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The DNA-dependent protein kinase catalytic subunit (DNA-PKcs) with a Ku70/Ku80
heterodimer constitutes the intact DNA-PK kinase, which is an upstream component of
the DNA repair machinery that signals the DNA damage, orchestrates the DNA repair, and
serves to maintain genome integrity. Beyond its role in DNA damage repair, the DNA-PK
kinase is also implicated in transcriptional regulation and RNA metabolism, with an
illuminated impact on tumor progression and therapeutic responses. However, the
efforts to identify DNA-PK regulated transcriptomes are limited by short-read
sequencing to resolve the full complexity of the transcriptome. Therefore, we leveraged
the PacBio Single Molecule, Real-Time (SMRT) Sequencing platform to study the
transcriptome after DNA-PK inactivation to further underscore the importance of its role
in diseases. Our analysis revealed additional novel transcriptome and complex gene
structures in the DNA-PK inactivated cells, identifying 8,355 high-confidence new
isoforms from 3,197 annotated genes and 523 novel genes. Among them, 380
IncBRNAs were identified. We validated these findings using computational approaches
and confirmatory transcript quantification with short-read sequencing. Several novel
isoforms representing distinct splicing events have been validated through PCR
experiments. Our analyses provide novel insights into DNA-PK function in
transcriptome regulation and RNA metabolism.

Keywords: long-read sequencing, DNA-PK, transcriptome, short-read sequencing, alternative splicing

INTRODUCTION

DNA-PK is the critical component of the cellular response to DNA damage and an essential player
in maintaining genome integrity. It is a serine/threonine protein kinase complex composed of the
Ku heterodimer proteins (Ku70/Ku80) and the catalytic subunit DNA-PKcs, which belongs to the
phosphatidylinositol 3-kinase related kinase (PIKK) family together with Ataxia-telangiectasia
mutated (ATM) and RAD3 related (ATR). DNA-PKcs plays multi-faceted roles in non-homologous
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end joining (NHE]), DSB repair pathway of choice, DNA
replication stress and cell cycle checkpoints (1-3). Besides,
increasing evidence has shown the interplay between DNA-
PK/DNA-PKcs and noncoding RNAs in DNA damage
response (4-7).

Indeed, DNA-PK was identified as part of SP1 transcription
complexes (8) and as a regulatory component of the RNA
polymerase II complex three decades ago (9). The interaction
between transcription and the DNA damage repair machinery
involving DNA-PK has been extensively studied (10-13).
Recently, several studies have revealed the critical functions of
DNA-PK in tumor progression and therapeutic response beyond
the DNA repair process, referring to its role in transcription
regulation (14-18). DNA-PKcs is critical for autoimmune
regulator (AIRE) mediated transcription of toll-like receptors,
which play functions in the innate immune system. DNA-PKcs is
also required for p53-dependent transcription and for expression of
hormone receptors, including androgen receptor and estrogen
receptor. Identification of the roles of DNA-PK in cancer-related
processes prompted targeting of DNA-PK as a therapeutic advance.

Although the relationship between DNA-PK and the RNA
polymerase II complex has been well established, the complex
transcriptome dependent on DNA-PK is unknown and much
remains to be deciphered about the cellular consequences of
DNA-PK. In the past, short-read sequencing-based technology
may not have fully resolved the transcriptome landscape
dependent on DNA-PK such as alternative splicing (19),
alternative transcription initiation, or alternative transcription
termination sites and may further hamper the understanding of
DNA-PK functions. Long-read sequencing can directly obtain
the full-length transcripts, define novel transcribed regions, and
discriminate highly similar isoforms of annotated genes.

In this study, we employed the highly accurate PacBio SMRT
Sequencing platform to resolve the transcriptome dependent on
DNA-PK activity. Our results provide a novel and complex view of
the cellular transcriptome centered on a critical transcription
regulator. Our study will also expand the understanding of DNA-
PK function in both DNA damage repair and transcription.

METHODS

Cell Culture and Treatment

NCI-H1688 cells were cultured in RPMI-1640 medium
supplemented with 10% FBS at 37°C with 5% CO,, and were
authenticated by karyotype analysis or short tandem repeat
analysis and were verified to be free of mycoplasma
contamination by PCR. Cells were treated with 1 uM NU7441
(cat#S2638, Selleck, China) for 24 h and subjected to
RNA isolation.

Library Preparation and Sequencing

Total RNAs from DMSO and NU7441-treated NCI-H1688 cells
were collected for PacBio SMRT library generation. RNA quality
was assessed by an Agilent Bioanalyzer, and samples with RIN
scores of >9 were retained. The Iso-Seq library was prepared

according to the Isoform Sequencing protocol (Iso-Seq) using the
Takara SMARTer PCR c¢DNA Synthesis Kit (cat #634925 or
634926, Takara, Japan) and the BluePippin Size Selection System
protocol as described by Pacific Biosciences (PN 100-092-800-03).

DATA ANALYSIS

Data Processing

Sequence data were processed using the SMRTlink 5.0 software.
Circular consensus sequence (CCS) was generated from subread
BAM files, parameters: min_length 200, max_drop_fraction 0.8,
no_polish TRUE, min_zscore-9999, min_passes 1,
min_predicted_accuracy 0.8, max_length 18,000. CCS. BAM
files were output, which were then classified into full length
and non-full length reads using the pbclassify.py script, ignore
polyA false, and minSeq Length 200. Non-full length and full-
length fasta files produced were then fed into the cluster step,
which involves isoform-level clustering (ICE), followed by final
Arrow polishing, hq_quiver_min_accuracy 0.99, bin_by_primer
false, bin_size_kb 1, qv_trim_5p 100, and qv_trim_3p 30. Error
correction using Illumina reads. Additional nucleotide errors in
consensus reads were corrected using the Illumina RNA-seq data
with the software LoRDEC.

Mapping to the Reference Genome

Aligning consensus reads to reference using GMAP with
parameters —no-chimeras - cross-species —expand-offsets 1-B
5-K 50000-f samse-n 1 against reference genome.

Gene Structure Analysis

Gene structure analysis was performed using the TAPIS
pipeline. The GMAP output bam format file and gff/gtf
format genome annotation file were used for gene and
transcript determination. Then, alternative splicing events
and alternative polyadenylation events were then analyzed.
Fusion transcripts were determined as transcripts mapping to
two or more long-distance range genes and were validated by at
least two Illumina reads. Unmapped transcripts and novel gene
transcript functional annotation. Unmapped transcripts and
novel gene transcript functions were annotated based on the
following databases: NR (NCBI non-redundant protein
sequences); NT (NCBI non-redundant nucleotide sequences);
Pfam (Protein family); KOG/COG (Clusters of Orthologous
Groups of proteins); Swiss-Prot (A manually annotated and
reviewed protein sequence database); KO (KEGG Ortholog
database); and GO (Gene Ontology).

We used the software BLAST and set the e-value ‘1e-10 in
NT database analysis. We used the software Diamond BLASTX
and set the e-value ‘le-10" in NR KOG Swiss-Prot KEGG
database analysis. We used the software Hmmscan in our
Pfam database analysis.

Quantification of Transcript Expression
Cuffdift (v2.1.1) was used to calculate FPKMs of all transcripts in
each sample. Isoform FPKMs were computed by summing the
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FPKMs of transcripts in each gene group. FPKM means
fragments per kilo-base of exon per million fragments mapped,
calculated based on the length of the fragments and read count
mapped to this fragment.

Differential Alternative Splice

SUPPA was used to calculate the expression weight (Psi) of the
alternative splice based on transcript TPM values. A differential
alternative splice of the two conditions was performed using the
significance test of Psi. The dpsi value was adjusted using the
Mann-Whitney U test method. The absolute dpsi value of 0.1
and a p-value of 0.05 were set as the thresholds for significantly
differential alternative splices.

PCR

RNAs from the indicated cell lines were extracted according to the
standard procedure. Then, cDNAs were synthesized with
5xPrimeScript RT Master Mix (Perfect Real Time) (Cat. #
RRO36A, Takara Bio Inc., Japan). After 25-40 cycles of
amplification with indicated primers, gel analyses of the PCR
product in Figure 3C were performed on 1% agarose gels. Primer
sequences used are included as part of the Supplemental Materials.

RESULTS

Experiment Procedure and Long-Read
Data Characteristics

To characterize the DNA-PK regulated transcriptome, we
followed the experimental and computational pipeline
illustrated in Figure 1A. The NCI-H1688 cells were treated
with 1 pM DNA-PK-specific inhibitor NU7441, and the cells
were harvested for RNA extraction. Then, the cDNA libraries
were sequenced on the Pacific Biosciences (PacBio) SMRT
platform. We also generated a short-read RNA-seq data set
collected from the same RNA samples.

Next, the Iso-seq pipeline was used to process the raw
downstream data with the official PacBio software package
SMRTlink (Figure 1A and Methods). Then, the polished third-
generation reads were corrected by high-quality second-
generation data with LoRDEC software (20). To make a
preliminary assessment of the DNA-PK dependent long-read
transcriptome, we mapped the dataset to the reference genome
using GMAP (Genomic Mapping and Alignment Program). The
density of total mapped transcripts mapped to individual
chromosomes (by positive and negative strands) on the
genome was counted (Figure 1B). 19469 and 42125 transcripts
were successfully mapped to the reference genome for the DMSO
and NU7441 treated groups, respectively. Only around 1.5% of
the dataset was unmapped (Figure 1C), indicating the high
quality of the dataset. We also counted different depths of full-
length transcripts and the number of genes in their maps for
saturation curve analysis. The results indicated that the amount
of sequencing data is sufficient for subsequent analysis
(Figure 1D, E).

Functional Characterization of the Long-
Read Data

To obtain comprehensive annotation information, the transcripts
unmapped to the reference genome, novel genes and the transcript
isoforms were annotated by seven databases (NR, Non-Redundant
Protein Database; NT, NCBI GenBank, EMBL and DDBJ databases;
Pfam; KOG/cog, Cluster of Orthologous Groups of proteins;
Swissprot; KEGG, Kyoto Encyclopedia of Genes and Genomes;
and GO, Gene Ontology). The numbers of transcripts successfully
annotated for the DMSO and NU7441 groups are summarized in
Figures 2A-C. The results indicated that NU7441 treatment elicited
significant transcriptome changes.

We are particularly interested in the functional annotations of
novel genes after NU7441 treatment. According to the mapping
results between the transcript and the reference genome, the
reads compared to the unannotated region of the reference
genome GTF file are defined as a novel gene. Based on the GO
database, novel genes involved in biological adhesion, cell killing,
immune system processes, icomotion, extracellular region, and
metallochaperone activity are increased in the NU7441 treated
transcriptome (Figure 2D). Based on the KEGG annotation,
novel genes involved in cellular community, cellular motility,
membrane transporter, replication and repair, infectious disease,
immune diseases, endocrine and metabolic diseases, drug
resistance, glycan biosynthesis and metabolism, nervous
system, excretory system, digestive system, and aging are
increased in the NU7441 treated transcriptome (Figure 2E).

Transcriptome Structure Analysis and
Alternative Splicing Profiling in the Long-
Read Data
Circos was used to visualize the transcriptome structure before
and after DNA-PK inactivation (Figure 3A). From outside to
inside, different circus represented chromosome sequence;
alternative splicing loci (stacked bar chart with different colors
for different variable splice types; the NU7741 treated cells
showed 60.9% exon skipping compared with 66.1% of control
cells); alternative polyadenylation loci; the distribution of new
transcripts; the closer to red, the higher the density; novel gene
distribution, the closer to red, the higher the density; IncRNA
density distribution; gene fusions, purple line (same), yellow line
(different) genes on chromosomes fused. Based on the Circos
analysis, it is clearly seen that NU7441 treatment induced a
significant increase in new transcripts and novel gene
distribution. Meanwhile, 7 gene fusions were identified,
possibly due to transcription-mediated splicing (21).
Alternative splicing is an important mechanism for regulating
gene expression and generating proteomic diversity (22). In a
previous study, we have shown that the inactivation of DNA-PK
activity regulates CD44 alternative splicing (19). In the long-read
data, we attempted to gain an alternative splicing landscape in
DNA-PK inactivation cells. The transcriptome data were processed
using the SUPPA software (23). The results showed that more
genes had alternative splicing events in the NU7441 treated cells
with an increasing trend in AL (alternative last exon), MX
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FIGURE 1 | The long-read sequencing flow chart and long-read data characteristics. (A) The experimental design and the data processing pipeline of the long-read
sequencing. (B, D) The chromosomal distribution of sequencing reads between control cells and NU7441 treated cells. (C) Summary of the reads mapped to the
reference genome. (E) The number of genes covered by the long-read sequencing data between control cells and NU7441-treated cells.

Differential Gene Analysis in

Short-Read Data

To gain an insight of the differential genes based on expression
level between control cells and DNA-PK inhibited cells, the
short-read data were analyzed. As shown in the volcano plot,
212 genes were upregulated and 252 genes were downregulated

(mutually exclusive exon), and IR (intron retention), the latter
emerging as a promising cancer treatment target (Figure 3B) (24).

Next, we used exon-specific PCR to validate several splicing
events detected in the long-read data. The PCR primers are
shown schematically (Figure 3C; see Supplemental Table S1).
The following events detected in long-read data were confirmed

by PCR: skipped exon (AGO3), mutually exclusive exon
(ACTN4), retained intron (GRIK2), the alternative first exon
(HK2), and alternative last exon (POMI21). As detected in the
long-read data for these examples, the splice site usage seen by
PCR differs in untreated and DNA-PK inactivated cells.
Therefore, our approach to identifying novel isoforms of
transcripts in DNA-PK inactivated cells replenishes the current
understanding of DNA-PK function.

after NU7441 treatment (Figure 4A). Differentially and co-
expressed genes were shown as Venn Diagrams (Figure 4B). A
total of 16,999 genes were shared between the control cells and
NU7441 treated cells. A total of 821 genes were expressed and
777 genes were differentially expressed between control cells
and the NU7441-treated cells. Pathway enrichment analysis
indicated that chemokine signaling pathways and metabolic
pathways were enriched after DNA-PK inhibition (Figure 4C).

Frontiers in Oncology | www.frontiersin.org

August 2022 | Volume 12 | Article 941638


https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles

Song et al.

Long-Read Sequencing of DNA-PK-Inactivated Cells

A B *kk
S 600 i ‘g 5007
8 =1 DMSO S = DMSO
o o
2 = NU7441 < 4004 = NU7441
s 3
= 400+ Z
5 = 300
< 3
E €
> =}
= 2 200
_5 200 s
= o
.g T 100
£ 2
< S o
0- < 0
DMSO NU7441 DMSO NU7441
C
wxk
20000 = DMSO DMSO NU7441
[}
0,
5 = NU7441 2.54% 4.14%
5 15000 ) i
g g 3
= o 38.33%
o] 40.61% g
Q 56.85% (6611)
£ 10000 (3501) 501 57.53%
2 (9923)
<
9]
= 5000
S Isoform of know genes
g Novel isoform of know genes
< 0- Isoform of novel genes
DMSO NU7441
D E DMSO NU7441
! ¢ Itiellu[l_al_r1 communi(yv
cell motil
" DMSO MO
1]
é Biological process Cellular component Molecular Function s ¢ N
5 ! membréne transporter
3
: I I ;
=] 1 X o
t Replication and repair
4 1 ¥
I. _l _._I__I-I II.I-IIIII I-_-__- ]
8 i
5 NU7441 ' Infectious diseases: bacteria
o) 1 Immune diseases o
‘s — ¢ Endocrine and metabolic diseases
5 I I ; ;Prug resistance: Antineoplastic
=1 " J
; il
3 | el L LI __um )
== NEERRARDDENN R =EC EEREE
56 NG CNNDDDRD SN ED B GO ) 51}
28 §2S8L88882E55E SaoRarEanaRaozEs, 2 |
£3= SONEQOOOO0S0ECO ZOSESINGOGEE>S ! 8 1
§PEgacogganascagendn S558fnsnRas = - . : .
20588 £8598 500"E  SORERSCE-G5 8 ! ‘ Glycan biosynthesis and metabolism
88 535 § 2% Ze 2 853 95 o223 25 | ]
6 6=0 ® X 3 e 883 ©8 &So6Q Oa
8o c8E 7 %: gg s 850 SE ©0:-0 2 =) 1 i
Ss £ 8¢ £5aas 28 5 IR @ £ 5 58 " .
=] c . a7 SOE 2 £ 05
2 8¢5 Tozess o & S5 & og g g
8 P oL 2 fo s g
S £ SESSS £ 88 5 ©385%c ‘ o
'2 3 %% 2 =2z ‘;,,’%_ *Nervous system
g ES e E-‘é § 0 'Excretory system
g & 22 ° E ! , Digestive system
] 5 § = ! ¢ aging
3 &8 2 LI s T 1

FIGURE 2 | Annotations of the long-read sequencing data. (A) Annotations of the unmapped transcripts in control cells and NU7441-treated cells (p <0.001). (B)
Annotations of the novel genes in control cells and NU7441-treated cells (o <0.001). (C) Annotations of the isoforms in control cells and NU7441-treated cells in (p <0.001).
(D) GO analysis of novel genes identified in control cells and NU7441-treated cells. (E) KEGG analysis of novel genes identified in control cells and NU7441-treated cells.

DISCUSSION

Here, our findings illustrate that DNA-PK has a critical impact
on global transcription in mammalian cells. Through long-read
sequencing technology, many more transcripts were discovered,
including novel genes, novel isoforms, and novel IncRNAs. Our
discoveries will shed light on the understanding of cancer
phenotypes associated with DNA-PK, such as tumor

progression and unfavorable prognosis in patients with high
DNA-PK expression (17, 18, 25). It will also facilitate the
depiction of potential underlying mechanisms associated with
DNA-PK and finally illuminate the future targeting of DNA-PK
in human malignancies.

Based on our findings, DNA-PK kinase activity is essential
for the global transcriptome landscape. It is known that DNA-
PK is a holoenzyme composed of a heterodimer of Ku70/Ku80
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FIGURE 3 | Transcriptome structure analysis and alternative splicing profiling in the long-read data. (A) The circus display of chromosome sequence; alternative
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summarized. The percentage of different splicing patterns was also shown in the pie chart. (C) Validation of the alternative splicing events in long-read data. Different
splicing events for AGO3, ACTN4, GRIK2, HK2, and POM121 were validated by gPCR.

and DNA-PKcs. Posttranslational modifications of DNA-PKcs,
including phosphorylation, play important roles in DNA-PK
activation or kinase activity (3, 26). How precisely DNA-PKcs
is activated, especially during the transcription process, is still
mysterious. Ku70/Ku80 and DNA ends in DNA repair provide
the prerequisites for DNA-PKcs activation. However,

increasing pieces of evidence implicate the Ku-independent
process. It would be interesting to elucidate other co-factors
that assist DNA-PK or DNA-PKcs activation during the
transcription process, such as transcription-coupled DNA
repair machinery. It is also feasible to identify DNA-PKcs
phosphorylation-dependent interaction factors in
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transcription. The temporospatial distribution of DNA-PK or
DNA-PKcs containing a transcription body should elaborate
on the function of DNA-PK.

Furthermore, cancer context-dependent mechanisms of
DNA-PK activity are also worthy of investigation. Specific co-
factors involved in DNA-PKcs-mediated transcriptional
regulation in cancer cells and the specific local chromatin
structure required for DNA-PKcs-dependent transcription
need to be elucidated. Though our long-read sequencing data
identified numerous novel transcripts, how DNA-PKcs dictates
the selection of the transcriptome is unknown. Further
technologies such as ChIP-Seq and 3C chromatin capture are
needed to investigate the details of the chromatin context of
DNA-PK regulated transcription. Why can DNA-PK inhibition
cause such a large number of transcriptions? DNA-PK activity
may exert a suppressive role on RNA Pol II, or the DNA-PK
function in DNA replication repair may suppress the
transcription. It needs further validation. Alternatively, the
roles of DNA-PK in DNA repair and transcription may be
different. Therefore, separate targeting of the different roles of

DNA-PK by inhibitors may provide treatment tactics for cancer.
Furthermore, although the DNA-PK inhibitors inhibit the kinase
activity of the protein, little is known about kinase-independent
functions of DNA-PKcs that may affect therapeutic efficacy in
targeting malignancy.

The functional consequences of such a novel transcriptome
induced by DNA-PK inhibition are also interesting projects to
work on. Though preliminary GO and KEGG analysis have been
performed, the novel genes and novel IncRNAs in the DNA-PK
network and critical for DNA-PK kinase activity and function in
cells are to be elucidated. Furthermore, the DNA-PK mutations
identified in many cancer types should also be considered in the
context of transcriptional regulation and cancer progression. It
will be critical to confirm whether modulators and/or substrates
of DNA-PKcs change as cancers progress and mutate. It will
affect the design of specific therapeutic strategies targeting
specific stages of disease.

In summary, DNA-PK plays a pleiotropic role impacting
human malignant phenotypes. Each new advance may define a
novel therapeutic strategy for any number of cancer types.
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