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Abstract
Background: We previously showed that mice lacking the high mobility group A1 gene (Hmga1-
knockout mice) developed a type 2-like diabetic phenotype, in which cell-surface insulin receptors
were dramatically reduced (below 10% of those in the controls) in the major targets of insulin
action, and glucose intolerance was associated with increased peripheral insulin sensitivity. This
particular phenotype supports the existence of compensatory mechanisms of insulin resistance that
promote glucose uptake and disposal in peripheral tissues by either insulin-dependent or insulin-
independent mechanisms. We explored the role of these mechanisms in the regulation of glucose
homeostasis by studying the Hmga1-knockout mouse model. Also, the hypothesis that increased
insulin sensitivity in Hmga1-deficient mice could be related to the deficit of an insulin resistance
factor is discussed.

Results: We first show that HMGA1 is needed for basal and cAMP-induced retinol-binding protein
4 (RBP4) gene and protein expression in living cells of both human and mouse origin. Then, by
employing the Hmga1-knockout mouse model, we provide evidence for the identification of a novel
biochemical pathway involving HMGA1 and the RBP4, whose activation by the cAMP-signaling
pathway may play an essential role for maintaining glucose metabolism homeostasis in vivo, in
certain adverse metabolic conditions in which insulin action is precluded. In comparative studies of
normal and mutant mice, glucagon administration caused a considerable upregulation of HMGA1
and RBP4 expression both at the mRNA and protein level in wild-type animals. Conversely, in
Hmga1-knockout mice, basal and glucagon-mediated expression of RBP4 was severely attenuated
and correlated inversely with increased Glut4 mRNA and protein abundance in skeletal muscle and
fat, in which the activation state of the protein kinase Akt, an important downstream mediator of
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the metabolic effects of insulin on Glut4 translocation and carbohydrate metabolism, was
simultaneously increased.

Conclusion: These results indicate that HMGA1 is an important modulator of RBP4 gene
expression in vivo. Further, they provide evidence for the identification of a novel biochemical
pathway involving the cAMP-HMGA1-RBP4 system, whose activation may play a role in glucose
homeostasis in both rodents and humans. Elucidating these mechanisms has importance for both
fundamental biology and therapeutic implications.

Background
Insulin resistance is a metabolic condition found rela-
tively frequently among humans with chronic hyperin-
sulinemia and in experimental animal models with
defective insulin signaling [1-3]. Recently, a link has been
established between peripheral insulin sensitivity and the
retinol (vitamin A) metabolism, and insulin resistance in
rodents and humans has been linked to abnormalities of
the vitamin A signaling pathway [4-6]. According to these
studies, impaired glucose uptake in adipose tissue results
in secondary systemic insulin resistance through release of
the adipose-derived serum RBP4 [4,5]. However, it is
unknown whether RBP4 effects on insulin sensitivity are
vitamin A-dependent or vitamin A-independent. RBP4
(also called RBP) is mainly produced by the liver but also
by adipocytes [7]. In plasma, retinol-RBP4 is found in an
equimolar complex with transthyretin (TTR), which is a
thyroid hormone transport protein that is synthesized in
and secreted from the liver. This ternary complex prevents
retinol-RBP4 excretion by the kidney [8]. By impairing
insulin signaling in muscle, RBP4 inhibits glucose uptake
and interferes with insulin-mediated suppression of glu-
cose production in the liver, causing blood glucose levels
to rise [4]. Conversely, mice lacking the RBP4 gene show
increased insulin sensitivity, and normalizing increased
RBP4 serum levels improves insulin resistance and glu-
cose intolerance [4].

HMGA1 is a small basic protein that binds to adenine-
thymine (A-T) rich regions of DNA and functions mainly
as a specific cofactor for gene activation [9]. HMGA1 by
itself has no intrinsic transcriptional activity; rather, it can
transactivate promoters through mechanisms that facili-
tate the assembly and stability of a multicomponent
enhancer complex, the so-called enhanceosome, that
drives gene transcription [9,10].

As part of an investigation into the molecular basis regu-
lating the human insulin receptor gene, we previously
showed that HMGA1 is required for proper insulin recep-
tor gene transcription [11,12]. More recently, we showed
that loss of HMGA1 expression, induced in mice by dis-
rupting the HMGA1 gene, caused a type 2-like diabetic
phenotype, in which, however, impaired glucose toler-
ance and overt diabetes coexisted with a condition of

peripheral insulin hypersensitivity [13]. Concomitant
insulin resistance and insulin hypersensitivity in periph-
eral tissues may paradoxically coexist as observed in livers
of lipodystrophic and ob/ob mice [14], as well as in Cdk4
knockout mice with defective pancreatic beta cell develop-
ment and blunted insulin secretion [15]. The hypothesis
that the paradoxical insulin hypersensitivity of Hmga1-
deficient mice could be due to a deficit, in these animals,
of RBP4 is supported by our data. Herein, by employing
the Hmga1-knockout mouse model, we provide compel-
ling evidence for the identification of a novel biochemical
pathway involving HMGA1 and RBP4, whose activation
by the cAMP pathway may play an important role in
maintaining glucose metabolism homeostasis in vivo, in
both rodents and humans. The importance of HMGA1 in
RBP4 gene transcription was substantiated in Hmga1-defi-
cient mice, in which loss of HMGA1 expression consider-
ably decreased RBP4 mRNA abundance and RBP4 protein
production.

Results
RBP4 gene transcription is induced by HMGA1 and cAMP
We first performed experiments to see whether HMGA1
had a role in activating the mouse RBP4 gene promoter at
the transcriptional level. To test this possibility, HepG2
human hepatoma cells and mouse Hepa1 hepatoma cells
were cotransfected transiently with mouse RBP4-Luc
reporter plasmid plus increasing amounts of the HMGA1
expression vector. As shown in Figure 1, overexpression of
HMGA1 considerably increased RBP4-Luc activity in both
cell types and this effect occurred in a dose-dependent
manner. Consistent with these results, RBP4 mRNA abun-
dance was increased in cells overexpressing HMGA1 and
was reduced in cells pretreated with siRNA targeting
HMGA1 (Figure 1), indicating that activation of the RBP4
gene requires HMGA1. These data were substantiated by
chromatin immunoprecipitation (ChIP) assay, showing
that binding of HMGA1 to the endogenous RBP4 locus
was increased in whole, intact HepG2 and Hepa1 cells
naturally expressing HMGA1, and was decreased in cells
exposed to siRNA against HMGA1 (Figure 1). Based on
these results, in addition to previous observations indicat-
ing that cAMP, or agents which elevate intracellular cAMP,
increase RBP transcript levels [16], we were interested to
see whether a functional link could be established
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between cAMP, HMGA1, and RBP4. To this end, we first
confirmed and extended the observation made by Jessen
and Satre [16] that RBP is induced by cAMP in Hepa1
cells. As measured by Northern blot analysis of total RNA
(Figure 2), RBP4 mRNA increased ≈ 5-fold over the basal
level in Hepa1 cells treated with 0.5 mM 8-bromo cAMP
(Br-cAMP), a standard concentration for c-AMP induction
experiments [16]. As shown in Figure 2, RBP4 mRNA lev-
els increased starting at 3 h, peaking at 24 h and then
declining, suggesting a transient transcriptional stimula-
tion. To establish whether HMGA1 was required for basal
and cAMP-dependent RBP4 transcription, we transfected
the HMGA1 expression vector in Hepa1 cells treated or
not with Br-cAMP and RBP4 protein levels were analyzed
48 h later by Western blot. As shown in Figure 2, RBP4
protein expression was enhanced in cells overexpressing
HMGA1 and even further in cells treated with cAMP, in
which an increase in HMGA1 protein expression was
simultaneously observed, suggesting that induction of
RBP4 by cAMP may occur, at least in part, through activa-
tion of endogenous HMGA1 expression. This hypothesis
was supported by the fact that RBP4 was reduced in cAMP
treated cells in which endogenous levels of HMGA1 were
specifically lowered by transfecting cells with HMGA1
antisense expression plasmid (Figure 2). However, further
experiments are needed to fully explain the role of cAMP
on HMGA1 expression. The functional significance of
HMGA1 in RBP4 gene expression was confirmed in tran-
sient transcription assays in Hepa1 (and differentiated
3T3-L1, data not shown) cells, in which overexpression of
HMGA1 caused an increase in both basal and cAMP-
induced Luc activity from the mouse RBP-Luc reporter
plasmid (Figure 3). This effect was substantiated in HEK-
293 cAMP-responsive cells, a cell line ideally suited for
studying the effects of HMGA1 on transcription since it
does not express appreciable levels of this protein. As
shown in Figure 3, in support of the role that HMGA1
plays in the context of RBP4 gene, the direct effect of cAMP
was less effective in promoting RBP4 transcription in
HEK-293 cells expressing low levels of HMGA1, becoming
considerably higher in cells with forced expression of
HMGA1.

Thus, these data together demonstrate that HMGA1 is of
major importance for transcriptional regulation of the
RBP4 gene, and indicate that a functional link exists
between cAMP, HMGA1, and RBP4.

Hmga1-deficient mice have reduced expression of RBP4 in 
liver and fat tissue and reduced serum RBP4 levels
In the light of the above experimental results, indicating
that HMGA1 plays a positive role in RBP4 gene transcrip-
tion in living cultured cells, it was interesting to analyze
the functional consequences of genetic ablation of
HMGA1 on RBP4 in vivo, in Hmga1-knockout mice. To

RBP4 gene expression is induced by HMGA1Figure 1
RBP4 gene expression is induced by HMGA1. (Top) 
Mouse RBP4-Luc reporter vector (2 μg) was transfected into 
HepG2 and Hepa1 cells plus increasing amounts (0, 0.5, or 1 
μg) of HMGA1 expression plasmid. Data represent the means 
± standard errors for three separate experiments; values are 
expressed as factors by which induced activity increased 
above the level of Luc activity obtained in transfections with 
RBP4-Luc reporter vector plus the empty expression vector, 
which is assigned an arbitrary value of 1. (Middle) HMGA1 
expression plasmid was transfected into HepG2 and 
Hepa1cells. After 6 h of transfection, the cells were treated 
with anti-HMGA1 (100 pmol), siRNA, or a non-targeting con-
trol siRNA, and endogenous RBP4 mRNA expression was 
measured 48 to 96 h later. Western blots of HMGA1 in each 
condition are shown in the autoradiograms. (Bottom) ChIP 
of the RBP4 promoter gene in HepG2 and Hepa1 cells, either 
untreated or pretreated with HMGA1 siRNA. ChIP was done 
using an anti-HMGA1 specific antibody (Ab).
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this end, we performed studies aimed at investigating the
expression of RBP4 mRNA and protein in Hmga1-defi-
cient mice and wild-type controls. As shown in Figure 4,
RBP4 mRNA was severely attenuated in both liver and fat
from Hmga1-null mice, and reduced by 50% in Hmga1
heterozygous mutants, as assessed by real-time quantita-
tive polymerase chain reaction (qRT-PCR). Reduced RBP4
mRNA levels in liver and adipose tissue paralleled the
decrease in RBP4 serum levels as detected by Western blot
analysis of serum samples from age- and body weight-
matched mice with diverse genotypes (Figure 4), thereby
showing the requirement of HMGA1 for full RBP4 expres-
sion in whole animals.

HMGA1 and RBP4 expression increase in liver and fat of 
normal mice after intraperitoneal glucagon injection
Based on our observations in intact cultured cells, indicat-
ing a role for the cAMP signaling pathway in HMGA1 and
RBP4 gene expression, cAMP-inducible transcriptional
activation of the Hmga1 and RBP4 genes was investigated
in vivo, in whole animals, by systemic administration of
the intracellular cAMP-elevating hormone glucagon.
Under these conditions, glucagon-stimulated cAMP
responses in terms of both Hmga1 and RBP4 mRNA
expression were first analyzed in wild-type control mice.
Consistent with our data in Hepa1 cells, Hmga1 and RBP4
mRNA levels significantly increased in liver and fat of nor-

Stimulation of RBP4 mRNA and protein expression by cAMP and HMGA1Figure 2
Stimulation of RBP4 mRNA and protein expression by cAMP and HMGA1. (Upper left) 20 μg of total RNA from 
Hepa1 cells treated with the indicated concentrations of Br-cAMP for 24 h (lanes 1–7) were analysed by Northern blot. 
Hybridization was carried out with an RBP4 cDNA or an 18S RNA probe as a control of the RNA loaded on each lane. 
(Lower left) 20 μg of total RNA from Hepa1 cells treated with 0.5 mM Br-cAMP for the indicated times were loaded on each 
lane (lanes 1–8) and analysed as above. (Right) Hepa1 cells, in the absence or presence of an expression plasmid (1 μg) con-
taining the HMGA1 cDNA in either the sense (s) or antisense (as) orientation, were left untreated or treated with Br-cAMP 
(0.5 mM), total protein extracts were prepared 48 h later and HMGA1 and RBP4 protein expression levels were detected by 
Western blot (WB) with anti-HMGA1 and anti-RBP4 antibodies, respectively. β-actin, control of cellular protein loading. Den-
sitometric analyses of three to five independent blots are shown.
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mal mice after intraperitoneal injection of glucagon (Fig-
ure 5). Time course analyses revealed that the induction
and accumulation of Hmga1 mRNA preceded the expres-
sion of RBP4 mRNA in both tissues. In liver, RBP4 mRNA
appeared after that for Hmga1, peaked after 6 h following
glucagon injection, and then remained at a plateau (Fig-
ure 5). In fat, RBP4 mRNA appeared at 1 h after Hmga1
mRNA, peaked after 6 h of glucagon stimulation, and
decreased smoothly thereafter (Figure 5). Increased levels
of Hmga1 and RBP4 mRNAs were paralleled by the
increase of Hmga1 and RBP4 protein expression, as meas-
ured by Western blot analysis of proteins from liver and
fat of glucagon-injected animals (Figure 5). Interestingly,
when similar experiments were carried out in glucagon
injected Hmga1-deficient mice, tissue expression of RBP4
mRNA was severely attenuated in liver and fat from heter-
ozygous (Hmga1+/-) and Hmga1-null (Hmga1-/-) animals
(Figure 6), thereby indicating that HMGA1 is indeed

required for maximal induction of the RBP4 gene in vivo,
in the whole organism, and that the glucagon/adenylate
cyclase system regulates both HMGA1 and RBP4 gene and
protein expression. Consistent with this conclusion, liver
RBP4 mRNA and protein expression levels were lower in
fed wild-type mice, becoming higher during fasting, when
circulating glucagon increases (Figure 6).

As a measure of the glucagon efficacy in glucagon-injected
mice, a liver biopsy was taken before and after glucagon
injection, and cAMP levels in liver were determined for
both control and Hmga1-deficient mice (Figure 6, inset).
No substantial difference was found in basal levels of
cAMP (0.45 and 0.50 in Hmga1-/- and Hmga1+/-, respec-
tively, versus 0.52 μmol/g tissue in controls). After gluca-
gon injection, hepatic levels of cAMP increased to 1.50
μmol/g tissue in control mice, compared with 1.48 and
1.52 in Hmga1-/- and Hmga1+/- mice, respectively. Results

Role of HMGA1 in basal and cAMP-induced RBP4 expressionFigure 3
Role of HMGA1 in basal and cAMP-induced RBP4 expression. Rbp4-Luc reporter vector and HMGA1 expression plas-
mid (sense or antisense) were cotransfected into Hepa1 and HEK-293 cells, either untreated or treated with Br-cAMP. Data 
represent the means ± standard errors for three separate experiments. Transcriptional activity of the RBP4 gene promoter is 
shown as the ratio of luciferase activity to Renilla activity (Luc/Ren) as described in the experimental procedures. Values are 
expressed as the factors by which induced activity increased above the level of Luc activity obtained in transfections with the 
reporter vector alone, which is assigned an arbitrary value of 1. Open bar, mock (no DNA); black bar, pGL3-basic (vector 
without an insert). Western blots of HMGA1 and β-actin in each condition are shown in the autoradiograms.
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similar to those shown in the inset of Figure 6 were also
obtained in epididymal and subcutaneous fat pads from
control and mutant animals (data not shown), thus indi-
cating that the glucagon-stimulated cAMP synthesis did
not differ among mice with diverse genotypes.

Hmga1-deficient mice have increased Glut4 expression 
and insulin signaling activity in skeletal muscle and fat
Systemic insulin resistance has been associated with eleva-
tion of serum RBP4, whereas genetic and pharmacological
interventions aimed at decreasing serum RBP4 levels
enhance insulin action and improve insulin sensitivity
[4]. Increased peripheral insulin sensitivity during insu-
lin-tolerance test was previously observed by us in Hmga1-
knockout mice [13]. To verify whether a functional link
indeed existed between HMGA1 and RBP4, and whether
insulin hypersensitivity in Hmga1-deficient mice could be
mediated by the HMGA1-RBP4 system, we carried out
quantitative measurements of Glut4 mRNA transcript
abundance. Examination by qRT-PCR showed a signifi-
cant increase of Glut4 transcripts in both skeletal muscle
and adipose tissues from Hmga1-deficient mice compared
with controls (Figure 7). Accordingly, immunoblotting of
muscle and fat tissue showed a 2- to 3-fold increase of
Glut4 in the insulin hypersensitive Hmga1-knockout mice
compared with controls (Figure 7), clearly indicating that
an inverse correlation between RBP4 and Glut4 indeed
exists in vivo, in this animal model of diabetes, in which
reduced RBP4 may contribute to the maintenance of glu-
cose homeostasis by increasing insulin signaling and
peripheral insulin sensitivity. In agreement with this inter-

pretation, the activation state of the protein kinase Akt, an
important downstream target of PI 3-kinase regulating
insulin serum effects on Glut4 translocation and carbohy-
drate metabolism [17], was increased in mutant animals.
As shown in Figure 7, basal phospho-Akt immunoreactiv-
ity was higher in skeletal muscle and adipose tissues from
Hmga1-deficient mice compared with wild-type controls,
and this increase paralleled closely the increase of Glut4
protein in adipose and muscle plasma membranes from
heterozygous and homozygous Hmga1 mutants. In line
with previous observations on transcriptional repression
of the mouse Glut4 gene by cAMP [18], endocrine upreg-
ulation of Glut4 in Hmga1-deficient mice was substanti-
ated further by in vitro experiments (not shown),
indicating that in isolated adipocytes treated with Br-
cAMP, Glut4 mRNA was decreased in all three genotypes.
A positive correlation of RBP4 levels with markers of lipid
metabolism adversely affecting insulin sensitivity has
been reported recently in both clinical and experimental
studies [19,20]. Hmga1-knockout mice had lower levels of
serum free fatty acids (0.45 ± 0.13 and 0.34 ± 0.07 in
Hmga1+/+ and Hmga1-/-, respectively; P < 0.05), which
might contribute to their improved insulin sensitivity.

Recombinant RBP4 injection reduces Glut4 and insulin 
signaling activity in muscle and fat tissue of Hmga1-
deficient mice, and attenuates insulin hypersensitivity of 
these animals
To demonstrate that increased insulin sensitivity in
mutant mice was directly due to HMGA1 regulation of
RBP4, we determined the effect of recombinant RBP4
administration on Akt phosphorylation and Glut4 pro-
tein expression in skeletal muscle from Hmga1-deficient
mice. As shown in Figure 8, Akt phosphorylation was
reduced in muscle from RBP4-injected mutant animals
compared with saline-injected Hmga1 mutants. The
reduction in Akt phosphorylation in these genotypes cor-
related inversely with RBP4 serum levels in the same ani-
mals (Figure 8) and paralleled the reduction of Glut4 in
skeletal muscle and adipose (not shown) plasma mem-
branes (Figure 8), indicating that, in these conditions,
activation of the Akt-Glut4 pathway is regulated, at least
in part, by circulating RBP4. Plasma insulin levels were
slightly higher in RBP4-injected mice, but no significant
difference was found (1.6 ± 0.2 and 1.2 ± 0.2 in RBP4-
injected Hmga1+/- and Hmga1-/- respectively, versus 1.4 ±
0.1 and 0.9 ± 0.1 ng/ml in saline-injected Hmga1+/- and
Hmga1-/- mice).

Consistent with the condition of insulin hypersensitivity,
we previously reported that the glucose-lowering effect of
exogenous insulin was enhanced in Hmga1-deficient mice
during insulin-tolerance test (ITT) [13]. To support further
the role of RBP4 in insulin hypersensitivity in Hmga1
mutants, we have determined the effect of RBP4 adminis-

RBP4 expression in wild-type and Hmga1-deficient miceFigure 4
RBP4 expression in wild-type and Hmga1-deficient 
mice. RBP4 mRNA in liver and fat from control and Hmga1-
deficient mice, as measured by qRT-PCR (left), and densito-
metric quantification of RBP4 serum levels as detected by 
Western blot (WB) of serum samples (2 μl) from mice with 
diverse genotypes (right). In WB analysis, an anti-transthyre-
tin (TTR) antibody was used to confirm similar amounts of 
protein on each lane. Results are from 4–6 mice in each 
group. *P < 0.01 versus control mice.
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tration on the glucose fall induced by insulin in these gen-
otypes during ITT. As shown in Figure 9, injection of
human RBP4 in heterozygous and homozygous Hmga1
mutants caused a less dramatic fall in blood glucose lev-
els, lessening the hypoglycemic response to intraperito-
neal insulin observed in the saline-injected animals. Thus,
taken together, our findings consistently support the role

of HMGA1 as a key element in the transcriptional regula-
tion of genes involved in glucose metabolism and add
new insights into the compensatory mechanisms that may
contribute to counteract insulin resistance in vivo. By
directly regulating RBP4 gene transcription, HMGA1
enhances peripheral insulin sensitivity, ensuring glucose
uptake in skeletal muscle. This, if on one hand might rep-

Hmga1 and RBP4 mRNA and protein expression in vivo, in glucagon-injected wild-type miceFigure 5
Hmga1 and RBP4 mRNA and protein expression in vivo, in glucagon-injected wild-type mice. Total RNA was iso-
lated from liver (upper left) and fat (upper right) of 3-h-fasted mice, before and after intraperitoneal injection of glucagon. Lev-
els of Hmga1 and RBP4 mRNA were measured at the indicated time intervals by qRT-PCR and normalized to RPS9 mRNA 
abundance, as described in Methods. Results are the mean values ± s.e.m. from 4–6 animals per group. Black bars, Hmga1 
mRNA; gray bars, RBP4 mRNA. Representative Western blots from liver (lower left) and fat (lower right) of mice before and 
after glucagon injection are shown. Densitometric analyses of immunoblots are shown in bar graphs as the mean ± s.e.m. of 
data from 3–5 mice per each time point. Black bars, HMGA1; gray bars, RBP4.*P < 0.05 versus control mice (time 0).
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resent an adaptive mechanism to ameliorate insulin resist-
ance in animals with a disadvantageous metabolic risk
profile, on the other might indicate that the cAMP/
HMGA1-mediated RBP4 expression during fasting (when
glucagon peaks) may act physiologically to reduce insulin
sensitivity in peripheral tissues, thereby contributing to
the maintenance of euglycemia under this condition. This
was supported by the observation that after an overnight
fasting period (12–16 h) plasma glucose concentration in

wild-type mice was higher than that of Hmga1-deficient
mice (89 ± 5 in Hmga1+/+ mice, versus 72 ± 6 and 62 ± 5
mg/dl in Hmga1+/- and Hmga1-/- mice, respectively; P <
0.05).

Discussion
We have previously shown that loss of HMGA1 protein
expression, induced in mice by disrupting the HMGA1
gene, severely decreased insulin receptor expression
(below 10% of control animals) and phosphorylation in
the major targets of insulin action, largely impaired insu-
lin signaling, and reduced insulin secretion, producing a
type 2-like diabetic phenotype in which defects in both
peripheral insulin sensitivity and pancreatic beta-cell
insulin secretion were coexpressed simultaneously [13].
However, despite the severe decrease in insulin receptor
signaling and insulin receptor production, the glucose-
lowering effect of exogenous insulin was enhanced in
Hmga1-deficient mice during ITT, and the glucose infu-
sion rate necessary to maintain euglycemia was higher in

Comparison of RBP4 mRNA levels in glucagon-injected wild-type and Hmga1-deficient mice, and liver RBP4 expression in wild-type mice during fasting and fedFigure 6
Comparison of RBP4 mRNA levels in glucagon-
injected wild-type and Hmga1-deficient mice, and 
liver RBP4 expression in wild-type mice during fast-
ing and fed. Total RNA was isolated from liver and fat of 3-
h-fasted mice, before (time 0) and after 9 h of intraperitoneal 
injection of glucagon, and RBP4 mRNA was measured by 
qRT-PCR and normalized to RPS9 mRNA abundance. Results 
are the mean values ± s.e.m. from 6–8 animals per group. 
Black bars, Hmga1+/+, n = 8; gray bars, Hmga1+/-, n = 6; white 
bars, Hmga1-/-, n = 6. *P < 0.05 versus each control (time 0). 
Western blots for HMGA1 protein expression are shown in 
liver and fat from all three genotypes (top). The levels of 
RBP4 mRNA and protein (shown at the bottom of the figure) 
were measured in liver of fed and 6-h-fasted wild-type mice 
(6 animals per group), using qRT-PCR and Western blot 
(WB), respectively. *P < 0.05 versus fed mice. Inset, cAMP 
was measured in liver from control and Hmga1-deficient 
mice, in both basal conditions and 3 h after the intraperito-
neal injection of glucagon (1 mg/kg body weight), as 
described in the Methods section. The data are mean ± s.e.m. 
for 4–6 animals per group.

Glut4 and pAkt expression in wild-type and Hmga1-deficient miceFigure 7
Glut4 and pAkt expression in wild-type and Hmga1-
deficient mice. Glut4 mRNA (upper left) and protein con-
tent (lower left) in muscle and fat parallel pAkt protein abun-
dance in skeletal muscle (upper right) and adipose tissue 
(lower right) from control and Hmga1-deficient mice. Repre-
sentative Western blots of Glut4 and pAkt proteins are 
shown, together with the densitometric analyses of six to 
eight independent blots. Black bars, Hmga1+/+, n = 8; gray 
bars, Hmga1+/-, n = 6; white bars, Hmga1-/-, n = 6. *P < 0.05 
versus Hmga1+/+.
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mutant mice during hyperinsulinemic-euglycemic clamp
[13], supporting the existence of alternative pathways of
insulin signaling promoting glucose uptake and disposal
in certain adverse metabolic conditions such as those
found in the Hmga1-knockout mouse. The existence of
signaling pathways promoting glucose uptake and utiliza-
tion in peripheral tissues through mechanisms that are
independent of insulin has been postulated before, on the
basis of experimental observations supporting the exist-
ence of molecular circuits/pathways that can compensate
for the decrease in insulin-stimulated glucose uptake in
vivo, in both animal models and human patients with type
2 diabetes [21-23]. However, how these compensatory
mechanisms are activated has remained hitherto largely
undefined. As previously shown, consistent with the ubiq-
uitous distribution of HMGA1, insulin receptor expres-
sion was also reduced in pancreatic tissue from Hmga1-
deficient mice [13]. Loss of insulin secretion in response
to glucose has been reported in IRβ knockout mice with
tissue-specific knockout of the insulin receptor in pancre-
atic beta cells [24]. As in the IRβ knockout mice, plasma
insulin after glucose challenge was considerably reduced
in Hmga1-mutant animals, in which the acute first-phase
insulin secretory response was severely blunted [13], indi-
cating a glucose-induced insulin secretory defect. In addi-
tion, substantial abnormalities in pancreatic islet
morphology and size have been described in Hmga1-
knockout mice [13], indicating that decreased insulin
secretion in this genotype may also depend on reduced

beta-cell mass. Thus, defects in both pancreatic beta-cell
insulin secretion and peripheral insulin action coexist
simultaneously in this knockout mouse model of diabe-
tes, in which activation of compensatory mechanisms to
efficiently overcome these metabolic abnormalities may
be of vital importance.

Downregulation of Glut4 in adipose tissue is a typical fea-
ture of insulin-resistant states, such as obesity and type 2
diabetes [25]. It has been found that the decrease in Glut4
expression that occurs in the fatty tissue of obese animals
and humans is accompanied by increased expression and
secretion of the adipocyte-derived RBP4 fraction [4,5],
suggesting that RBP4 production is tightly regulated by
adipose tissue glucose uptake. RBP4 has been recently
implicated in systemic insulin sensitivity in rodents and
humans, in which elevated serum RBP4 levels were asso-
ciated with reduced expression of Glut4 in adipocytes,
and correlated inversely with peripheral insulin sensitiv-
ity. However, based on current data, the role of RBP4 in
insulin sensitivity in humans is still controversial and
might be restricted to rodent models only. Interspecies
differences are known to exist and discrepancies between
humans and mice might emphasize the role of non-
genetic environmental factors and genetic modifiers in
determining the phenotypic variations in RBP4 and insu-
lin sensitivity between humans and animal models. Our
results in the present study clearly indicate that in Hmga1-
knockout mice RBP4 levels are considerably decreased in
serum and in whole liver and adipose tissue extracts,
strictly linking HMGA1 and RBP4 expression. We propose
that HMGA1 deficiency adversely affects RBP4 expression
and this, in animals with a disadvantageous metabolic
risk profile like that observed in the Hmga1-knockout
mouse model, might reflect an adaptive mechanism to
increase glucose uptake and glucose disposal. Consistent
with the results obtained in Hmga1-deficient mice, RBP4
was considerably reduced in cells of both human
(HepG2) and mouse (Hepa1) origin readily expressing
RBP4, following perturbation of endogenous HMGA1
protein expression in cells treated with siRNA against
HMGA1. Conversely, an increase in RBP4 mRNA abun-
dance was observed in both cell lines following forced
expression of HMGA1, consistently supporting a role for
HMGA1 in the transcriptional activation of the RBP4
gene. These findings were substantiated further by ChIP
analysis, showing that HMGA1 indeed binds to the RBP4
locus in intact living cells.

Signal transduction pathways which raise intracellular
cAMP have been reported to have a potential role in the
regulation of RBP4 gene expression [16]. Although the
molecular mechanisms underlying this effect remain
poorly understood, evidence exists supporting the notion
that the regulation of RBP4 gene transcription via the

Effects of recombinant RBP4 administration on Akt phospho-rylation and Glut4 protein expression in Hmga1-deficient miceFigure 8
Effects of recombinant RBP4 administration on Akt 
phosphorylation and Glut4 protein expression in 
Hmga1-deficient mice. Basal (saline) levels of pAkt (left) 
and Glut4 (right) were increased in skeletal muscle of saline-
injected Hmga1-deficient mice compared with controls, and 
were reduced following RBP4-injection (n = 6 per genotype). 
Densitometric quantifications of three independent experi-
ments from 3 animals per genotype are shown, together with 
representative Western blots of pAkt, Glut4, and serum 
RBP4 of saline and RBP4-injected mice. *P < 0.05 versus 
Hmga1+/+.
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cAMP signaling pathway may be physiologically relevant.
One important physiological condition in which intracel-
lular cAMP increases is in response to low glucose availa-
bility. In this metabolic setting, a concomitant
predominance of circulating counter-regulatory hor-
mones, in particular pancreatic glucagon acting via the
cAMP pathway, induces glycogenolysis and gluconeogen-
esis in the liver, which produce and release hepatic glu-
cose in the blood. In this regard, the cAMP-element-
binding protein (CREB) has been identified as a critical
transcriptional checkpoint which, in response to cAMP,
promotes hepatic glucose output through the synergistic
activation of distinct transcriptional effector pathways,
which include the PPAR gamma coactivator 1 (PGC1) and
the NR4A orphan nuclear receptors [26].

In this paper, we report that systemic injection of gluca-
gon to wild-type control mice caused an increase in RBP4
mRNA and protein expression, along with an increase of
both intracellular cAMP and HMGA1 levels. Glucagon
effects were attenuated in Hmga1-deficient mice, support-

ing a distinct role for HMGA1 in the regulation of RBP4
gene expression and functionally linking this two genes.
As a consequence of the functional link between HMGA1
and RBP4, a significant increase in Glut4 mRNA and pro-
tein was observed in both skeletal muscle and adipose tis-
sues from Hmga1-deficient mice compared with controls.
An inverse relationship between RBP4 and Glut4 has been
described previously, in the adipose-Glut4-/- mouse, in
which the decrease in Glut4 expression that occurs in the
fatty tissue of this mutant genotype is accompanied by
increased expression and secretion of the fat-derived RBP4
[4]. In our model, instead, RBP4 expression is genetically
impaired due to the lack of HMGA1 and Glut4 is
increased in both muscle and fat, suggesting that abnor-
malities in RBP4 and/or metabolites of the vitamin A
metabolism may directly affect whole-body insulin action
and peripheral insulin sensitivity. In support of this possi-
bility, identification of regulatory single nucleotide poly-
morphisms in the RBP4 gene associated with type 2
diabetes has been recently reported [27,28], while correla-
tions of RBP4 with insulin resistance have been confirmed

Effects of RBP4 on insulin sensitivityFigure 9
Effects of RBP4 on insulin sensitivity. Insulin-tolerance test (ITT) was assessed in Hmga1-deficient mice injected with 
saline alone (left), and in Hmga1 mutants injected chronically with purified RBP4 (right) (n = 6–8 per genotype in each condi-
tion). ITT was performed by measuring blood glucose levels in 12-h-fasted conscious mice injected intraperitoneally with 
human insulin (Human Actrapid, Novo Nordisk), 1 U/kg body weight. Open squares, Hmga1+/+; open circles, Hmga1+/-; open 
diamonds, Hmga1-/-. The degree of statistical significance was less in RBP4-injected Hmga1-deficient mice compared with the 
significance for saline-injected Hmga1 mutants. *P < 0.0001, saline-injected Hmga1-deficient mice versus Hmga1+/+; # P < 0.05, 
RBP4-injected Hmga1-/- mice versus Hmga1+/+.
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in experimental clinical approaches in humans [7].
Although conflicting results have been reported, raising
doubt about the postulated relationship of RBP4 with
insulin sensitivity in humans, our results in Hmga1-defi-
cient mice confirm that an inverse correlation indeed
exists between RBP4 and insulin sensitivity in vivo, in this
animal model of diabetes, lending support to previous
hypotheses that lowering RBP4 levels would be helpful in
ameliorating insulin resistance, at least in mice.

Overall, our findings provide mechanistic insight into the
regulation of glucose uptake and disposal in peripheral
tissues, and support further the role of HMGA1 as a mol-
ecule that is likely to be an important emerging factor in
the transcriptional activity of genes implicated in the
maintenance of glucose homeostasis and metabolic con-
trol, such as the insulin receptor gene [11-13], the leptin
gene [29], and, as shown here, the RBP4 gene. Apart from
the intrinsic biological interest in elucidating the mecha-
nisms leading to improvement in insulin sensitivity, a
clear understanding of the molecular process involved is
of potential importance in the development of new thera-
peutic strategies for patients with metabolic disorders
such as obesity, diabetes, and other insulin resistant
states.

Conclusion
We propose that HMGA1 can serve as a modulator of both
RBP4 gene expression and protein function and represents
an important novel mediator of glucose homeostasis in
vivo.

Methods
Plasmids, transfections, and ChIP
The RBP4-Luc reporter plasmid was obtained by cloning
the NheI/XhoI 1427-bp sequence of the mouse RBP4 pro-
moter (-1417 to +10) into pGL3 (Promega). This frag-
ment was amplified from genomic DNA using the
following modified primers: 5'-TTGCTAGCATGGCTAAG-
GTGCTTGTTGAAA-3', 5'-TTCTCGAGCACACCCACTC-
CATCTCACC-3' and the integrity of this construct was
checked by DNA sequencing. RBP4-Luc reporter plasmid,
together with either the control vector plasmid or expres-
sion plasmid encoding HMGA1 [11], was transiently
transfected into cultured cells using LipofectAMINE 2000
reagent (Invitrogen), and Luc activity was assayed 48 h
later, as previously described [30]. Renilla control vector
served as an internal control of transfection efficiency,
together with measurements of protein expression levels.
For antisense HMGA1 experiments, RBP4-containing vec-
tor was cotransfected into Hepa1 cells with the expression
plasmid pcDNA1 containing the HMGA1 cDNA in the
antisense orientation [12]. Small interfering RNA (siRNA)
targeted to HMGA1 [30] was transfected into cells at 50%
to 60% confluency and cells were analyzed 48 to 96 h
later. ChIP assay was performed in HepG2 and Hepa1

cells, either untreated or pretreated with HMGA1 siRNA as
described previously [31]. Formaldehyde-fixed DNA-pro-
tein complex was immunoprecipitated with anti-HMGA1
antibody. Primers for the RBP4 sequence were used for
PCR amplification of immunoprecipitated DNA (30
cycles), using PCR ready-to-go beads (Amersham Pharma-
cia Biotech). PCR products were electrophoretically
resolved on 1.5% agarose gel and visualized by ethidium
bromide staining.

Animals
Male Hmga1-deficient and wild-type mice aged 6–9
months were studied. The generation of these animals
and many of the physiological characteristics of the mice
have been described in detail [13]. All animal work was
carried out at the Animal Facility at the 'Istituto dei
Tumori di Napoli', and at the Faculty of Pharmacy, Roccel-
letta di Borgia, Catanzaro, using approved animal proto-
cols and in accordance with institutional guidelines.
Serum free fatty acid levels were measured in wild-type
and Hmga1-knockout mice (n = 12–16 per genotype)
using the NEFA C kit (Wako).

Real-time PCR and Western blot
For qRT-PCR, total cellular RNA was extracted from tissues
using the RNAqueous-4PCR kit and subjected to DNase
treatment (Ambion). RNA levels were normalized against
18S ribosomal RNA in each sample, and cDNAs were syn-
thesized from 2 μg of total RNA using the RETROscript
first strand synthesis kit (Ambion). Primers for mouse
HMGA1 (NM_016660.2) (5'-GCAGGAAAAGGATGGG
ACTG-3'; 5'-AGCAGGGCTTCCAGTCCCAG-3'), RBP4
(NM_011255.2) (5'-AGGAGAACTTCGACAAGGCT-3'; 5'-
TTCCCAGTTGCTCAGAAGAC-3'), Glut4 (NM_009204)
(5'-TCATTGTCGGCATGGGTTT-3'; 5'-CGGCAAATAGAA
GGAAGACGTA-3'), and RPS9 (NM_ 029767.2) (5'-CTG
GACGAGGGCAAGATGAAGC-3'; 5'-TGACGTTGGCGGA
TGAGCACA-3') were designed according to sequences
from the GenBank database. A real-time thermocycler
(Eppendorf Mastercycler ep realplex ES) was used to per-
form quantitative PCR. In a 20-μl final volume, 0.5 μl of
the cDNA solution was mixed with SYBR Green RealMas-
terMix (Eppendorf), and 0.3 μM each of sense and anti-
sense primers. The mixture was used as a template for the
amplification by the following protocol: a denaturing step
at 95°C for 2 min, then an amplification and quantifica-
tion program repeated for 45 cycles of 95°C for 15 s, 55°C
for 25 s, and 68°C for 25 s, followed by the melting curve
step. SYBR Green fluorescence was measured, and relative
quantification was made against the RPS9 cDNA used as
an internal standard. All PCR reactions were done in trip-
licate.

Western blot analysis was performed to analyze HMGA1
and RBP4 protein expression in whole-cell liver and fat
extracts from normal and mutant mice, using polyclonal
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specific antibodies raised against HMGA1 [11] and RBP4
(AdipoGen, Inc.). For the measurement of serum RBP4,
blood was collected from the retro-orbital sinus, plasma
protein extracts were resolved on 12% SDS-PAGE, blotted
onto nitrocellulose membranes and RBP4 was detected
using rabbit polyclonal antisera at 1:2000 dilution, as sug-
gested by the manufacturer. TTR was detected using a goat
anti-TTR polyclonal antibody (Santa Cruz Biotechnol-
ogy). Rabbit anti-Glut4 polyclonal antibody was used as
previously described [13].

In vivo studies with the peptide hormone glucagon
For systemic administration of exogenous glucagon, mice
were injected in the peritoneal cavity with human gluca-
gon (1 mg/kg body weight) or saline after 3 h of fasting.
At this dose, the peak increase of plasma glucagon in all
genotypes was ~96% ± 10% above pre-injection levels,
reflecting similar previous observations in rodents [32]. At
different times after the injection the mice were killed by
cervical dislocation, the liver and fat were rapidly
removed, frozen into liquid nitrogen and stored at -80°C
until processed. For cAMP determination, frozen samples
were first homogenized in ice-cold trichloroacetic acid
(TCA) (6% wt/vol), and cAMP was determined using the
cAMP enzyme immunoassay kit (Amersham Pharmacia
Biotech), according to the instructions specified by the
manufacturer.

RBP4 purification and injection
Human RBP4 cDNA cloned into a pET3a expression vec-
tor was a kind gift from JW Kelly (The Scripps Research
Institute). Based on previously published methodology
[33], RBP4 protein expression vector was transformed
into the BL21 strain of Escherichia coli (Stratagene),
expanded in suspension culture and induced for 6 h with
1 mM isopropyl-D-thiogalactopyranoside to stimulate
protein expression. Bacteria were pelleted and lysed by
osmotic shock [34]. From this point on, all steps, includ-
ing denaturation, refolding, and RBP4 purification, were
performed essentially as described elsewhere [35]. Protein
fractions were examined by sodium dodecyl sulfate poly-
acrylamide gel electrophoresis (SDS-PAGE) and immuno-
blotting, and desired fractions were pooled together,
concentrated with an Amicon Centriprep-10 concentrator
(Millipore), and stored at -80°C.

To determine whether elevation of RBP4 affected insulin
hypersensitivity in vivo, in Hmga1-deficient mice, hetero-
zygous and homozygous Hmga1 mutants, were intraperi-
toneally injected twice daily (at 12-h intervals) with 200
μg of purified human RBP4 (13 μg/g body weight per
mouse) for 7 days. This resulted in a daily average serum
level of human RBP4 similar to that of control mice (see
Figure 8), which received physiological saline solution
according to the same schedule above.

Statistical analysis
The ANOVA test was used to evaluate the differences
between the groups of mice. For all analyses, P < 0.05 was
considered significant.
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