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SUMMARY

Modulation of neuronal thresholds is ubiquitous in the brain. Phenomena such as figure-ground 

segmentation, motion detection, stimulus anticipation, and shifts in attention all involve changes 

in a neuron’s threshold based on signals from larger scales than its primary inputs. However, this 

modulation reduces the accuracy with which neurons can represent their primary inputs, creating 

a mystery as to why threshold modulation is so widespread in the brain. We find that modulation 

is less detrimental than other forms of neuronal variability and that its negative effects can be 

nearly completely eliminated if modulation is applied selectively to sparsely responding neurons 

in a circuit by inhibitory neurons. We verify these predictions in the retina where we find that 

inhibitory amacrine cells selectively deliver modulation signals to sparsely responding ganglion 

cell types. Our findings elucidate the central role that inhibitory neurons play in maximizing 

information transmission under modulation.
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In brief

Modulation of neuronal thresholds is ubiquitous in the brain but reduces the accuracy of neural 

signaling. Hsu et al. show that the negative impact of threshold modulation can be almost 

completely eliminated when modulation is not delivered uniformly to all neurons but only to a 

subset and via inhibitory neurons.

INTRODUCTION

The need to use efficient representations within the nervous system currently provides one 

of the leading frameworks for understanding neural computation. This framework accounts 

for a number of different properties of neural responses (Bialek, 2012; Atick and Redlich, 

1992; Pitkow and Meister, 2012; Haft and van Hemmen, 1998; Borghuis et al., 2008; Liu 

et al., 2009; Doi et al., 2012; Zhaoping, 2006; Garrigan et al., 2010; Gjorgjieva et al., 

2014; Balasubramanian and Sterling, 2009; Ratliff et al., 2010; Laughlin, 1981; Kastner et 

al., 2015; Brinkman et al., 2016), including optimal ways for neural circuits to adapt to 

statistically consistent changes in the input statistics (Bialek, 2012; Fairhall et al., 2001; 

Simmons et al., 2013; Brenner et al., 2000a). However, it is also important to consider 

the case where information transmission occurs in the presence of fluctuations in input 

statistics that might not be strong enough, or persist for a long enough time, to trigger 

full-scale adaptation. These types of fluctuations are nevertheless important to take into 

account because they can evoke and/or represent modulatory influences from other circuits, 
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as is ubiquitous in the brain. For example, modulatory influences include contextual or 

top-down signals about input properties on scales larger than that of the neuron’s primary 

receptive field, which closely follows the neuron’s linear or the so-called classic receptive 

field (Vinje and Gallant, 2000). Such contextual effects underlie figure-ground segmentation, 

motion selectivity, motion reversal or anticipation, and other predictive effects in the retina 

the retina (Gollisch and Meister, 2010; Kastner and Baccus, 2013, 2014). These effects 

are also prominent in the cortex where they include cross-orientation suppression (Morrone 

et al., 1982; Nishimoto et al., 2006) and other non-classic receptive field effects in visual 

(Roelfsema, 2006; Vinje and Gallant, 2000) and auditory (Bar-Yosef and Nelken, 2007) 

cortices. Threshold modulation can also result from the direct action of neuromodulatory 

circuits (Aston-Jones and Cohen, 2005) that represent changes in arousal and attention (Kato 

et al., 2012; Luck et al., 1997; Goris et al., 2014). The ubiquity of modulatory signals makes 

it essential to consider how they may influence the properties of maximally informative 

neural circuits.

It turns out that modulation has surprisingly non-trivial effects on information transmission. 

On one hand, for a sensory circuit, modulation of neuronal threshold that is independent of 

the primary sensory input is bound to decrease the information that this circuit can transmit 

about that primary input. On the other hand, we will show that modulation always decreases 

information less than an equivalent increase in the primary noise. We further show that 

the negative impacts of modulation can be nearly eliminated if it is directed to a subset of 

sparsely responding neurons in a coupled neural circuit. In this way, the neural circuit can 

take advantage of the flexibility afforded by modulation of its response properties without 

suffering a reduction in information transmission.

We test predictions of this theory on responses of pairs of retinal ganglion cells (RGCs) 

that encode the same temporal fluctuations of light intensities but with different thresholds 

(Kastner and Baccus, 2011). These cells have been termed adapting and sensitizing based 

on their short-term plasticity, but for the present analyses in steady-state conditions, the 

main differences between these cell types are that adapting cells have higher thresholds 

and larger noise levels than sensitizing cells. Previous maximally informative solutions for 

pairs of neurons accounted for many aspects of these neurons’ responses, including why 

these two separate cell types are observed among Off neurons but not among On neurons 

(Kastner et al., 2015). However, some noticeable quantitative differences between theory 

and experimental measurements were left unexplained (Kastner et al., 2015). Recent studies 

have pointed out that incorporating multiple noise sources could affect the predictions for 

threshold differences between cell types (Brinkman et al., 2016). Therefore, we set out to 

determine whether modulatory effects on a cell’s threshold would influence the theoretical 

predictions, bringing them into better agreement with experimental measurements. After 

testing a number of scenarios, we found that a model where a secondary pathway modulated 

the threshold of the primary pathway for each cell type (Figure 1) could quantitatively 

account for the measurements of threshold differences between cell types, across several 

different contrasts. We envision that this threshold modulation occurs even for a fixed 

contrast, and in the case of the retina derives from contextual modulation from inputs on 

scales larger than neuronal receptive field center, or for cortical neurons, the classic receptive 

field (Vinje and Gallant, 2002).
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Fitting the maximally informative model with threshold modulation to the retinal data also 

made it possible to separate the observed neural variability into the contributions due to 

threshold modulation and noise in the primary pathway. We found that higher noise levels 

of adapting cells can be fully explained by larger threshold modulation experienced by these 

neurons compared to those experienced by sensitizing cells; the primary pathway noise 

levels were similar for both cell types. Mechanistically, threshold modulation in adapting 

cells could be implemented as additional input from inhibitory amacrine cells. To confirm 

this prediction, we then directly recorded from and manipulated sustained Off amacrine 

cells. These experiments revealed a more reliable distance-dependent input from amacrine 

cells to adapting cells compared to sensitizing cells, consistent with the scheme where 

amacrine cells modulate the thresholds of adapting cells.

The theoretical results are obtained here using basic concepts of information theory. 

Therefore, they should apply not only in the retina but also in the cortex and other 

neural circuits. The results highlight the importance of using inhibitory neurons to deliver 

modulatory signals into a circuit, which can provide a new framework for understanding the 

function of inhibitory neurons in the brain.

RESULTS

Impact of threshold modulation on information transmission

To understand information transmission in the presence of threshold modulation, we 

modeled responses of individual neurons as binary, 1 or 0, corresponding to the presence 

or absence of a spike in a small time bin, respectively. Spiking probability is modeled as a 

threshold crossing event, with a threshold (μ) and a noise level (ν), which determines the 

variation in neural responses for a given input value. When parameter ν is small, there is 

only a small range of stimuli for which neuronal responses varies strongly from trial-to-trial 

with a probability ~0.5. For inputs that are either much greater or smaller than the threshold 

μ, the spike probability is nearly certain, with values close to either 1 or 0, cf. Figure 1. 

When the parameter ν is large, the range of stimuli with uncertain neuronal responses is 

large. The increase in the uncertainty in neural responses with ν can be quantified using 

a quantity known as noise entropy (Brenner et al., 2000b), which represents the average 

uncertainty in the neural responses across different stimuli.

This model of neural responses yields a saturating nonlinearity shown in Figure 1 and 

described by the following equation:

p r = 1 ∣ x, μ, νeff  = 1
2 1 + erf x − μ

2νeff 
. (Equation 1)

In this equation, we write νeff instead of ν to emphasize the fact that the observed noise 

in neural responses represents actually a joint effect of multiple different types of noise 

(Brinkman et al., 2016). Here, we will focus on two types of noise: the “primary” noise 

ν that arises in the direct afferent circuitry for each cell, and the secondary source of 

variability that arises from the modulation of the threshold μ of the primary pathway and 
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acts on longer timescales. On short timescales, similar to those of the spike generating 

process, the threshold value does not vary, and variability in neural responses is described 

by ν only. On long timescales (~ seconds), which are necessary to measure the neural 

input-output function, its width is described by

νeff = ν2 + σμ2 . (Equation 2)

We note that, in principle, noise ν in the primary pathway can itself also be subject to 

modulation, not just the threshold μ. This modulation would also increase νeff. However, 

in practice, we found that variation in ν was much weaker (Figure 1B). Therefore, in what 

follows, we focus on the effect of modulation on changes in the threshold.

To analyze the impact of threshold modulation on information transmission, we compute 

the Shannon mutual information in two steps. In the first step, mutual information between 

stimuli and neural responses is computed on short timescales, i.e., for a fixed threshold μ, as 

a difference between the total response entropy S[p(r)] of neural responses and the “noise” 

entropy S[p(r|x)] in the neural response:

Iwithout modulation = I(X; R ∣ M = μ) = S[p(r)] − S[p(r ∣ x)]

= ∑
r

p(r)log2[p(r)] − ∑
r
∫ dxp(r, x)log2p(r ∣ x) (Equation 3)

= ∑
r
∫ dx p(r, x)log2

p(r ∣ x)
p(r) , (Equation 4)

where x is the filtered stimulus according to the spatiotemporal receptive field of the neuron, 

and r ∈ {0, 1} represents the response of a single neuron before the incorporation of the 

modulation in the secondary pathway (σμ = 0, νeff = ν). At this step, the mutual information 

quantifies the impact of the primary noise (without the input from the modulatory pathway). 

In the second step, we integrate this mutual information over threshold positions μ to take 

into account the impact of variability from the modulatory pathway:

Ilong‐term = ∫ dμ I(X; R ∣ M = μ)p(μ) . (Equation 5)

Here, p(μ) describes the distribution of threshold values.

The information in Equation 5 is actually the so-called conditional mutual information 

(Cover and Thomas, 1991) I(X; R|M) between the input and the responses of the 

primary pathway, conditional on the signals μ from the modulatory pathway. As such, this 

information differs from the full information provided jointly by modulatory and primary 

pathways only by the term I(X; M): I(X; R|M) = I(X; {R, M}) − I(X; M), where I(X; M) 
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represents information provided solely by the modulatory pathway. Because I(X; M) does 

not depend on the parameters of the nonlinearity of the primary pathway, it can be dropped 

when searching for the maximally informative properties of the primary pathway. Thus, 

one can find the maximally informative setting for the primary pathway and the optimal 

modulation by maximizing information from Equation 5. These arguments generalize to the 

case of multiple neurons where one evaluates information between inputs X to the primary 

pathway of each neuron and the vector of responses across the neural population R = {ri}, ri 

∈ {0, 1}.

We start by considering the impact of threshold modulation on single neurons. Here, 

modulation always decreases information transmission (Figure 2A). However, for an 

equivalent amount of variance, modulation decreases information less than does primary 

noise. Therefore, if the system has a choice between reducing the primary noise or reducing 

modulation, it is always preferable to reduce the primary noise first, cf. Figure 2B.

The effect becomes more interesting in groups of neurons, starting with pairs of neurons. 

Here, we find that if modulation is directed to the neuron with the lowest firing rate in the 

group, then the negative effect of modulation is almost completely removed, cf. Figures 3A 

and 3B. In these calculations, the firing rates were assigned to maximize information while 

constraining the average spike rate across the neurons (Figure S2). We find that one can 

apply much larger modulation to a single neuron than the modulation distributed to many 

neurons and still have less of a decrease in information. Selective application of modulation 

also maximized information in groups of three neurons (Figures 3C and 3D). With three 

neurons, information was maximally preserved under modulation when it was applied to 

the neuron with the smallest spike rate. The most detrimental effects of modulation were 

observed when modulation was applied to the neuron with the largest spike rate. This was 

followed by progressively better results if modulation was applied equally to all neurons or 

to the neurons with the intermediate spiking rate. However, these intermediate cases still led 

to worse performances compared to the case where modulation is directed to the neuron with 

the lowest spike rate (Figure 3D). The degree of protection from modulation-induced loss 

is higher for the three-neuron circuit compared with a two-neuron circuit (Figure 3D). This 

suggests that the benefits of including a sparsely responding neurons can be larger in large 

groups of neurons.

We also examined the case where neurons have the same thresholds and spike rates, as can 

be optimal for high values of the primary noise (Kastner et al., 2015). In this case, we found 

that the optimal ways to apply modulation differed depending on whether same-threshold 

neurons had small or large spike rates, cf. Figure S3. In the case where neurons had small 

rates, it was optimal to apply modulation equally to both of them. In the case where neurons 

had large response rates, it was optimal to direct modulation to one of the neurons than split 

it equally to both neurons. In this case, the application of modulation lowered the spike rate 

in the target neurons. The implication from these results therefore is that if a large neural 

circuit contains neurons of the same type that have small spike rates, such as, for example, 

the adapting cells in the retina, then modulation should be applied selectively to the class of 

neurons with sparse responses and equally within this class of neurons.

Hsu et al. Page 6

Cell Rep. Author manuscript; available in PMC 2022 February 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Why is it beneficial to direct modulation to the neuron with the lowest spike rate? An 

intuitive explanation for this phenomenon can be obtained by considering the shape of the 

information function for a single neuron with respect to its threshold (Figure 4A). This 

function is concave for small thresholds and convex for large thresholds. This is important 

because concave functions decrease their value upon averaging of their inputs, as occurs as a 

result of threshold modulation, while convex functions increase their value. This means that 

neurons with small thresholds, i.e., high spike rates, will suffer a decrease in information 

transmission upon modulation, cf. Figure 4B. In contrast, neurons with large thresholds, 

i.e., small spike rates, will increase information transmission upon threshold modulation. 

The lower the spike rate is, the greater the increase in the information transmission with 

modulation. This explains why directing modulation to the neuron with the lowest firing rate 

is more beneficial than directing modulation to neurons with higher firing rate. As a related 

point, one can also notice in Figure 3B that the protection against modulation-induced loss 

in information transmission decreases with the average spike rate.

At this point, it is important to clarify that this increase in information transmission with 

modulation is accompanied by an increase in the spike rate. Unlike information, the 

firing rate function is convex for all values of its argument (Figure 4A). As a result, 

modulation always increases the spike rate (Figure 4C). The increase in the information 

from modulation is less than it would have been if the rate was simply increased by lowering 

the threshold, without the modulation. As a result, the information versus rate curve in 

the presence of modulation has the same shape as in the absence of modulation, just with 

reduced information for a given rate. Thus, these results are consistent with those in Figure 

2A showing modulation decreases information. It is just that the increase in information 

upon modulation can nearly completely match the increase that would have been observed if 

the firing rate was increased without modulation.

The conclusions from the theoretical analyses of information transmission in the presence 

of threshold modulation indicate that modulation should not be equally distributed to all 

neurons in the target circuit. Instead, it should be directed to the neuron with the lowest 

spike rate with inhibitory signals. The use of inhibitory signals ensures that the rank ordering 

of neurons does not change under modulation, and the neuron that receives modulation 

does not get its spike rate raised. The theoretical analyses also illustrate the need to use 

neurons with diverse spike rates, because the average spike rate in the circuit sets the upper 

limit on the amount of information that this group of neurons can transmit, with or without 

modulation. To have the capability to transmit large amounts of information, the circuit 

has to include neurons with large spike rates. Including neurons with small response rates 

and directing modulation to them helps maintain information transmission near its maximal 

levels in the presence of modulation.

Retinal input-output functions are maximally informative under threshold modulation

We now test these predictions using responses of pairs of cells in the retina that differ in 

their average spike rates. The adapting and sensitizing cells are two cell types that represent 

the same temporal pattern of light intensity modulation but have different thresholds. Our 

first analysis is to fit the maximally informative model with modulation to the responses 
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of pairs of adapting/sensitizing cells. The fit was made while requiring that the effective 

noise and the average spike rate for the pair matched experimental measurements (see STAR 

Methods for details). The fit yields estimates for threshold modulation and primary noise for 

each neuron in the pair as well as an estimate for the difference in their thresholds. These 

estimates can then be compared to direct experimental measurements of these variables.

We find that the inferred amount of noise in the primary pathway was similar for 

both adapting and sensitizing cells (Figure 5A). However, the threshold modulation was 

substantial for adapting cells and very close to zero for the sensitizing cells (Figure 5A). 

The fitting results were consistent across cell pairs (Table S1). Thus, the differences in the 

effective noise that are observed between these two cell types (Kastner and Baccus, 2011) 

are due to differences in threshold modulation. We also note that threshold modulation was 

small in sensitizing cell even relatively to their thresholds (the modulation was ~100 times 

smaller for sensitizing cells compared to adapting cells, whereas their thresholds are only 

approximately half as small as those of adapting cells).

The threshold modulation values predicted by the maximally informative model with 

modulation can be compared with direct experimental estimates of their threshold 

modulation. To compute the amount of threshold modulation that is observed 

experimentally, we estimated neuronal nonlinearities from shorter data subsets (1/4 to 1/6 

compared to the full dataset). Each nonlinearity was fit with a logistic function to determine 

its threshold value. We find that the observed variation in thresholds for a given adapting 

cell matches those estimated using the maximally informative model (Figure 5B, paired 

non-parametric t test p = 0.73). (This analysis was only carried out for adapting cells, 

because threshold modulation was negligible in sensitizing cells.) Those adapting cells that 

had larger variance in thresholds across trials also had larger values of threshold modulation 

as indicated by fitting the maximally informative model to the full set of their response 

(the correlation was statistically significant, with p = 0.015, Figure 5B). These analyses add 

credence to the use of the maximally informative model with modulation as a method for 

separating the noise component that is due to threshold modulation. They also indicate that 

the observed threshold modulation in adapting cells is maximally informative given their 

other parameters, such as the primary noise and firing rate.

Another prediction that one can obtain from the maximally informative model with 

modulation pertains to the differences in the thresholds between adapting and sensitizing 

cells. Previous predictions for the threshold differences obtained for pairs of neurons without 

taking modulation into account yielded values that were systematically larger than those 

observed experimentally (Kastner et al., 2015), replotted in Figure 6 with a black line. 

We find that the maximally informative model with modulation provided more accurate 

predictions for thresholds differences between pairs of neurons than the model with no 

modulation, cf. Figure 6. Statistically, the threshold difference (in units of contrast) between 

adapting and sensitizing cells were consistent between the average values across contrasts 

for each cell pairs from the maximally informative model and experimental measurements 

(paired non-parametric t test p = 0.14). By comparison, the model with no modulation 

yielded systematically greater threshold differences than is observed experimentally (black 

line in Figure 6). We note that experimental data points show larger residual variation 
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across different contrasts than our model indicates. The reason for this is that, in the model, 

noise components and threshold modulation for adapting cells were constrained to change 

linearly with contrast (to reduce the number of fitted parameters, see STAR Methods). 

Thus, the model was not meant to predict residual variation across contrasts that remains 

after rescaling inputs by their contrast. Other than this variability, the predictions of the 

maximally informative model with modulation for threshold differences between adapting 

and sensitizing cells are fully consistent with experimental measurements (p > 0.14, Figure 

6B).

Amacrine cells as a source of threshold modulation for adapting cells

One of the key predictions of the theory is that modulation should be directed to neurons 

with low spike rates. However, as we have seen above, modulation increases the spike rate 

(Figure 4C), albeit by moderate amounts. One way to minimize the risk of altering the rank 

ordering of neurons in terms of their spike rate is to deliver it with inhibitory neurons. In 

this way, the neuron that is undergoing modulation will automatically have its threshold 

raised and spike rate lowered. This is consistent with our observations in the retina where 

adapting neurons, which undergo modulation, also have larger thresholds and smaller spike 

rates. In the retina, inhibitory amacrine cells could be the source of that input (Figure 

7A). If amacrine cells provide stronger inputs to adapting cells than the sensitizing cells, 

then this would simultaneously explain why the thresholds of adapting cells are higher and 

more variable than those of sensitizing cells. The fact that both the mean threshold and its 

modulation varies approximately linearly with contrast is also consistent with this wiring 

scheme. Inputs to and from amacrine cells just need to be scaled by contrast just like inputs 

within the primary pathway for the adapting and sensitizing cells.

We tested this hypothesis by performing a separate set of experiments to analyze how the 

hyperpolarization and depolarization of sustained Off-type amacrine cells by intracellular 

current injection affected responses of nearby adapting and sensitizing cells recorded 

simultaneously with a multielectrode array (see STAR Methods and Figure 7). The setup in 

these experiments was similar to our recent study (Kastner et al., 2019) that focused on the 

dynamics of sensitizing cells but included much larger steps in stimulus amplitude to probe 

responses of both adapting and sensitizing neurons. We analyzed the change in the mean 

threshold of adapting/sensitizing neurons between hyperpolarization and depolarization of 

the amacrine cell. When an amacrine cell is hyperpolarized (depolarized), this decreases 

(increases) its inhibition onto neurons it is directly connected to. Although we do not assume 

that there are direct connections between amacrine cells and the ganglion cells we recorded 

(the connection could be polysynaptic, through circuitry involving bipolar or other amacrine 

cells), this approach measures the functional effect of individual amacrine cells. We find 

that inputs from amacrine cells have a much stronger impact on the thresholds of nearby 

adapting cells compared to sensitizing cells (p = 0.04, for cells within 0.2 mm from the 

amacrine cell RF), cf. Figure 7C. Here, we also plot the change in the threshold as a function 

of distance between the receptive fields (RFs) of the amacrine cell (that was subjected to 

hyperpolarization/depolarization) and the adapting/sensitizing cell whose nonlinearity was 

measured to estimate its threshold. In the case of adapting cells, there was a clear and 

statistically significant dependence of the amount of threshold shift as a function of the 
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distance to the amacrine cell RF center (p = 8×10−5 F-test compared with null hypothesis 

of no dependence on distance). The dependence was not statistically significant in the case 

of sensitizing cells (p = 0.9). Thus, these data support the hypothesis that amacrine cells 

exert stronger influence on the thresholds of adapting neurons than on the threshold of 

sensitizing neurons, and that the larger thresholds of adapting ganglion cells arise as a result 

of inhibition from the amacrine cells, and that this inhibition also brings with itself stronger 

threshold modulation.

DISCUSSION

In this work, we analyzed information transmission in the presence of threshold modulation. 

There are two main conclusions. The first conclusion is that modulation should not be 

equally applied to all neurons in the circuit. Instead, it should be directed to select neurons, 

preferably those with the low spike rates in the circuit. The second conclusion describes the 

central role that inhibitory neurons play in delivering modulatory signals into the circuit. 

These conclusions are obtained from basic analyses using information theory and therefore 

should apply to all neural circuits. We now discuss the implications of these conclusions, 

with a focus on cortical circuits.

The first conclusion highlights the need to form circuits using neurons with different spike 

rates. The large number of sparsely firing neurons in the cortex have long presented a 

puzzling observation (Olshausen and Field, 2005). The chief explanation offered so far 

is that sparse responses arise because of metabolic constraints (Laughlin et al., 1998). 

However, one could have hypothetically used a smaller number of neurons with higher 

spike rates, if metabolic constraints were the leading cause for the sparseness of neural 

responses. The information-theoretic analyses in the presence of modulation offer a different 

explanation. Neural circuits need to have neurons with both high and low firing rates 

in order to transmit large amounts of information in the presence of modulation. High 

firing neurons make it possible to transmit large amount of information, whereas neurons 

with small spike rates protect against loss of information transmission in the presence of 

modulation.

The second conclusion describes a rather unexpected role for inhibitory neurons as 

intermediaries for delivering modulation signals. This setup helps to ensure that low-spiking 

neurons that receive modulation remain in this regime under varying modulation levels. We 

find support for this prediction in the retina where inhibitory amacrine cells send modulatory 

signals to sparsely spiking adapting cells. If modulation were delivered to adapting cells 

via excitatory pathway, then this would risk making their spike rate greater than that of 

sensitizing cells and losing protection against negative effects of threshold modulation on 

information transmission.

The amacrine cells studied here were sustained Off amacrine cells, which have been shown 

to be involved in various adaptive functions in the retinal circuit. They have been shown to 

act through disinhibition (Manu and Baccus, 2011), they contribute to the classic receptive 

field surround in ganglion cells (Manu et al., 2017), and adaptation of their transmission 

mediates the phenomenon of sensitization (Kastner et al., 2019). The same amacrine cells 
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both establish the threshold of the nonlinearity of ganglion cells during steady state (Figure 

7), and their dynamics lead to the change in threshold that creates sensitization.

The theory of modulation analyzed here can be implemented with both spiking and non-

spiking neurons. The sustained Off amacrine cells that we studied here experimentally 

are non-spiking, as are many amacrine cells in the salamander. However, elsewhere 

in the nervous system modulation is commonly delivered using spiking neurons. For 

example, most of the modulatory signals are delivered to cortical circuits via inhibitory 

neurons (Harris and Shepherd, 2015). This includes inhibitory neurons expressing the 

vasoactive intestinal peptide that are major recipients of neuromodulatory and context-

dependent inputs from higher-order cortical areas (Harris and Shepherd, 2015). Similarly, 

somatostatin-expressing inhibitory neurons use this neuro-peptide as a co-transmitter with 

GABA to modulate the activity of local neurons (Liguz-Lecznar et al., 2016). The slow 

action of neuro-peptides, such as somatostatin, conforms with our modeling framework 

where modulation changes neuronal threshold on slower timescales than those on which 

the primary activation pathway operates. We note also that all of the other inhibitory 

neurons, including parvalbumin-positive inhibitory neurons, are directly responsive to 

neuromodulators such as acetylcholine and serotonin (Yi et al., 2014). Furthermore, 

even when neuromodulators, such as acetylcholine, act directly on excitatory neurons, 

they exert first an inhibitory response (Dasari et al., 2017) in their target neurons. In 

addition to these post-synaptic mechanisms of threshold modulation, there are several 

known mechanisms that operate pre-synaptically (Debanne et al., 2013) and are based on 

inactivating hyperpolarizing channels. This includes inactivation of presynaptic K + channels 

and modulation of G-protein coupled receptors that produce tonic inhibition of transmitter 

release (Debanne et al., 2013) and hyper-polarization-induced recovery of Na channels 

from inactivation (Rama et al., 2015). Our theoretical results suggest that there might 

be fundamental information-theoric reasons why all of these different forms of threshold 

modulation engage hyperpolarization and inhibitory mechanisms.

Limitations of study

Analysis of information transmission in the presence of modulation was based on the 

separation of timescales, with threshold modulation having a much slower dynamics than the 

response dynamics of the primary pathway and its noise characteristics.

From a numerical perspective, computation of the mutual information in the presence 

of threshold modulation (Equation 5) represents a multidimensional integral with a 

dimensionality equal to the number of cells. We can numerically compute this integral 

for arbitrary modulation strength only for pairs of neurons. For more than two neurons, 

we approximate the integral using the perturbation method for small modulation values. 

However, to compute the higher-dimensional integral without approximation, one might 

need other algorithms to carry it out (e.g., Monte Carlo methods), which was not performed 

here.
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STAR★METHODS

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources and should be directed to 

and will be fulfilled by the Lead Contact, Tatyana Sharpee (sharpee@salk.edu).

Materials availability—This study did not generate new unique reagents.

Data and code availability—Data is available upon request.

METHOD DETAILS

Experimental preparation—We use a combination of new and previously published 

experimental data (Kastner and Baccus, 2011). Full details of the experimental procedures 

for measuring neural nonlinearities are provided in Kastner and Baccus (2011). Briefly, 

uniform field stimuli were drawn from a Gaussian distribution with constant mean intensity, 

M, of 10 mW=m2. Contrast is defined as σ = W/M, where W is the SD of the intensity 

distribution. Neurons were probed with flashes of nine different contrast values from 12% to 

36% in 3% intervals. The contrasts were randomly interleaved and repeated. Each contrast 

was presented, in total, for ≥600 s. For the calculation of the response functions, the first 10 

s of data in each contrast were not used to allow for a better estimation of the steady state.

Intracellular recording—Simultaneous intracellular and multielectrode recordings from 

the isolated intact salamander retina were performed as described (Manu and Baccus, 2011) 

but using stimuli with larger steps in visual contrast to fully probe both adapting and 

sensitizing nonlinearities. Sustained amacrine cells were distinguished from horizontal cells 

by their flash response and their spatiotemporal receptive fields, with horizontal cells lacking 

an inhibitory surround and being greater than 300 μm in diameter. For the intracellular 

recordings the stimulus comprised of randomly drawn contrasts with contrast amplitudes 

that ranges from 0 to 40% Michelson contrast units, where Michelson contrast is defined as 

(Imax − Imin)/(Imax + Imin). The flash amplitude varied randomly every 400 ms, the first 100 

ms the flash was greater than the mean, from 100 to 200 ms the flash was lower than the 

mean, and for the last 200 ms the flash was at the mean luminance level (cf. inset in Figure 

7B). Changing the distribution of amplitudes slower than the integration time of ganglion 

cells allowed for a rapid measurement of the ganglion cell response function without having 

to also measure the ganglion cell temporal filter (Brenner et al., 2000a). Synchronized to 

the visual stimulus, we injected from 100 to 300 ms, randomly interleaved, hyperpolarizing 

(−500 pA) or depolarizing (+ 500 pA) current pulses into the amacrine cell. The ganglion 

cell response function was calculated at the firing rate of the ganglion cell from 100 to 400 

ms of each contrast amplitude. This focused on the off response of the ganglion cell.

Maximally informative modulation model for two neurons—Here we begin by 

reviewing the main features of maximally informative solutions for two neurons obtained 

in the absence of threshold modulation (Kastner et al., 2015; McDonnell et al., 2006). The 

most prominent feature of the mutual information is a bifurcation that occurs when noise 

decreases below a certain, critical value (Figure S1). In the case where both neurons have 
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the same noise levels ν1 = ν2, a single peak at zero threshold difference splits into two 

symmetric peaks upon decreasing noise level. Each of these peaks represents equivalent 

solutions obtained by exchanging neuronal indices. One of the peaks describes the case 

where μ1 > μ2 whereas the other describes the case where μ1 < μ2. When neurons have 

different noise values ν1 and ν2, the peak with μ1 < μ2 becomes suboptimal if ν1 > ν2. 

Thus, the lower threshold neurons should have lower noise. This agrees with the intuition 

that a neuron which is more sensitive to small input fluctuations should have smaller noise. 

From the measurements of the average spike rate for the two neurons, one can predict 

the critical noise value (νc) below which one can expect to find neurons with different 

thresholds encoding the same filtered stimulus x. The critical noise value was indeed above 

the measured noise values for the adapting and sensitizing retinal ganglion cells (RGCs) 

(Kastner et al., 2015). In addition, one can make detailed predictions for the expected value 

μ1 − μ2 based on the measurements of other parameters ν1, ν2 and pspike, where pspike is the 

averaged total spiking probability

pspike  = ∑
i = 1

N = 2
p ri = 1 , (6)

p ri = ∫−∞
∞

dx p ri ∣ x p(x) .

Note that both the optimal threshold difference (μ1 − μ2) and critical noise (νc) depend on 

the average spike rate (pspike) for the cell pair. Therefore, to represent all retinal data (ν1, ν2, 

μ1 − μ2) on one coordinate frame that is universal across different pspike, we transformed the 

noise levels to a set of basis 
ν1 + ν2

2vc
,

ν1 − ν2
νc

 normalized by the the rate-dependent νc. Then, 

we rescaled each observed μ1 − μ2 (y axis) relative to its optimal prediction and spinodal 

point at 
ν1 + ν2

2νc
,

ν1 − ν2
νc

 (the black and the gray-dashed lines in Figure 6A), similar to the 

rescaling method provided in Ref. (Kastner et al., 2015). Here, theoretical predictions were 

in qualitative agreement with experimental measurements, but quantitatively the observed 

threshold differences between the adapting/sensitizing neuron pairs were systematically 

smaller than those predicted based on maximizing information (Figure 6A). We now show 

that taking into account threshold modulation brings theoretical predictions into agreement 

with experimental data.

To understand how threshold modulation affects maximally informative threshold positions, 

one may note that threshold modulation effectively smooths the information surface 

computed over long timescales (Figure S4). In the regime where the mutual information 

has two maxima, it has the effect of bringing the maxima closer to each other. Another effect 

that proved necessary to take into account is that noise in the primary pathway can be larger 

for the neuron that experiences smaller threshold modulation, leading to a smaller overall 

effective noise value for that neuron. In this case, the information transmitted matches the 

smaller (local) of the two maxima of the information. In other words, the model allows for 

the possibility that coordination of neural thresholds between neurons might not be able 
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to keep up with changes in input statistics for the circuit to match the properties of the 

global maximum of information. Instead, we observed that in some cases neural response 

properties match a local maximum of the information that required smaller adjustments in 

thresholds following the change in input statistics.

Taking both of these effects – threshold modulation and the possibility of local optimality 

– made it possible to account for the observed threshold differences between sensitizing 

and adapting cells. Each cell pair was probed with flashes of nine different contrasts, 

producing four experimental parameters of the neuronal nonlinearity (νeff,1, νeff,2, μ1, μ2) 

at each contrast. The maximally informative model also has six parameters (μ1, μ2, ν1, 

ν2, σμ,1, σμ,2). It can predict the difference μ1 − μ2 given a set of values for pspike, 

ν1, ν2, σμ,1, σμ,2; only three of these five parameters are constrained by the measured 

input-output functions. Thus, the model is under-constrained for one value of contrast. 

However, experiments indicate that once neurons are adapted to a given value of contrast, 

parameters of experimentally measured nonlinearities increase approximately as a linear 

function of contrast (Laughlin, 1981; Kastner and Baccus, 2011; Brenner et al., 2000a; 

Fairhall et al., 2001; Baccus and Meister, 2002). We use this observation to fit the maximally 

informative model across contrasts. The resulting model has eight parameters altogether: 

the linear and offset terms with respect to contrast for each of the four noise terms (ν1, 

ν2, σμ,1, σμ,2). Because position of information maxima are affected by changes in any 

of these parameters, the maximally informative model can therefore be used to predict 

27 independent measurements across contrasts (three values of μ1 − μ2, νeff,1, and νeff,2 

for each contrast). Supplemental Information contains additional details related to the 

formalism of maximizing information transmission in neural responses and the procedures 

for generating the figures.

Least-squared-fitting for parameters of the threshold modulation model from 
RGCs data—Base on the maximally informative modulation model, at a given pspike the 

solution to threshold difference between a pair of adapting and sensitizing cell, Δμmodel, is 

nonlinearly dependent on the magnitude of each noise source (νi, σμ,i). This allows us to 

separately estimate the magnitude of these noise components from the neural data.

The results of least-square fitting were also constrained to match the observed values for 

νeff,i. Seven pairs of adapting (index 1) and sensitizing cells (index 2) were probed by the 

nine different full range of contrasts (σ = 12% to 36% in 3% intervals (Kastner and Baccus, 

2011). The adaptive dynamics of noise level has been experimentally observed in many 

sensory systems (Laughlin, 1981; Kastner and Baccus, 2011; Brenner et al., 2000a; Fairhall 

et al., 2001; Baccus and Meister, 2002). Typically, the width of the transition region of 

the nonlinearity changes linearly with stimulus contrast (standard deviation). This adaptive 

process serves to optimize the information processing (Brenner et al., 2000a). Here, we 

assume that both the primary (νi) and the secondary (σμ,i) noise sources are approximately 

linearly dependent on contrast (σ),

νi(σ, α ) = α1
(i)σ + α2

(i), (7)
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σμ, i(σ, α ) = α3
(i)σ + α4

(i) . (8)

The effective noise also depends on contrast,

νeff,i, model(σ, α ) = νi2(σ, α ) + σμ, i2 (σ, α ), (9)

where i = 1; 2 denotes adapting or sensitizing neuron, respectively.

The parameters α = α1, 2, 3, 4
(i) ∈ R, ∀i = 1, 2  are to obtained by the least-squared-fitting for 

each cell pair while requiring them to also be consistent with νeff,i measurements from the 

shape of the nonlinearity. This model has eight parameters. Although formally it can be fit 

to data points for each individual cell pair, we reduced the number of parameters in half 

by focusing on the dominant term between the linear and contrast-independent terms for 

each type of noise. Initial fitting of the model indicated very small values for α2
(1), α2

(2), 

α4
(1), and α3

(2). The final fitting reported here was obtained by setting these terms to zero, 

i.e., that noise in the primary pathway scales linearly with contrast for both types of cells; 

threshold modulation was set to be linearly increasing with contrast for adapting cells and to 

be contrast-independent for sensitizing cells.

The observed nonlinearities for a pair of adapting (index 1) and sensitizing cells (index 2) 

determine the threshold separations (Δμ = μ1 − μ2) and the effective noise levels (νeff,1 or 2). 

For each cell pair, we aim to dissect two contributions to their νeff,1(or 2): the one from 

the intrinsic noise level (ν) and that due to threshold modulation (σμ), via minimizing the 

squared-error between the retinal data and the model predictions across the nine contrasts 

(σ = 12% to 36%(in 3% intervals). Given a contrast (σ) a data point of a cell pair, O (σ), 
consists of three components,

O (σ) = νeff, 1(σ), νeff, 2(σ), Δμ(σ) , (10)

and so does our model E (σ, α ),

E (σ, α ) = νeff , 1, model (σ, α ), νeff , 2, model(σ, α ), Δμmodel(σ, α ) . (11)

Here, Δμmodel(σ, α ) is the predicted threshold separation from our model, dependent on the 

intrinsic νi and modulatory noise σμ,i of each cell types,

Δμmodel(σ, α ) = Δμmodel ν1(σ, α ), ν2(σ, α ), σμ, 1(σ, α ), σμ, 2(σ, α ) . (12)

The predicted threshold differences (Δμmodel) were first computed discretely in the grid 

space (ν1, ν2, σμ,1, σμ,2) and interpolated with Mathematica build-in function to construct 

the solutions between the grids. To avoid biasing the result by the component with largest 

error-bar, we standardize the [O (σ) − E (σ, α )] of each dimension with the inverse of its 

standard deviation. That is, the rescaling factors (weights) were
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w = 1/ s.d . νeff, 1 , s.d . νeff , 2 , s.d .  (Δμ) , (13)

or more specifically,

wi = 1
 s.d . Oi

= 1
N − 1 ∑

σ
Oi(σ) − Oi σ

2
− 1

2 , for i = 1 to 3. (14)

We defined the sum of weighted squared errors (or residuals) as

χ2( α ) = ∑
σ

w ⊙ [O (σ) − E (σ, α )]
2

, (15)

where ⊙ denotes component-wise multiplication. The parameter α  is the best-fit 

minimizing the weighted least-squared-error,

α = argminα′χ2 α ′ , (16)

which predicts how the intrinsic (νi) and the modulation noise (σμ,i) depend on the stimulus 

contrast (σ). To quantify the goodness of fit, we use the variance (or reduced χ2)

χred
2 ( α ) = χ2

d . o . f . = χ2

N − n , (17)

where d.o.f. = the number of degrees of freedom = N − n; N is the number of observations 

(nine contrasts in our case), and n is the number of fitted parameters. Note that by 

considering the threshold modulation, the predictions for the minimal threshold differences 

between the two cell types cannot go below the spinodal line. This makes it difficult to 

fit the data points adjacent to or below the spinodal region with our model. Therefore, the 

fitting results for three cell pairs did not adequately capture the trends (Figure 6).

Finally, we also fit a single model across all cell pairs and contrasts. The resulting 

parameters (provided in the last row of Table S1 were consistent with average values of 

parameters fitted to individual cell pairs (Figure 5).

Analysis of inhibition from amacrine cells versus RFs distance—To quantify the 

amount of inhibition from the amacrine cells to a ganglion adapting/sensitizing cells (Figure 

7), we analyzed how the threshold of the ganglion cells changes when nearby amacrine 

cells are depolarized or hyperpolarized. For each ganglion cell and amacrine cell condition, 

the relation between firing rate and filtered input was recorded (c.f. Method of intracellular 

recording). Fitting the two response curves with sigmoid functions yielded thresholds of a 

ganglion cell during the hyperpolarizing (μh) and the depolarizing (μd) current injection to 

the amacrine cell. The difference in thresholds (μd − μh) reflects the impact of amacrine cell 

inputs on the response properties of the ganglion cell. We analyzed these differences as a 

function of the receptive field distance between the ganglion and amacrine cells. Overall, 

the analysis was based on current injection to 40 different amacrine cells and recordings 
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from 144 Off ganglion cells. We note that an amacrine cell usually connects to multiple 

ganglion cells, and some of the ganglion cells receive inputs from multiple amacrine cells. 

The red and blue points shown in Figure 7 are obtained by binning (according to RFs 

distance) results from 169 amacrine-to-adapting cell pairs and 32 amacrine-to-sensitizing 

pairs, respectively. The standard error in RFs distance (x axis error) is too small to be visible 

in the plot.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Modulation is less detrimental than other forms of neuronal variability

• Directing modulation to sparsely spiking neurons reduces its negative impacts

• Modulation should be delivered via inhibitory neurons

• The theoretical predictions are confirmed in the retina
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Figure 1. Two-pathway model of information transmission with threshold modulation
(A) The experimentally observed neural nonlinearity reflects two noise sources (purple line): 

the intrinsic noise ν in the primary pathway (blue) and threshold modulation that occurs on 

longer timescales with variance σμ (red). Over time, the observed nonlinearity is an average 

over different threshold positions p(r ∣ x) = ∫ dμp(r ∣ x, μ, ν)p(μ) and has an effective width 

νeff = ν2 + σμ2.

(B) Threshold variation over time is much stronger than variation in the primary noise. Each 

point displays the variance in the threshold (μ) and variance in the slope (ν) across the set of 

30 nonlinearities estimated for each adapting cells. Each nonlinearity was estimated usimg 

responses to 10 s of visual stimulation with Gaussian white noise.
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Figure 2. Impact of threshold modulation on information transmission
(A) The difference in information before and after adding different types of variability: 

either modulation (blue lines) or primary noise (black lines). Both types of variability 

decrease information, but modulation (blue lines) decreases information much less than 

the primary noise (black lines). We note that both the primary noise and the modulation 

also increase the spike rate. Therefore, the baseline information (without modulation) is 

computed for the higher rate that matches the rate in the presence of modulation.

(B) The stronger detrimental effects of primary noise on information transmission compared 

with modulation are shown here for the case where primary noise and modulatory variance 

are constrained to sum νeff = ν2 + σμ2 = 0.3. In this case, the smaller the primary noise 

(bottom x axis), the larger the information (y axis), despite the corresponding increases in 

modulatory variance (top x axis).
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Figure 3. Modulation directed to sparsely responding neurons protects against modulation-
induced information loss
(A) The information loss is smallest when only the lowest-spiking neuron (red line) receives 

modulation, compared to modulating all neurons (gray line) or the highest-spiking one (blue 

line). The black line shows information in the absence of modulation. The primary noise ν 
= 0.2 for all cases; lines with modulation have the same averaged effective noise νeff = 0.4 

after modulation. Arrows describe how points on the unmodulated curve change in terms 

of information and spike rate upon adding the same amount of overall modulation. The red 

and blue arrows have different final values for spike rate because the modulation-induced 

increase in the spike rate depends on the initial spike rate values and is different for the 

lowest and highest spiking neuron in the pair. The averaged effective noises after modulation 

are νeff = 0.3 for all curves. The spike rates were optimized to yield maximal information for 

a given average spike rate. The corresponding rates are shown in Figure S2.

(B) Same as (A) but shows the results on an expanded scale in terms of percentage of 

information loss (relative to the black line in (A), i.e., Iloss = 1 − Ilong–term/Iwithout modulation 

from Equations 3 and 4). (C and D) Same as (A) and (B) but for three neurons. 

In (D), results from (B) pertaining to pairs of neurons are re-plotted using dashed 

lines for comparison. Green lines show the case where modulation is directed to the 

neurons with intermediate spike rates; other colors are the same as for pairs of neurons. 

Directing modulation to the most sparse neurons yields the smallest information loss from 

modulation. Modulation can be more fully compensated in three-neuron groups compared 
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to two neurons, for smaller spike rates. Further details for the plots are provided in the 

Supplemental Information.
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Figure 4. Modulation-induced transition in information transmitted as a function of spike rate
(A) Spike probability, computed according to Equation 1, is a convex function of threshold 

position (black line). In contrast, information (red line) changes convexity as a function 

of threshold. When a function has positive convexity (solid segments of the curve), the 

average of its two values at points a and b is always larger than the function value at (a + 

b)/2. In this regime, fluctuations increase information transmission. The opposite is true for 

regions of negative convexity (dashed curve). As a result, fluctuations in threshold decrease 

information when thresholds are low and increase information when threshold are high, i.e., 

when neurons respond sparsely.

(B) Threshold modulation increases mutual information from Equation 4 when spike rates 

are small (filled dots) but decreases it when spike rates exceed a certain transitional 

value (open dots). The shaded pink region denotes the value where modulation increases 

information transmission. Thick solid lines show information in the absence of threshold 

modulation σμ2 = 0 , for two noise levels ν1,2 = 0 (black) and 0.2 (light blue). Thin solid 

lines and the eight series of color dots on them show how curves shift upon introduction of 

modulation. Each series of color dots evolves from the same intrinsic noise (ν) and threshold 

(μ). Color denotes the resulting effective noise νeff = ν2 + σμ2. (inset) The transitional value 

in response rate is plotted as a function of the intrinsic noise. (C) Modulation increases 

response rate.
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Figure 5. Experimentally observed threshold variation matches maximally informative values
(A) Intrinsic neural noise and threshold modulation inferred using the maximally 

informative model with modulation from retinal data, cf. Equation 8 in Method Details. Both 

neural types have comparable amounts of intrinsic neural noise (νi) but distinct levels of 

threshold modulation (σμ,i). All noise types varied linearly with the stimulus contrast, except 

for modulatory noise in the sensitizing cells, which was small and contrast independent.

(B) The experimentally observed threshold variation (from Figure 1B) is positively 

correlated across adapting cells (r = 0.3, p = 0.015) with threshold modulation inferred from 

the maximally informative model from Equation 8. Both axes are in units of contrast. Colors 

denote different neurons. Data points for the same neuron/color represent measurements 

from different input contrasts. The bar denotes standard deviation of the data points.

Hsu et al. Page 26

Cell Rep. Author manuscript; available in PMC 2022 February 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. Maximally informative model with modulation accounts for threshold differences 
between adapting and sensitizing cells
Threshold differences between adapting and sensitizing cells are plotted in normalized 

coordinates relative to their optimal values in the absence of modulation (black lines in top 

row); see STAR Methods. Top row (A and B) shows normalized threshold differences as a 

function of average effective noise of the adapting/sensitizing cell pair. Bottom row (C and 

D) shows normalized threshold differences as a function of difference in the effective noise 

between the two neurons. Columns show data (left), maximally informative predictions 

with modulation (right). Different colors denote different cell pairs. Open circles represent 

data for a given contrast; filled circles show the average across contrasts. Black lines show 

predictions for threshold differences without threshold modulation. Gray dashed lines denote 

spinodal lines that separate regions where information has two maxima versus a single 

maximum. Points close to the spinodal lines (e.g., blue, light blue, and light green) are 

more difficult to fit because they mark the region where one of the maxima ceases to exist. 

This pushes the interpolated solutions away from the spinodal line (cf. Figure S1). Despite 

these technical issues, the overall distribution of mean threshold values normalized across 

contrasts was not statistically different between fitted and experimental values, p = 0.14.
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Figure 7. Distance-dependent inputs from amacrine to adapting cells
(A) Inferred model of the presynaptic circuitry of the two types of Off retinal ganglion cells 

based on observed differences in the strength of the modulatory pathway.

(B) The nonlinearity of Off ganglion cells during the depolarizing (dot) and hyperpolarizing 

(triangle) current injection into the amacrine cell. Inset shows the unit of the visual stimulus 

that consisted of 100 ms steps up/down in contrast followed by 200 ms of mean contrast. 

The solid and dashed curves show the fit with sigmoid function. The error bar denotes 

standard error of firing rate. The distance between the receptive field (RF) of the amacrine 

cell to that of the adapting cell was 0.090 mm, 0.101 mm to the RF of the sensitizing cell.

(C) The amount of inhibitory input from amacrine cells to the adapting cell decreases with 

distance significantly (p×10−8, f-test). (Inhibition may be direct or polysynaptic, through 

circuitry involving bipolar cells or other amacrine cells.) The dependence on distance was 

not statistically significant for sensitizing cells (p = 0.9). Solid lines show the exponential 

fits with distance. The error bar is standard error of the sample.
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KEY RESOURCES TABLE

Reagent or resource Source Identifier

Chemicals, peptides, and recombinant proteins

Sodium chloride Fisher S271-500

Potassium chloride Fisher P217-500

Calcium chloride Fisher C69-500

Magnesium chloride Fisher M33-500

Sodium bicarbonate Fisher S233-500

D-glucose Fisher D16-500

Neurobiotin Vector Labs SP-1120

Streptavidin alexa fluor 488 Invitrogen S1123

Experimental models: organisms/strains

Larval tiger salamander retinas Wadelco, TX N/A

Software and algorithms

MATLAB The MathWorks, Inc. https://www.mathworks.com/products/matlab/, RRID:SCR_001622

Wolfram Mathematica Wolfram https://www.wolfram.com/mathematica/, RRID:SCR_014448

Python programming language Python Software Foundation https://www.python.org/, RRID:SCR_008394

SciPy SciPy developers https://www.scipy.org/, RRID:SCR_008058
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