophoresis in a 6% PAGE gel. After extraction

from the gel slices between 140–160 bp, the libraries were concentrated by ethanol precipita-

tion. cDNA libraries were suspended in 10mM Tris, pH 8.0 buffer and their DNA concentra-

tions were determined using Taqman-based qPCR assay.

Deep sequencing and data analysis of small RNA libraries by Illumina NGS

technology

Approximately 1.2 pmol of small RNA libraries were pooled and sequenced using either a

HiSeq or GA flowcell. Clusters were generated using an Illumina C-BOT instrument. One

multiplexing single read, 30/7, was set up and performed on the Illumina HiSeq 2500 or Illu-

mina GAIIx using the small RNA sequencing kit. Once FASTQ files were generated from raw

BCL output, the total reads of each library were batched into individual bins based on sample

barcode indices. The adaptor sequencing was stripped from each read and the reads without

the 30 adaptor sequence were filtered out. Reads with low quality (Phred Q<30) or length�12

nt after adaptor stripping were further removed. For the remaining high-quality reads, we

counted the occurrence of each unique sequence in each sample and compressed the read files

to contain only unique sequences. Unique reads were then aligned to small RNA reference

library using the OmicSoft Aligner (V5.1)[18]. The small RNA reference library includes:
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miRNA hairpin sequences from miRBase (v20) [19], tRNA sequences from GtRNAdb [20, 21],

snoRNA/scaRNA sequences from snoRNABase [22], rRNA and Y RNA 1/3/4/5 from NCBI.

After mapping, reads that aligned to a unique reference sequence were retained, and read

abundances were normalized to counts per million (CPM). DESeq2 [23] was used to test for

differential expression of small RNAs, controlling for the effect of the donor on normalized

expression (i.e. design ~ donor + LPS treatment).

Expression validation by Taqman-based qRT-PCR assays

1 ug of total RNA was treated with DNase 1 (New England Biolabs) in 50 ul 1x DNase1 Buffer

as outlined in the commercial protocol. All the miRNA-specific and U6 Taqman-based assays

and reagents were acquired from the commercial collection at ABI/Life Technologies. After

reverse transcription with the primers specific for individual miRNAs that were provided in

the assays, the transcribed cDNA was applied for quantification by using Taqman-based assays

on ABI 7900HT. This was indicated as the relative expression to the level of U6 RNA according

to ΔΔCt that was calculated and generated using the ABI SDS version 2.4 software after nor-

malization of RNA input.

Tagged RT-PCR for mature and precursor miRNAs

1 ug of DNase1-treated total RNA was then heated to 70˚C for 2 minutes to eliminate second-

ary structure, and immediately cooled on ice. The 5’ and then the 3’ adapters were ligated to

the sample using the miRCat33 (Integrated DNA Technologies; IDT) in subsequent reactions

with a sodium acetate clean-up between each reaction as outlined in the protocol. These reac-

tions were followed by reverse transcriptase using Invitrogen Superscript III, and then diluted

4x with IDTE (pH 7.5) supplied in the miRCaT33 Kit. The primers that were reversed and

complimentary to the miRNA specific sequences were designed and ordered from IDT. These

primers coupled with the miRCAT forward or reverse primers (depending on the orientation

of the miRNA sequence on the precursor miRNA) were included in a PCR reaction using Pro-

mega GoTaq Hot Start Green Master Mix. Optimum cycles varied per miRNA based on the

level of expression, typically starting at 25 cycles for hsa-mir-155 and hsa-mir-21, 28 cycles for

hsa-mir-146a and hsa-mir-147b, and 31 cycles for hsa-mir-9 and hsa-mir-193a by using the fol-

lowing conditions: 1 cycle of 95˚C for 3min and 30 seconds, 25–31 cycles of 95˚C for 30 sec-

onds, 52˚C for 30 seconds, and 72˚C for 40 seconds, 1 cycle of 72˚C for 5 minutes, then a 4˚C

hold. The amplified products were then resolved by electrophoresis in 6% polyacrylamide or

4% EtBr-containing agarose gels along with the 25 bp DNA Ladder. To stain the polyacryl-

amide gels, the exposed gel was incubated in the GelStar Gel Stain (1:1000 dilutions) from

Lonza for 15 minutes. The gels were then imaged using a digital camera over a UV translumi-

nator from BioRad. The products were further validated by Sanger sequencing after the proce-

dure of TA-cloning (Invitrogen). The details of the primers are available upon request.

Deep sequencing and data analysis of cDNA libraries

2ug total RNA was used for cDNA library preparation by using a modified protocol based on

the Illumina Truseq RNA Sample Preparation Kit V2. After poly-A selection, fragmentation,

and priming, reverse transcription was carried out for 1st strand cDNA synthesis in the pres-

ence of RNaseOut (Invitrogen) and actinomycin-D (MP Biomedicals). The synthesized cDNA

was further purified by using AMPure RNAClean beads (Beckman Coulter). A modified

method by incorporation of dUTP instead of dTTP was prepared and used for the second

strand synthesis. After AMPure XP bead purification (Beckman Coulter), following the stan-

dard protocol recommended by the Illumina Truseq RNA kit, end repairing, A-tailing, and
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ligation of index adaptors were sequentially performed for generation of cDNA libraries. After

size selection of libraries using Pippin Prep (SAGE Biosciences), the dUTP-containing strands

were destroyed by digestion with USER enzymes (New England Biolabs) followed by PCR

enrichment. Final cDNA libraries were analyzed in Agilent Bioanalyzer and quantified by

Quant-iT Pico-Green assays (Life Technologies) before sequencing using the HiSeq platform

(Illumina).

tRF validation by stem loop RT-PCR. 500ng DNase1-treated total RNA from each sam-

ple was incubated with 2 U RNase Inhibitor and 10 U Superscript II in the 1st cDNA buffer

containing 10mM DTT, 250 uM dNTP, and 50 nM stem loop RT primers for tRF-GlnTTG,

5’-gtcccagcaggtgcagggtccgaggtattcgcacctgctgggactcggatc-3’, tRF-
SerTGA, 5’-gtcccagcaggtgcagggtccgaggtattcgcacctgctgggacaaaataag-
3’ and tRF-TyrGTA, 5’-gtcccagcaggtgcagggtccgaggtattcgcacctgctgggac
cttcgag-3’(tRF-specific sequences were highlighted in underlines). The reaction for stem

loop reverse transcription started from 30 minutes of incubation at 16 oC followed by 60 cycles

of 30˚C for 30 seconds, 42˚C for 30 seconds, and 50˚C for one second and ended with one step

of 85˚C for 5 minutes. The tRF cDNAs were amplified with the forward primer specific for

each tRF, 5’- accacgactttgaatccag-3, 5’- accacgaagcgggtgct-3, or 5’- t
cgtcctggttcgattcc-3’, and a common reverse primer, 5’- gcagggtccgaggtat
tc-3’ by using NEB Phusion HF Taq and the following conditions: 1 cycle of 98˚C for 30

seconds, 10 cycles of 98˚C for 10 seconds, touch-down annealing from 64 to 55˚C for 30 sec-

onds, and 72˚C for 30 seconds, 20 cycles of 98˚C for 10 seconds, 55˚C for 30 seconds, and

72˚C for 30 seconds, and 1 cycle of 72˚C for 5 minutes, then a 4˚C hold. The amplified tRF

products were further resolved in 1x TBE 6% polyacrylamide gels. After staining in the GelStar

Gel Stain buffer, the gels were imaged using a digital camera over a UV transluminator from

BioRad.

Results

Deep sequencing of small RNAs from human monocytes

Deep sequencing for small RNAs was performed by constructing 18-30-bp cDNA libraries

from human monocyte RNA samples that were collected from seven different healthy donors.

These purified monocytes had been treated by LPS or control medium alone for either 6 or 24

hours to assess how the duration of stimulation affects miRNA expression. The resulting

libraries were then sequenced using Illumina instruments to generate an average of 6.4±2.2

million sequencing reads per sample (Table B in S1 File). An analysis pipeline elucidated in S1

Fig was applied for data QC, read alignment, and small RNA transcriptome analysis. Individ-

ual sequences were aligned to a miRNA hairpin sequence database from miRBase and other

small RNA reference databases (tRNA sequences from GtRNAdb; snoRNA/scaRNA sequences

from snoRNABase; ribosomal RNAs and hY RNAs 1/3/4/5 from NCBI) using the OmicSoft

Aligner.

An average of 54.0% of the unique reads that passed the QC metrics mapped uniquely to

one of the small RNA references listed above (Table B in S1 File). 72.1–95.8% of the mapped

reads were specifically categorized to miRNA (S2 Fig), which spanned 20 to 24 bp in sequence

length (S3 Fig). Among the 1,859 miRNA sequences listed in miRBase, 451 were detected in all

samples while 850 miRNAs were detected in over half of the samples. While expression of

miRNAs spanned five orders of magnitude, the top 100 expressed miRNAs comprised 92% of

the entire miRNA population detected in human monocytes, revealing that miRNA gene

diversity is largely restricted to the most highly expressed miRNAs (S4 Fig). The remainder of
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the mapped reads aligned to rRNAs (2.8–15.4%), snoRNAs (0.60–13.7%), tRNA (0.23–1.2%),

and hY RNAs (0.41–7.3%) (S2 Fig).

miRNA analysis in human LPS-treated monocytes

To determine whether monocytes stimulated by LPS differentially express miRNAs relative to

monocytes cultured only in medium, we performed differential expression testing between

monocytes that were cultured for the same duration using DESeq2, adjusting for donor-specific

effects and using normalized read counts. We found that 15 and 13 miRNAs are differentially

expressed between LPS- and medium-treated monocytes at 6 and 24 hours, respectively, after

correcting for multiple testing (adjusted p-value< 0.05, FDR = 0.01) (Tables 1 and 2 & Fig 1A

and 1B). At 6 hours, all 15 miRNAs were upregulated with 1.7–11.2-fold upregulation (Fig 1A).

At 24 hours, the magnitude of upregulation was more pronounced relative to the monocytes

stimulated for 6 hours, with 12 out of the 13 miRNAs having 2.3–55.3-fold upregulation (Fig 1B).

One miRNA, hsa-mir-7151 was downregulated in monocytes stimulated with LPS for 24 hours.

Five miRNA species (hsa-mir-155, hsa-mir-146a, hsa-mir-9, hsa-mir-147b, hsa-mir-365b and hsa-
mir-193a) were upregulated at both timepoints from the NGS data and may serve as steady regu-

lators of the inflammatory response of monocytes. Of the stably upregulated miRNAs, only hsa-
mir-155 and hsa-mir-146a were among the top 100 most highly expressed miRNAs (S4 Fig).

Examination of each donor sample sequenced revealed high donor-to-donor variability in base-

line expression of each miRNA, as the miRNA expression level in media-treated monocytes of

some donors exceeded the expression level in LPS-treated monocytes of other donors (Fig 1C

and 1D). However, intra-donor differential miRNA expression was consistent after LPS stimula-

tion for all differentially expressed miRNAs, underscoring the importance of correcting for sam-

ple variance and revealing that relative miRNA changes rather than absolute miRNA levels may

be more important for the induction of monocyte responses to inflammatory stimuli.

Expression validation of mature miRNAs by quantitative RT-PCR and

precursor miRNAs by tagged RT-PCR

To confirm upregulation of signature miRNAs that were observed by NGS in LPS-stimulated

human monocytes, we utilized quantitative real-time PCR to analyze the expression patterns

Table 1. Differentially expressed microRNAs in human monocytes after 6 hours of LPS stimulation.

Gene Name MeanExpression

_Medium

MeanExpression

_LPS

FoldChange

(log2)

Up/Down in LPS treatment p-value Adjusted p-value (padj)

hsa-mir-155 5408.70 56381.00 3.50 Up 5.47E-40 5.94E-37

hsa-mir-9-2 123.00 594.00 2.22 Up 2.85E-11 1.54E-08

hsa-mir-146a 790.30 3770.80 2.10 Up 6.01E-09 2.17E-06

hsa-mir-3665 617.60 1483.40 1.40 Up 6.48E-06 0.001205

hsa-mir-7108 46.29 94.00 1.80 Up 6.66E-06 0.001205

hsa-mir-9-1 2.43 14.25 2.88 Up 5.50E-06 0.001205

hsa-mir-193a 610.90 966.00 0.76 Up 9.33E-06 0.001446

hsa-mir-365b 23.14 58.13 1.46 Up 3.14E-05 0.004258

hsa-mir-4674 110.70 296.10 1.74 Up 3.91E-05 0.004709

hsa-mir-3960 349.40 686.80 1.08 Up 4.36E-05 0.004734

hsa-mir-147b 66.92 234.60 2.29 Up 9.94E-05 0.009809

hsa-mir-3196 71.71 211.20 1.74 Up 0.000226 0.020391

hsa-mir-449c 15.14 29.50 1.27 Up 0.000287 0.023971

hsa-mir-4508 71.29 138.90 1.14 Up 0.000337 0.026131

hsa-mir-31 76.29 170.60 1.20 Up 0.000469 0.03393

https://doi.org/10.1371/journal.pone.0214296.t001
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of miRNAs upregulated at both timepoints, one of the timepoints, and at neither timepoint.

Of the miRNAs upregulated at both timepoints by NGS, we confirmed upregulation of hsa-
mir-155, hsa-mir-146a, hsa-mir-9, and hsa-mir-147b (Fig 2A–2D). (Hsa-mir-9-1 and hsa-mir-
9-2 both produce the same mature miRNA (hsa-mir-9) and are detected in the same RT-PCR

reaction.) qRT-PCR also identified upregulation at 24 hours but not after 6 hours for hsa-mir-
187, hsa-mir-193a, hsa-mir-99b, hsa-mir-125-5p, or hsa-mir-125-3p (Fig 2E–2I). This corrobo-

rated NGS results for all miRNAs except for hsa-mir-193a, which originally had shown the

most modest upregulation (1.7-fold) out of the upregulated miRNAs in the NGS data (Fig 1A).

Hsa-mir-365b showed upregulation at neither timepoint by qRT-PCR (Fig 2J). Hsa-mir-146b,

hsa-mir-149, and hsa-mir-2116 were also included as negative controls for qRT-PCR based on

NGS results. Hsa-mir-146b, which was previously identified in another study [11], was selected

as a negative control since it differs from hsa-mir-146a by two nucleotides. Hsa-mir-449c, hsa-
mir-149, and hsa-mir-2116 showed similar expression in both treatment groups. Importantly,

none of the miRNAs selected as internal controls were differentially expressed by RT-qPCR

(Fig 2J–2M). Overall, qRT-PCR confirmed time-dependent miRNA expression patterns for 25

of the 28 conditions tested across 14 miRNAs (hsa-mir-193a (Fig 2F) and hsa-mir-365b (Fig

2N) were the only miRNAs with discrepancies), demonstrating high concordance between the

two methods. In correlation with the NGS results, upregulated miRNAs detected by qRT-PCR

generally tended to have greater relative expression difference in LPS-stimulated monocytes at

24 hours compared to 6 hours.

To determine whether miRNAs were upregulated due to increased transcription of pri-

miRNAs or due to increased premiRNA processing by Dicer, we tested whether we could

detect upregulation of pre-cursor miRNAs in the miRNAs upregulated by LPS stimulation

after 6 hours. We developed a semi-quantitative RT-PCR method to simultaneously visualize

the differential expression of both mature and precursor forms of miRNA based on the differ-

ences in amplicon size. As detailed in Fig 3A, we introduced linker RNA oligos at both ends of

RNA transcripts and followed this by RT-PCR with a pair of oligos located on a universal

linker sequence and a miRNA-specific region. Amplified products were then resolved by gel

electrophoresis, enabling separation of the smaller mature miRNA products from larger pre-

cursor miRNAs. The assay revealed that expression of both mature and precursor forms of

hsa-mir-155, has-mir-146a, and has-mir-193a were robustly induced in LPS-treated human

Table 2. Differentially expressed microRNAs in human monocytes after 24 hours of LPS stimulation.

Gene

Name

MeanExpression

_Medium

MeanExpression

_LPS

FoldChange

(log2)

Up/Down in LPS treatment pvalue padj

hsa-mir-187 9.30 534.00 5.792 Up 8.82E-32 5.38E-29

hsa-mir-155 9835.00 85073.00 3.206 Up 5.95E-22 1.82E-19

hsa-mir-9-2 56.00 582.00 3.207 Up 1.96E-14 4.00E-12

hsa-mir-210 69.70 709.70 2.870 Up 8.19E-10 1.25E-07

hsa-mir-146a 995.70 7594.00 2.877 Up 1.51E-08 1.85E-06

hsa-mir-365b 39.70 137.00 2.092 Up 3.42E-06 0.000348

hsa-mir-4284 184.70 460.00 1.569 Up 2.18E-05 0.001902

hsa-mir-147b 76.30 420.70 2.453 Up 3.29E-05 0.002511

hsa-let-7e 706.70 1660.70 1.409 Up 4.81E-05 0.003258

hsa-mir-99b 15188.00 33816.70 1.372 Up 5.51E-05 0.003362

hsa-mir-193a 602.00 1560.30 1.450 Up 0.000106 0.005878

hsa-mir-125a 14865.00 32322.00 1.231 Up 0.000195 0.009918

hsa-mir-7151 67817.00 24552.00 -1.317 Down 0.000415 0.019461

https://doi.org/10.1371/journal.pone.0214296.t002
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monocytes (Fig 3B). This revealed that increased transcription of these pri-miRNAs contrib-

uted to their upregulation. LPS upregulation of the mature forms of hsa-mir-9 and hsa-mir-
147b could be easily detected, but we only visualized trace amounts of their precursors (Fig

3B). Such upregulation of has-mir-9-1 precursor, which is one of pre-miRNA for production

of mature has-mir-9, was further confirmed by using the qRT-PCR assay (Table 3). Hsa-mir-
21, which expressed abundantly in all NGS samples and served as a positive control for
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Fig 1. LPS consistently upregulates certain miRNAs in LPS-treated monocytes. Differential expression analysis of the miRNA transcriptome is summarized

as a volcano plot of the log2 fold-change in miRNA expression in LPS-stimulated monocytes versus medium-only-treated monocytes treated for either (A) 6

hours, or (B) 24 hours. miRNAs differentially expressed with an adjusted p-value<0.05 (FDR = 0.01) are depicted in red. Heatmap and hierarchical clustering

depicting the normalized Z-scaled expression of each highly differentially expressed miRNA (adj.p-value<0.01) for each donor and sample at (C) 6 hours, or

(D) 24 hours.

https://doi.org/10.1371/journal.pone.0214296.g001
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expressed small RNAs in human monocytes, showed even expression in mature and precursor

forms regardless of LPS stimulation (Fig 3B).

Overall, using a combination of small RNA-sequencing, qPCR, and RT-PCR, we identified

a signature of five mature miRNAs (hsa-mir-155, hsa-mir-146a, hsa-mir-9, hsa-mir-193a, and

hsa-mir-147b) whose upregulation in LPS-stimulated monocytes were validated by at least two

different methods at both 6 hours and 24 hours post-stimulation (Table 3).

Expression correlation analysis between upregulated miRNAs and target

mRNAs

Having defined five signature miRNAs that were stably upregulated at 6 and 24 hours after

stimulation, we next investigated how upregulation of these miRNA species affects the
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Fig 2. Expression validation of mature miRNAs in LPS-treated monocytes by quantitative RT-PCR. The abundance of signature miRNAs was quantified

relative to U6 RNA and shown in black points for the LPS-treated monocytes or gray points for the medium-treated monocytes. Samples from nine healthy

donors were tested for the 6-hour timepoint, and six healthy donors were tested for the 24-hour timepoint. Taqman-based qRT-PCR assays to detect mature

miRNA expression confirmed statistically significant upregulation of hsa-mir-155 (A), hsa-mir-146a (B), hsa-mir-9 (C) and has-mir-147b (D) at both

timepoints. qRT-PCR confirmed statistically significant upregulation of hsa-mir-187 (E), hsa-mir-193a (F), hsa-mir-99b (G), hsa-mir-125-5p, (H), and hsa-mir-
125-3p (I) at 24 hours. MiRNA species (J) hsa-mir-2116 (K) hsa-mir-146b, (L) hsa-mir-449c, (M) hsa-mir-149, and (N) hsa-mir-365b were not differentially

expressed at either timepoint. P-values were determined using the two-tailed Student’s paired t-test.

https://doi.org/10.1371/journal.pone.0214296.g002
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differential expression of target mRNA genes. We performed RNA-sequencing of 12 samples

(6 LPS-treated, 6 media-treated) from 6 donors stimulated with LPS for 6 hours. We also per-

formed RNA-sequencing of 6 samples (3 LPS-treated, 3 media-treated) from 3 donors stimu-

lated with LPS for 24 hours. Reads were aligned to the human genome (build hg38) and

DESeq2 was used to test for differential expression. In total, 734 differentially expressed genes

were identified at 6 hours (462 upregulated, 272 downregulated) (Table C in S1 File) and 588

DEGs were identified at 24 hours (516 upregulated, 72 downregulated) (Table D in S1 File).

1270 unique genes were differentially expressed in total, with 52 of those genes shared at both

timepoints. Principal components analysis (PCA) of all differentially expressed genes revealed

that samples treated with LPS clearly clustered separately from unstimulated samples, as

explained by principal component 1 (Fig 4A and 4B). To a lesser extent, samples treated for 6

and 24 hours also clustered separately from each other (Fig 4A and 4B). The differences in dif-

ferentially expressed genes and global expression profiles as analysed by PCA reveal that
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Fig 3. Validation of mature and precursor miRNA activation by the tagged RT-PCR assay. (A) Schematic of the tagged semi-quantitative RT-PCR strategy

used for precursor and mature miRNA amplification in monocytes treated with LPS or medium alone. (B) RT-PCR analysis reveals detection of the precursor

and mature forms of LPS-upregulated miRNAs hsa-mir-155, hsa-mir-146a, hsa-mir-9, hsa-mir-147b, and hsa-mir-193a, as well as control hsa-mir-21 after 6

hours of culture (n = 3). Black triangles denote gel band size of precursor miRNAs, while black arrows denote the mature miRNAs. Mk = marker, L = LPS-

treated, M = medium-only.

https://doi.org/10.1371/journal.pone.0214296.g003
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mRNA expression in monocytes varies highly between 6 and 24 hours even though the

miRNA expression profile remains relatively similar.

Analysis of gene ontology (GO) terms associated with the differentially expressed genes

identified response to LPS, response to molecule of bacterial origin, and response to IL-1 as

primarily cell functions associated with LPS stimulation at 6 hours (S5 Fig). Conversely, GO

terms plasma lipoprotein particle clearance, regulation of phospholipase A2 activity, and posi-

tive regulation of myeloid cell differentiation were most significantly enriched in the genes

associated with LPS downregulation at 6 hours (S5 Fig). At the 24-hour timepoint, GO terms

cell migration and locomotion were associated with genes enriched by LPS stimulation, while

GO terms regulation of innate immune response and humoral immune response were associ-

ated with genes downregulated by LPS stimulation (S5 Fig).

To understand the relationship of signature miRNA upregulation to expression of the tar-

gets, we first generated a list of differentially expressed genes that were also functionally vali-

dated miRNA targets by miRTarBase. Then, we asked if relative expression of these genes

varied between monocytes treated with and without LPS at each treatment timepoint. Assess-

ment of target gene expression fold-change between LPS and control monocytes from the

same timepoint identified heterogenous expression patterns of target RNAs, as some target

Table 3. Summary of miRNAs tested by multiple methods.

NGS.6hr qPCR.6hr RT-PCR.6hr Upregulated

miRNA.6hr

NGS.24hr qPCR.24hr Upregulated

miRNA.24hr

Signature

mIRNA

padj < 0.01 Upregulated Precursor

Upregulated

Mature

Upregulated

Validated by > = 2

methods

padj < 0.01 Upregulated Validated by > = 2

methods

mir-155 yes yes yes yes yes yes yes yes yes

mir-
146a

yes yes yes yes yes yes yes yes yes

mir-9-1
^

yes yes not detected yes yes no yes yes yes

mir-9-2
^

yes yes not detected yes yes yes yes yes yes

mir-187 no no not tested not tested no yes yes yes no

mir-
146b

no no not tested not tested no no no no no

mir-
449c

yes no not tested not tested no no no no no

mir-149 no no not tested not tested no no no no no

mir-
365b

yes no not tested not tested no yes no no no

mir-
147b

yes yes not detected yes yes yes yes yes yes

mir-
193a

yes no yes yes yes yes yes yes yes

mir-
2116

no no not tested not tested no no no no no

mir-
125a

no no not tested not tested no yes yes yes no

mir-
125b1

no no not tested not tested no no no no no

mir-99b no no not tested not tested no yes yes yes no

mir-21 no not tested no no no no not tested no no

a The same mature mir-9 can derive from separate primary transcripts (i.e. mir-9-1 and mir-9-2). qPCR and RT-PCR assays detected expression of mature mir-9.

https://doi.org/10.1371/journal.pone.0214296.t003
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mRNAs had greater relative expression at 6 hours than after 24 hours, while other mRNAs had

greater relative expression after 24 hours (S6 Fig). At 6 hours, we identified 28 such differen-

tially expressed genes (Fig 4C). Of them, only 7 genes—including pro-inflammatory signalling
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Fig 4. Expression analysis of validated miRNA targets by RNA-seq. Principal components analysis (PCA) plot of all differentially expressed RNA-seq genes

comparing LPS- and medium-treated monocytes at 6 hours and 24 hours. Samples colored by treatment and length of treatment in (A). Samples colored by

sample donor in (B). (C) Z-score expression heatmap of validated miRNA targets that are also differentially expressed after 6 hours of LPS treatment. (D) Z-

score expression heatmap of validated miRNA targets that are also differentially expressed after 24 hours of LPS treatment. Log2FC.6h/Log2FC.24h = log2-fold

expression change of LPS-treated vs medium-only monocytes at 6 or 24 hours; miRNAs = miRNAs known to regulate given genes.

https://doi.org/10.1371/journal.pone.0214296.g004
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mediators (i.e. JUN, FOS, and TNFAIP8) and anti-inflammatory response genes (i.e. TGFB1,

MAFB, and IL13RA1)—were downregulated in LPS-stimulated monocytes, while the remain-

ing 21 genes were upregulated in LPS-stimulated monocytes. However, other genes belonging

to the same pathways (i.e. IRAK2, NFKB1, or IL6) were unexpectedly upregulated.

At 24 hours, we identified 15 differentially-expressed genes, which comprised several

known master regulators of cell proliferation (i.e. MYC, MYB, and ERBB2) or factors for cell

migration (i.e. TRIM32, NFAT5, and NKX3-1), but only two targets that played central roles in

inflammatory responses, IL6 and PTGS2 (a.k.a. COX-2), were differentially expressed at 24

hours (Fig 4D). All 15 genes at the 24-hour timepoint were upregulated in LPS-stimulated

monocytes, indicating a consistent pattern of gene regulation in human monocytes despite

concurrent upregulation of LPS-induced miRNAs.

Since miRNAs reduce the expression levels of target mRNAs, we further investigated this

unexpected phenomenon of higher relative target mRNA expression in LPS-stimulated mono-

cytes by determining if miRNA upregulation results in lower levels of absolute target mRNA

over time. 18 out of the 21 upregulated targets at the 6-hour timepoint (e.g. NFKB1 and

IRAK2) had consistently lower absolute expression values in LPS-stimulated donor-matched

samples from 6 to 24 hours (Fig 5A and Table E in S1 File). At the 24-hour timepoint, 2 of the

genes originally downregulated at 6 hours in LPS treatment (TGFB1 and MAFB) were also fur-

ther downregulated relative to the 6-hour timepoint (Fig 5B). Comparison of absolute and rel-

ative expression values at 24 hours also reveals that the relative upregulation in LPS-stimulated
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Fig 5. Absolute expression of selected miRNA targets along with LPS stimulation. Absolute expression of selected

miRNA target genes is shown in counts per million reads (CPM) using 3D-column plots. Seven representative targets

with differential expression at the 6-hour timepoint (A) and the three target genes upregulated at 24 hours (B) depict

the changes in absolute expression level at 6 and 24 hours. PTGS2 (COX-2) was included in both plots for cross

reference due to its statistically significant upregulation in LPS- vs Media-treated monocytes at both time points.

LPS = LPS-treated sample; Med = control samples treated with medium alone.

https://doi.org/10.1371/journal.pone.0214296.g005
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monocytes at 24 hours was driven largely by a greater magnitude of reduced absolute expres-

sion in the media-alone samples than by a drastic absolute upregulation in LPS-stimulated

cells (Fig 5B and Table E in S1 File). These results, when considered with S6 Fig and Fig 4C

and 4D, suggest that signature miRNAs in LPS-stimulated monocytes decrease the expression

of target miRNAs over time, but factors other than signature miRNA-induced degradation

likely influence each gene’s overall expression.

Identification of tRF RNAs derived from transfer RNA in human

monocytes

In addition to the miRNAs sequences we characterized, a significant portion of the NGS reads

were mapped to other small RNA species with known functions in altering cellular function.

While we did not detect significant differential expression in any of the small RNA species

after LPS stimulation (S7 and S8 Figs), we investigated whether any tRNA-derived fragment

(tRF) RNAs were conserved in human monocytes. tRFs are derived from transfer RNAs, and

several species have been cloned and identified in few organisms and cell types [16, 17]. To

investigate tRF RNAs in human monocytes throughout the genome, we mapped all the small

RNA sequence reads systematically to the tRNA genomic database. We compared 30 bp of the

flanking regions upstream or downstream to all of the 625 known or predicted tRNA gene loci

that resulted from the predictions of the program tRNAscan-SE [20, 21]. By screening the

sequencing reads along with these tRNA regions, we generated a collection of the sequences

that were 20–30 bp in size, appeared at least 500 counts per million reads and presented at

least 100 times more than the 2nd highest sequence in the same tRNA gene locus. This enabled

us to identify stable tRF sequences that were frequently generated in monocytes after RNase Z

or Dicer processing in the gene silencing complex. The enrichment threshold served to prevent

detection of tRNA pieces that resulted from random degradation. Our screening strategy iden-

tified 18 tRF conserved sequences in human monocytes. These 18 tRFS could potentially be

derived from a list of 50 tRNA loci that encoded 18 types of tRNA for 12 specific amino acids.

Of these 18 tRFs, 7 were mapped to the 5’-end, 8 were located on the 3’-end, 1 was located in

the middle, and 2 were found at the 3’ downstream of tRNA genes (Table 4). Lee et al. identi-

fied 17 tRFs in human prostate cancer cell lines, including 5 at the 5’-end, 8 at the 3’-end, and

4 in the downstream of the tRNA genes [24]. Three of them, tRF-1001 (tRF-SerTGA), tRF-
3006 (tRF-GlyGCC), and tRF-5005 (tRF-GlyGCC), were also found in the list of our human

monocyte samples. The other 15 tRFS in our study are novel.

We performed stem loop RT-PCR analysis to detect two novel tRFs, tRF-GlnTTG and

tRF-TyrGTA, and one known one, tRF-1001, as the control. As shown in Fig 6A, the stem loop

RT-PCR assays confirmed expression of tRF-GlnTTG, tRF-TyrGTA, and tRF-1001 in human

monocytes and a higher abundance of tRF-TyrGTA in two LPS-treated monocyte samples

than their matched controls. RT-PCR also confirmed these results for monocytes cultured for

6 and 24 hours (Fig 6B).

Discussion

In this study, we carried out a comprehensive small RNA transcriptome analysis in human

monocytes from multiple donors and investigated how monocytes utilize miRNAs to regulate

their response to over time during acute inflammation induced by LPS. Using NGS enabled us

to globally profile all small miRNAs in an unbiased manner, allowing us to validate new miR-

NAs and filter out low quality sequences that are likely to be false positives. Based on the fre-

quency of the sequencing reads mapped to human genome, we found that 72.1–95.8% of the

sequencing reads were mapped to miRNAs followed by the reads mapped to rRNAs,
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snoRNAs, tRNAs, and hY RNAs, suggesting that miRNAs are the predominant class of small

RNA species from 18-nt to 30-nt in length. The analysis also revealed disproportionate

miRNA expression in monocytes, as the top hundred species of miRNAs accounted for over

90% of the miRNA population in human monocytes although over eighteen hundred miRNAs

have been published in miRBase. We also identify 18 tRFs that have not been previously

described in monocytes, and future studies investigating these genes will elucidate their cellu-

lar functions in monocytes. In addition to discovering miRNAs that are uniquely upregulated

at 6 hours and 24 hours post-stimulation, we identified a signature of five miRNAs that were

stably upregulated at both phases of inflammation. This concise list of signature miRNAs sug-

gests that monocytes selectively activate only a few miRNA species rather than respond with a

universal shift in all miRNA populations within the short-term response to LPS stimulation.

Previous investigations have used oligo- or qPCR-based arrays to identify miRNAs in mye-

loid cells that rapidly increase expression through activation of TLRs or TNF-α (Table A in S1

File). Most of these studies have focused on myeloid cell lines or macrophages, which differ in

their gene regulation circuitry. As a result, LPS stimulation may cause slightly different miR-

NAs to be enriched in each cell type (Table A in S1 File) even before accounting for differences

in dosage and length of stimulation. This illustrates the importance of considering cell type,

species of origin, and treatment duration when understanding miRNA expression.

Despite differences in cell type, classic miRNAs hsa-mir-155 and hsa-mir-146 were consis-

tently implicated in nearly all previous investigations including our study, suggesting that

these miRNAs are critical for promoting pan-myeloid function in response to LPS [9, 10, 25].

Moreover, since monocytes act as first responders to inflammation and can differentiate into

macrophages and dendritic cells, the upregulation of both miRNAs suggests that different

Table 4. Novel tRFs identified in human monocytes by small RNA-seq.

tRNA position tRFs sequences tRF Name tRNA genes

GlnTTG 5 taatggttagcactctggact tRF-GlnTTG tRNA64-GlnTTG (ch6)

GlyGCC 5 tggtggttcagtggtagaatt tRF-5005 tRNA68-GlyGCC (ch1)

LeuCAG 5 gatggccgagcggtctaaggc tRF-LeuCAG tRNA7-LeuCAG (ch6), tRNA17-LeuCAG (ch16), tRNA26-LeuCAG(ch16), tRNA34-LeuCAG

(ch1), tRNA36-LeuCAG (ch1), tRNA38-LeuCAG (ch1), tRNA40-LeuCAG (ch1),

tRNA42-LeuCAG (ch1), tRNA67-LeuCAG (ch1)

LysCTT 5 gctagctcagtcggtagagca tRF-LysCTT tRNA2-LysCTT (ch15), tRNA7-LysCTT (ch16), tRNA9-LysCTT (ch5), tRNA10-LysCTT (ch16),

tRNA11-LysCTT (ch5), tRNA13-LysCTT (ch6), tRNA13-LysCTT (ch14), tRNA32-LysCTT

(ch16), tRNA119-LysCTT (ch1)

LysTTT 5 gatagctcagtcggtagagca tRF-LysTTT tRNA5-LysTTT (ch11)

ValAAC 5 ccgtagtgtagtggtcatcac tRF-ValAAC tRNA15-ValAAC (ch5)

ValCAC 5 ctgtagtgtagtggttatcac tRF-ValCAC tRNA152-ValCAC (ch6)

GlnTTG M actttgaatccagcgatccga tRF-GlnTTG tRNA130-GlnTTG (ch6), tRNA173-GlnTTG (ch6),tRNA174-GlnTTG (ch6)

AsnGTT 3 cgaaaggttggtggttcgagc tRF-AsnGTT tRNA26-AsnGTT(ch1), tRNA83-AsnGTT (ch1), tRNA107-AsnGTT (ch1), tRNA108-AsnGTT

(ch1), tRNA31-AsnGTT (ch17)

AspGTC 3 gggttcgattccccgacgggg tRF-AspGTC tRNA69-AspGTC (ch1), tRNA72-AspGTC (ch1), tRNA75-AspGTC (ch1), tRNA78-AspGTC

(ch1), tRNA81-AspGTC (ch1), tRNA4-AspGTC(ch12)

GlyGCC 3 attcccggccaatgcacgagt tRF-3006 tRNA5-GlyGCC (ch16), tRNA24-GlyGCC (ch16), tRNA19-GlyGCC (ch17)

ProAGG 3 caaatcccggacgagcccaca tRF-ProAGG tRNA4-ProAGG (ch16)

SerGCT 3 gggttcgaatcccatcctcgt tRF-SerGCT tRNA7-SerGCT (17), tRNA8-SerGCT (ch11), tRNA62-SerGCT (ch6), tRNA175-SerGCT (ch6)

TrpCCA 3 caaatcacgtcggggtcaaca tRF-TrpCCA tRNA168-TrpCCA (ch6)

TyrGTA 3 tggttcgattccggctcgaag tRF-TyrGTA tRNA19-TyrGTA (ch14)

ValTAC 3 gggttcgagccccagtggaac tRF-ValTAC tRNA16-ValTAC (ch11)

SerTGA 3’ down aagcgggtgctcttatttt tRF-1001 tRNA2-SerTGA (ch10)

ThrAGT 3’ down gagcgtccaagctctttccat tRF-ThrAGT tRNA4-ThrAGT (19)

https://doi.org/10.1371/journal.pone.0214296.t004
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stages of the innate myeloid response share some similar regulatory mechanisms. Hsa-mir-155
had been demonstrated to be involved in differentiation/proliferation of B-cells, cancers, car-

diovascular disease, apoptosis, and viral infection previously [25]. Its direct targets include

genes involved in transcription regulation, membrane receptors, kinases, binding proteins,

and nuclear proteins [26]. hsa-mir-155 was also shown to directly target some of the genes

involved in tumor suppression and apoptosis, including FAs-associated via death domain
(FADD), Jumonji AT-rich interactive domain 2 (JARID2), and Src homology 2-containing inosi-
tol phosphatase-1 (SHIP1) [26] and, also, suppressed Caspase 1 (CASP1) in dendritic cells [9]

and tumor protein 53-induced nuclear protein 1 (TP53INP1) in pancreatic tumors [27]. The
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Fig 6. Validation of expressed tRF RNAs in human monocytes by RT-PCR. (A) The tRF products generated by the stem loop RT-PCR

assays for tRF-GlnTTG, tRF-TyrGTA, and tRF-1001 were ~57bp in size and shown as the arrow lines. (B) RT-PCR assays to validate the

expression of identified tRFs at 6 and 24 hours after LPS stimulation or culture in medium only.

https://doi.org/10.1371/journal.pone.0214296.g006
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findings supported that hsa-mir-155 may be implicated in anti-apoptosis or cell survival

besides activation of the innate immune response. Hsa-mir-146a has been reported to modu-

late inflammatory responses in human CD14+CD16- monocytes by inhibiting NF-kB [28].

Another study investigating hsa-mir-146a control of NF-kB activity also found that hsa-mir-
146a significantly decreases IRAK1 and TRAF6 levels [29]. Both hsa-mir-155 and hsa-mir-
146a inhibit key signalling mediators of the TLR pathway and inflammatory response. Our

results not only confirm these findings but demonstrate that they maintain consistent upregu-

lation even 24 hours after LPS stimulation. According to the result generated by the tagged

RT-PCR assays, which can detect specific miRNA sequences at all stages of cytoplasmic

miRNA biogenesis, both mature and precursor hsa-mir-155 or hsa-mir-146 were robustly

induced in LPS-treated human monocytes. This reveals that activation of these classic miRNAs

occurs before the precursor miRNAs are processed, likely through transcriptional activation in

the cell nucleus.

Hsa-mir-9, hsa-mir-147b, and hsa-mir-193a appear to be more specific to monocytes than

to macrophages and other monocyte derivatives [9–11, 30–34]. A previous study used Taqman

Low Density Arrays to study miRNAs in human monocytes and identified hsa-mir-9 in mono-

cytes stimulated by LPS for up to 8 hours [11]. Hsa-mir-9, like hsa-mir-146a and hsa-mir-155,

also directly suppresses NF-κB, but uniquely interacts with IRAK2, a signalling protein that

interacts with TRAF6, MYD88, and Mal to induce TLR4-mediated NF-κB activation [35].

Although there is no previously published literature related to hsa-mir-147b in human mono-

cytes, murine mir-147, a murine analogue of hsa-mir-147b, was reported to be induced after

the stimulation of Toll-like receptors. This induction occurred though TLR4 by LPS in mouse

macrophages and negatively regulated TLR-associated signalling through the suppression of

IL-6 or TNF-α to prevent excessive macrophage inflammatory responses [32]. Future studies

will investigate whether hsa-mir-147b also prevents excessive monocyte-mediated inflamma-

tion and proliferation in humans. Hsa-mir-193a, has been reported in multiple organs to act as

a tumor suppressor [36]. Although its upregulation has not been previously reported in

human monocytes, its ability to bind DNA chaperone HMGB1, which can bind to TLR4, sug-

gests that hsa-mir-193a may help regulate excessive TLR signalling [37, 38].

Bazzoni and colleagues also report that hsa-mir-99b, hsa-mir-125a and hsa-mir-187 are

induced after 8 hours of LPS treatment[37, 38], while our study finds that these miRNA genes

are upregulated after 24 hours but not after 6 hours of LPS treatment. Two possible reasons

may explain why our findings differ slightly from those reported in that study. First, it is possi-

ble that these three miRNAs are induced after 8 hours but not after 6 hours of LPS stimulation.

Second, RPMI1640, which was used in their study to culture cells, contains glutathione, which

may exogenously prime the induction of miRNA genes in response to inflammatory stress,

while X-Vivo media used in our study does not contain glutathione [39]. Regardless of the

exact timepoint for activation, both studies confirm that these miRNA species become upregu-

lated in response to LPS.

As shown in Table 5, although multiple TLR signalling pathways can induce the miRNAs

we detected, the promoter regions of murine mir-147 and human hsa-mir-155, hsa-mir-146a,

and at least one of hsa-mir-9 family members, hsa-mir-9-1, contained the NF-κB or AP-1 bind-

ing sites that could be responsive to LPS induction and reach maximal level within 8 hours

from the activation of NF-κB or C-JUN through TLR4 signalling during pro-inflammatory

immune response [9–11, 31, 32, 40, 41]. Several reports related to target identification by per-

forming miRNA-mRNA expression profile pairing, in silico prediction of the target sites, and

target validation in vitro revealed that some components or their binding partners in the

MyD88-dependent proinflammatory signalling pathway appeared in the direct target list of

these miRNAs. IRAK-1 and TRAF6 were the direct targets of both hsa-mir-146a [10] and hsa-
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mir-147b [32], and NF-kB was directly suppressed by hsa-mir-9 [11]. hsa-mir-155 could

directly negatively modulate expression level of IKKε, RIPK1, FOS, FADD, as well as TAB2
and Pellino-1 that were parts of theTRAF6 complex in TLR/IL-1 signalling [9, 11, 30].

Although only mild suppression of these targets could be achieved by an individual miRNA,

by orchestrating modulation of the key components by different miRNAs in the same cascade,

we hypothesize that the subset of signature miRNAs provided monocytes an internal mecha-

nism of actions to maintain the normal physiological function and avoid hyper-reaction of

proinflammatory immune response. We propose that they do this by fine-tuning gene expres-

sion of the key components in the pathway under the impact of LPS stimulation, while expos-

ing bacterial antigens to macrophages or other antigen presenting cells (Fig 7). However, this

hypothesis does not rule out the other possible functions of these miRNAs in monocytes since

dozens of the targets, validated or predicted, were still found outside of TLR/IL-1 or TNF-α
pathways [25, 30, 42].

By carefully performing transcriptomic analysis of regular and small RNA-Seq data, we

investigated the impact of LPS-upregulated signature miRNAs on expression of target genes in

monocyte. Although previous work suggests that miRNAs can mediate mRNA degradation in

minutes through post-transcriptional cleavage [43], we demonstrated that the overall abun-

dance of target mRNAs does not exclusively depend on miRNA activity. While many genes

regulated by upregulated miRNAs showed a decrease in overall expression from 6 hours to 24

hours in LPS-stimulated monocytes, over 50% of target genes had higher relative abundance

after 24 hours relative to 6 hours. Other factors that influence the relationship between

miRNA and mRNA, such as the rate of new mRNA transcription and miRNA-mediated

decay, transcription factor recruitment, transcription initiation, and P-body or other non-cod-

ing RNA activity, can influence the level of target mRNA transcripts. In addition, our analyses

of the absolute and relative expression of regulated mRNAs in LPS vs media treated monocytes

at matched timepoints highlight the heterogenous effect of miRNA upregulation on target

gene expression. Our results provide supportive evidence that monocyte signature miRNAs

fine-tune target RNAs within a physiologically determined expression range during inflamma-

tory stimulation in rather than drastically induce gene silencing. Such activities enable cell

responses to be rapidly and precisely tuned to exogenous and internal cellular stimuli over

time. Follow-up studies on monocytes that measure target gene expression after exogenous

introduction of individual or multiple signature miRNAs will elucidate the specific mecha-

nisms that govern gene regulation.

At the end of the study, we identified and reported a subset of small RNAs, tRFs, that were

frequently mapped to the distinct portions of several specific tRNAs. Under our screening cri-

teria, 18 tRF conserved sequences were identified according to the public tRNA database.

Three of our 18 tRFs were published as tRF-1001 (tRF-SerTGA), tRF-3006 (tRF-GlyGCC), and

tRF-5005 (tRF-GlyGCC) by Lee et al. in human prostate cancer cells, LNCap, and PC-3 [24],

and also detected in HEK293s, Hela cells, or a nasopharyngeal carcinoma cell line, 5-8F. In

addition, a 5’ tRF from tRNA-LeuCAG and the 3’ trailer tRF from tRNA-ThrAGT in our list

Table 5. Summary of activation and targets for LPS-induced miRNAs in human monocytes.

miRNA TLR2 TLR3 TLR4 TLR5 TLR7 TLR9 Regulatory element Targets in proinflammatory responses References

hsa-mir-155 +++ +++ +++ nd nd +++ NF-kB, AP-1 TAB2, Pellino-1, IKK, RIPK1, FADD, FOS 9,11,25,30

hsa-mir-146 ++ ++ +++ ++ - - NF-kB IRAK-1, TRAF-6 10

hsa-mir-9 +++ - +++ nd +++ nd NF-kB NF-kB 11

hsa-mir-147 +++ ++ +++ nd nd nd NF-kB, STAT1 IRAK-1, TRAF-6 32

hsa-mir-193a ++ nd ++ nd nd nd NFIB HMGB1 38,39

https://doi.org/10.1371/journal.pone.0214296.t005
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were identified in HEK293 cells and in 5-8F cells, respectively [44]. However, the physiological

functions of tRF small RNAs had not been well defined, and only limited information related

to tRFs was available in the published literature. Of the known tRF small RNAs, it has been

miR-155

miR-146a

miR-9
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Fig 7. The negative feedback of signature miRNAs in the MyD88-dependent proinflammatory signalling in monocytes. Upon activation by LPS, TLR4

dimer binds to an adaptor protein, e.g. MyD88, via the cytoplasmic domain. MyD88 in turn recruits IRAK1 and IRAK4 and, subsequently, IRAK4 activates

IRAK1 by phosphorylation. After phosphorylation, both IRAK1 and IRAK4 dissociate from the MyD88-TLR4 complex and associate temporarily with TRAF6

leading to its ubiquitination. Following ubiquitination, TRAF6 forms a complex with TAB2/TAB3/TAK1 to induce TAK1 activation. TAK1 then associates to

the IKK complex leading to IκB phosphorylation and, subsequently, nuclear localization of NF-κB. Activation of NF-κB triggers the production of

inflammatory cytokines such as TNF-α, IL-1 and IL-12, and, also, up-regulation of signature miRNAs, including hsa-mir-155, hsa-mir-146a, hsa-mir-147b, and

hsa-mir-9. In the negative feedback loop, IRAK-1 and TRAF6 are direct targets for both hsa-mir-146a and hsa-mir-147b. NF-kB is directly suppressed by hsa-
mir-9, and hsa-mir-155 could directly negatively modulate the expression level of IKK and TAB2 and Pellino-1 which are part of the TRAF6 complex in TLR/

IL-1 signalling. TNF expression is suppressed by hsa-mir-187.

https://doi.org/10.1371/journal.pone.0214296.g007
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reported that tRF-1001 was highly expressed in several carcinoma cell lines [24]. According to

recent studies, mainly done in HCT-116 cells, actions related to gene silencing by some of tRF

small RNAs have been investigated and detected. Haussecker et al. showed that, with involve-

ment of Argonaut proteins (AGO), the tRNA-derived small RNAs, e.g. cand14 and cand45 (a.

k.a. tRF-1001), were able to suppress the activity of luciferase protein expressed by the report

construct containing a complementary tRF target sequence at the 3’-downstream of the lucif-

erase ORF cDNA in dual luciferase assays [45]]. By introducing the siRNA oligos against tRF-
1001 into HCT-116 cells, Lee et al. identified an inhibitory effect of tRF-1001 siRNA oligos on

cell proliferation that could be rescued by the addition of wild-type tRF-1001 oligos [24]. To

our knowledge, this study is the first systematic study to investigate and detect tRF RNA spe-

cies in monocytes by NGS and verified their expression by stem loop RT-PCR analysis, which

merits further investigation into the functions of tRFs in immune cells.

Conclusion

By deep sequencing, we have highlighted a subset of signature miRNAs that are up-regulated

and proposed to be implicated in the negative-feedback control of proinflammatory response

in human monocytes after 6 hours and 24 hours of LPS stimulation. We also found that while

these miRNAs are upregulated during LPS treatment, the overall expression level of these tar-

get genes in RNAs is still higher in LPS-treated monocytes, suggesting that miRNA inhibition

may subtly modulate expression levels rather than completely halt expression. We also pro-

vided the first evidence of novel tRF RNA expression in human monocytes. In addition, our

study provides a global view of small RNA transcriptome in human monocytes that agrees

with and supports previous findings in individual miRNAs or tRF RNAs. Meanwhile, our

study leads us in new directions and suggests further experiments that will help us to under-

stand how these small RNAs regulate and modulate gene expression and cellular function in

the innate immune system.
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