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Summary. Two approaches commonly used to deal with missing data are multiple imputation (MI) and inverse-probability
weighting (IPW). IPW is also used to adjust for unequal sampling fractions. MI is generally more efficient than IPW
but more complex. Whereas IPW requires only a model for the probability that an individual has complete data
(a univariate outcome), MI needs a model for the joint distribution of the missing data (a multivariate outcome) given
the observed data. Inadequacies in either model may lead to important bias if large amounts of data are missing. A third
approach combines MI and IPW to give a doubly robust estimator. A fourth approach (IPW/MI) combines MI and IPW but,
unlike doubly robust methods, imputes only isolated missing values and uses weights to account for remaining larger blocks
of unimputed missing data, such as would arise, e.g., in a cohort study subject to sample attrition, and/or unequal sampling
fractions. In this article, we examine the performance, in terms of bias and efficiency, of IPW/MI relative to MI and IPW alone
and investigate whether the Rubin’s rules variance estimator is valid for IPW/MI. We prove that the Rubin’s rules variance
estimator is valid for IPW/MI for linear regression with an imputed outcome, we present simulations supporting the use of
this variance estimator in more general settings, and we demonstrate that IPW/MI can have advantages over alternatives.
IPW/MI is applied to data from the National Child Development Study.
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1. Introduction
Datasets collected for medical or social research contain miss-
ing values. One approach for dealing with this problem is sim-
ply to exclude individuals with missing data. This “complete-
case” analysis is valid when data are missing completely at
random but not necessarily when missing at random (MAR)
(Little and Rubin, 2002). It can also be inefficient. Two al-
ternatives are inverse-probability weighting (IPW) (Höfler
et al., 2005) and multiple imputation (MI) (Little and
Rubin, 2002). In IPW, again only complete cases are in-
cluded in the analysis (excepting analysis of repeated mea-
sures, which we do not treat here), but weights are used to
rebalance the set of complete cases so that it is representa-
tive of the whole sample. Inverse-probability weights can also
be used to adjust for different sampling fractions in a survey.
They are then known as sampling weights and rebalance the
sample to make it representative of the population.

In MI, missing data are replaced by data drawn from an
imputation model. This is done M times, generating M com-
plete datasets. Each is analyzed and an estimate of the model
parameters, θ, calculated. Let θ̂ denote the complete-data es-
timator of θ, and V̂ its estimated variance. Let θ̂(m ) and V̂ (m )

be their values for the mth imputed dataset (m = 1, . . . , M).

Re-use of this article is permitted in accordance with the Terms
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Rubin (1987) proposed θ be estimated by θ̂M and Var(θ̂M )
by V̂ M , where

θ̂M =
1
M

M∑
m =1

θ̂(m ), (1)

V̂ M =
1
M

M∑
m =1

V̂ (m ) + (1 + M−1)(M − 1)−1

×
M∑

m =1

(θ̂(m ) − θ̂M )(θ̂(m ) − θ̂M )T . (2)

IPW and MI yield consistent estimators of θ when the data
are MAR and the imputation and weighting models, respec-
tively, are correctly specified. The variance of the IPW es-
timator is consistently estimated provided the weighting is
taken into account, e.g., using a sandwich estimator (Robins,
Rotnitzky, and Zhao, 1994). For MI, when θ̂ is the maximum
likelihood estimator (MLE), V̂ is the inverse Fisher infor-
mation, and missing data are sampled from their Bayesian
posterior predictive distribution, θ̂M is asymptotically nor-
mally distributed with variance V M , and V̂ M is an asymp-
totically unbiased estimator of V M and is consistent when
M = ∞ (Rubin, 1987; Wang and Robins, 1998; Nielsen,
2003).
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MI is often preferred to IPW, as it is usually more efficient.
If the imputation model is correctly specified, MI should work
well. However, if many data are being imputed, any inadequa-
cies in the imputation model may lead to considerable bias.
If few variables are missing on an individual, it may be con-
sidered desirable to impute them, rather than exclude the in-
dividual. On the other hand, if many variables are missing on
the same individual, the imputation model must describe the
joint distribution of all these variables, and if many individu-
als have many missing variables, the analyst may be nervous
about relying on this complex and possibly misspecified im-
putation model. This situation could arise, for example, in
a longitudinal study when whole blocks of data are missing
on some of the individuals due to missed visits, or in a sur-
vey when some individuals have declined to answer whole sets
of related questions. In such situations, the analyst may feel
more confident using IPW.

Another possibility is to combine MI and IPW. A rule is
specified for when to include an individual in the analysis:
e.g., if they attended a follow-up visit, or if more than a cer-
tain percentage of their data is observed. Missing values in
included individuals are multiply imputed and each resulting
dataset (which we call a “quasi-complete dataset” because
the data are complete for the included, but not excluded, in-
dividuals) is analyzed using IPW to account for the exclusion
of individuals not satisfying the inclusion rule and for differ-
ent sampling fractions (if any). The “quasi-complete-data”
estimator θ̂ is then the IPW estimator using the data on
included individuals in a single quasi-complete dataset and
V̂ is the corresponding sandwich variance estimator. We call
this method “IPW/MI.” By imputing in individuals with few
missing values but excluding individuals with more missing
data, IPW/MI could inherit some of the efficiency advantage
of MI while avoiding bias resulting from incorrectly imputing
larger blocks of data. IPW/MI is also needed when sampling
weights are used together with MI, even if all individuals are
included in the analysis.

Several authors have used IPW/MI. Caldwell et al. (2008)
and Stansfeld et al. (2008a,2008b) analyzed data from the
National Childhood Development Study (NCDS). They re-
gressed outcomes measured at age 45 on predictors measured
at the same or earlier visits. Attrition of the cohort over time
meant that 41% missed the age 45 visit. Weights were used
to adjust for attrition, while missing values in those who at-
tended the visit were multiply imputed. Priebe et al. (2004)
multiply imputed missing data in a logistic regression with
sampling weights.

It is not obvious that Rubin’s rules will give valid vari-
ance estimators for IPW/MI. IPW estimators are inefficient.
Robins and Wang (2000) and Nielsen (2003) show for MI that
when θ̂ is inefficient, V̂ M can be asymptotically biased, even
if V̂ is a consistent estimator of the complete-data variance
and imputation is from the correct posterior predictive dis-
tribution. The purpose of the present article is twofold: to
examine asymptotic bias in V̂ M when θ̂ is an IPW estimator
and to show when IPW/MI is useful.

In Section 2, we define IPW/MI and show it gives consis-
tent estimation of θ. In Section 3, we show V̂ M is asymptoti-
cally unbiased for IPW/MI with linear regression and imputed

outcomes. Section 4 describes a simulation study verifying this
and demonstrating IPW/MI can have advantages over MI or
IPW alone. Section 5 is a simulation with imputed covari-
ate, suggesting V̂ M is approximately unbiased in this case.
Section 6 is an application to NCDS.

2. IPW/MI and Consistency of θ̂

In this section, we describe IPW/MI for the situation where
there are no sampling weights. The inclusion of sampling
weights is covered in the Web Appendix available online.

An independent random sample of size N is drawn from the
population. Let D denote, for an individual, the vector of the
set of variables included in the analysis model as well as possi-
bly other variables that will be used to impute missing values
in that set of variables. Let R denote the missingness pat-
tern in D (i.e., which elements of D are missing), and write
D = (Do, Dm ), where Do and Dm denote the observed and
missing parts of D, respectively. Subscript i denotes individ-
ual i in the sample; e.g., Di denotes D for individual i.

The IPW/MI method is as follows. Let R(R) be a binary
function of R chosen by the analyst. R(R) is the rule de-
termining whether an individual is included in the analysis.
An example of R(R) is R(R) = 1 if fewer than a certain per-
centage of variables in the analysis model are missing and
R(R) = 0 otherwise. Let A denote the set of indices of indi-
viduals with R(R) = 1. As formalized below, we estimate θ
by fitting the analysis model only to individuals i ∈ A, us-
ing inverse-probability weights to account for the selection
by R(R). Missing values in individuals i ∈ A are multiply
imputed.

To impute Dm
i in individuals i ∈ A, we assume a model

g(D; ψ) for the conditional distribution of D given R(R) = 1
with parameters ψ. We say this model is correctly specified
if ∃ ψ0 such that g(D; ψ0) is the true distribution of D given
R(R) = 1. ψ is estimated by ψ̂, its MLE using only the data
on individuals i ∈ A. Imputation may be proper or improper.
Let D(m ) denote the mth imputed value of D (m = 1, . . . , M).
Note that if some elements of D are observed in all individuals
with R(R) = 1, the imputation model can be a model for
the distribution of the remaining elements of D given these
elements and R(R) = 1.

Let H be a vector of fully observed variables that predict
whether R(R) = 1. Assume a model w(H ; α) for P {R(R) =
1 | H}−1, where α are parameters. We say this model is
correctly specified if ∃α0 such that P {R(R) = 1 | H = h} =
w(h; α0)−1 ∀h. Let W = w(H ; α0). Assume ∃ δ > 0 such that
P(W−1 > δ) = 1. Typically, α0, the true value of α, will be
unknown. Let α̂ equal α0 if α0 is known and denote the MLE
of α otherwise.

Let Sθ(θ; D) denote an individual’s contribution to the
(unweighted) complete-data estimating equations of the anal-
ysis model. Let θ0 denote the solution of ED{Sθ(θ; D)} = 0.
Therefore, θ0 is the “true” value of θ: it is the value to which
the solution to estimating equations

∑N

i=1 Sθ(θ; Di ) = 0
would converge as N → ∞. Based just on data from individ-
uals i ∈ A, let θ̂(m ) be the solution to (weighted) estimating
equations

∑
i∈A w(H i ; α̂)Sθ(θ̂(m ); D

(m )
i ) = 0 and let θ̂M be

given by equation (1). Theorem 1 and its corollary state that
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under specified conditions θ̂M is a consistent estimator of θ.
Proofs are given in the Web Appendix.

Theorem 1. Assume (i) model w(H ; α) is correctly spec-
ified, (ii) g(D; ψ) is correctly specified, (iii) P {R(R) = 1 |
D, H} = P {R(R) = 1 | H}, (iv) p{R | D, W,R(R) = 1} =
p{R | Do , W,R(R) = 1}, and (v) Dm ⊥⊥ W | Do ,R(R) = 1.
Then, when M = ∞, θ̂M → θ0 as N → ∞.

Condition (iii) states that the probability an individual is
used in the fitting of the imputation and analysis models does
not depend on his values of the variables (D) used in those
models given the covariates (H) in the weighting model. Con-
dition (iv) states that among individuals to whom the impu-
tation model is fitted, D is MAR given the true weight W.
Condition (v) adds to this that among these individuals the
missing variables in the imputation model must be condition-
ally independent of W given the observed variables. Note con-
dition (v) can be satisfied by including W or H in D. The
necessity for condition (v) can be understood by considering
how imputation will work if it is not satisfied. Set A is en-
riched for individuals with small values of W (and contains
fewer with large values) compared to the entire sample. If (v)
is false, the distribution of D given W depends on W, and
when the imputation model is fitted to set A, the resulting
estimate of the marginal distribution of D will be biased to-
ward the conditional distribution of D given small values of
W. Missing data in all individuals in A are then imputed us-
ing the same model, a model that has been estimated giving
too much weight to individuals with small W. Including W (or
H) in the imputation model avoids this problem: individuals
with different W are imputed differently.

The following corollary shows that an alternative to in-
cluding the true weights (W = w(H ; α0)) or the covariates
that predict the weights (H) in the imputation model is to
include the estimated weights (w(H ; α̂)). The latter may be
appealing because true weights are typically unknown and the
dimension of H may be large.

Corollary 1. Suppose the imputation model includes,
in addition to D, w(H ; α). Assume conditions (i), (iii),
and (iv) of Theorem 1 are satisfied, the imputation model
g{D, w(H ; α0); ψ} is correctly specified, ψ is estimated by its
MLE ψ̂ at α = α̂ using only individuals i ∈ A, and Dm is im-
puted using g{D, w(H ; α̂); ψ̂}. Then, when M = ∞, θ̂M → θ0

as N → ∞.

3. Linear Regression with Imputed Outcome
Consider the special case of linear regression with an imputed
outcome. As in Section 2, we assume that there are no sam-
pling weights; the generalization to sampling weights is given
in the Web Appendix. Write D = (X , Y ) and let Z be X or
a subvector of X . Below, Y and Z will be the response and
covariates, respectively, in the analysis model. Let R(R) = 1
if X is complete; R(R) = 0 otherwise. Let RY = 1 if R(R) = 1
and Y is observed; RY = 0 otherwise. We assume weights W
are known and ∃ δ > 0 such that P(W−1 > δ) = 1.

We estimate θ in the analysis model

Y = θT Z + e, where E(e | Z) = 0. (3)

by linear regression of Y on Z . Therefore, Sθ (θ; D) = Z(Y −
ZT θ). The true value of θ is the solution of ED{Sθ(θ; D)} =
0, which is θ0 = {E(ZZT )}−1E(ZY ). We say the analysis
model is correctly specified if equation (3) holds ∀Z when
θ = θ0; otherwise it is misspecified.

The quasi-complete-data estimator, θ̂, is the solution
to weighted estimating equations

∑
i∈A WiSθ(θ̂; Di ) = 0,

which is the weighted least squares estimator θ̂ = (
∑

i∈A Wi

Z iZ
T
i )−1

∑
i∈A WiZ i Yi . The quasi-complete-data variance es-

timator V̂ is the sandwich estimator (
∑

i∈A WiZ iZ
T
i )−1

{∑
i∈A W 2

i Z iZ
T
i (Yi − θ̂

T
Z i )2}(∑

i∈A WiZ iZ
T
i )−1. Missing Y

values in individuals i ∈ A are multiply imputed using X as
predictors, θ̂ and V̂ are calculated for each imputed dataset,
and θ̂M and V̂ M are calculated from equations (1) and (2).

Theorem 2. Let missing Y be imputed from their posterior
predictive distributions using the regression imputation proce-
dure of Schenker and Welsh (1988) (p. 1560) with imputation
model

Yi = βT X i + εi (i ∈ A),

with {εi : i ∈ A} | {X i , Wi ,R(Ri ) = 1 : i ∈ A} i.i.d. N
(
0, σ2

ε

)
,

(4)

and improper prior density for (β, σ2
ε ) proportional to σ−2

ε . As-
sume this model is correctly specified, i.e., there exists a β for
which equation (4) holds, and that

P {RY = 1 |Y, W, X ,R(R) = 1}= P {RY = 1 |W, X ,R(R) = 1}.
(5)

Then (i) θ̂M is a consistent estimator of θ; (ii) if X includes
W Z (i.e., WiZ i = CX i ∀i for some matrix of constants C),
V̂ M is an asymptotically (N → ∞) unbiased estimator of
Var(θ̂M ); and iii) if X includes W Z and M = ∞, V̂ M is a
consistent estimator of Var(θ̂M ).

Including W Z in X means including the pairwise interac-
tions between the weight and all the variables in Z , as well as
(if the analysis model includes an intercept term) the weights
themselves. Proofs of parts (i) and (ii) come from extending
the proof of Kim et al. (2006), which shows (ii) is true in the
special case where Z = 1; that of part (iii) comes from apply-
ing Theorem 2 of Robins and Wang (2000). Details are in the
Web Appendix.

The reason W Z needs to be in X is to avoid the imputer
assuming more than the analyst. Consider the simple case
where Z = 1 (so θ is the population mean) and there are two
values of W: a and b. The complete-data estimator of θ corre-
sponds to stratifying the sample by W, calculating the mean
in each of the two strata and then calculating a weighted av-
erage of these two means. Thus, the analysis model does not
assume the population mean is the same in the two strata.
If the imputation model does not include W, it assumes the
population mean is the same in the two strata, with the result
that the imputer is assuming more than the analyst, which
is known to lead to overestimation of the variance of θ̂M

when the extra assumption made by the imputer is correct
(Meng, 1994). If the true value of the coefficients of W Z
is zero, because the imputation model is correctly specified
without the W Z terms, it is probably better not to include
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these terms and instead accept some overestimation of V̂ M :
imputation will be more efficient if they are set to zero rather
than estimated.

Note that, because R(R) = 1 only if X is complete, indi-
viduals with incomplete X are excluded, even if their Y and
Z are complete. For this reason, it would not be appealing
to use this method if the sample contained more than a few
such individuals.

An alternative to IPW/MI is what we call “IPW/CC.” Here
Y is regressed on Z only in complete cases (those with RY =
1), again using weights W. This estimator is unbiased if

P {RY =1|Y, W, Z ,R(R)=1}=P {RY =1|W, Z ,R(R)=1}, (6)

and the analysis model is correctly specified. If weights W
are all equal, and X = Z and the imputation and analysis
models are the same, there is no benefit to IPW/MI over
IPW/CC: it is more efficient to exclude individuals with miss-
ing Y (unless M = ∞, in which case exclusion and imputation
are equivalent) (White and Carlin, 2010). However, there are
two reasons for preferring IPW/MI to IPW/CC. These apply
whether or not weights are equal. First, if (6) does not hold
or if the analysis model is misspecified, the complete-case es-
timator may be inconsistent, whereas, as Theorem 2 states,
IPW/MI gives consistent estimators if equation (5) holds (and
assuming the imputation model is correctly specified). Equa-
tion (5) may be satisfied even if (6) is not, as (5) allows the
probability that Y is observed to depend on a larger set of
variables X . Second, even if (6) holds and the analysis model
is correctly specified, it may be more efficient to use all the
available information (i.e., X) to impute Y.

4. Simulation Study: Imputed Outcome
In this section, we explore IPW/MI for linear regression with
imputed outcome. As in Section 3, the analysis model is fitted
only to individuals with complete X and missing Y in these
individuals are imputed.

Analysis of the sample must deal with two stages of miss-
ingness: stage 1 is the missingness in X ; stage 2, missingness
in Y. At stage 1, one could either exclude individuals with
incomplete X (R(R) = 0) or impute missing X . Similarly,
each individual with missing Y not already excluded at stage
1 (R(R) = 1) could either be excluded at stage 2 or have Y
imputed. At each stage, if exclusion is used, one can either
adjust for the exclusion using IPW or not adjust. Thus, there
are three possibilities at each stage, giving 3 × 3 = 9 possi-
ble strategies in total. Denote a strategy by ST1/ST2, where
ST1 and ST2 are each CC (exclude and do not weight), IPW
(exclude and weight) or MI (impute). In IPW/MI, the fo-
cus of this article, individuals with missing X (R(R) = 0)
are excluded and weights used to adjust for this; individuals
with complete X but missing Y (R(R) = 1) have Y imputed.
CC/CC uses only individuals with complete X and Y and
there is no weighting. IPW/IPW uses the same individuals,
but weights them by the inverse of their probability of being
a complete case. In MI/MI all missing values are imputed.
We also consider CC/IPW, CC/MI, and IPW/CC, but not
MI/CC or MI/IPW, which combine the disadvantage of hav-
ing to specify an imputation model for X with that of losing
out on the potential efficiency gains of imputing Y.

The purpose of the following simulation is three-fold: to
verify V̂ is approximately unbiased for IPW/MI; to show
IPW/MI can be more efficient than IPW/IPW; and to show
MI/MI can yield biased parameter estimators when the stage
1 (for X) or stage 2 (for Y given X) imputation model is
misspecified, and that IPW/MI remains approximately unbi-
ased or at least less biased than MI/MI in these situations.
The data-generating mechanism has been chosen to illustrate
these points. It will now be described and then its features
elucidated.

Data X = (X1, X2, X3, X4, X5) and Y were generated for
N = 1000 individuals. For each individual, X1 was one with
probability 0.5 and zero otherwise, X2, X3, and X4 were in-
dependent and identically distributed N(0, 1) and, finally, X5

was sampled from N(X2 × X3, 1). Response Y was generated
from

Y = −3 + X1X2 + X1X3 + 0.5X2X3 + X4 + 0.5X5 + ε,

(7)

where ε ∼ N(0, 1). X1 was observed for all N individuals.
With probability 0.8 − 0.6X1, (X2, X3, X4, X5) was observed;
otherwise it was missing. If (X2, X3, X4, X5) was observed, Y
was observed with probability {1 + exp ( −1.5 + 0.6X2X4)}−1;
otherwise Y was missing.

The analysis model was Y = θ0 + θ2X2 + θ3X3 + θ23X2X3 + e,
where E(e |X2, X3) = 0. Therefore, Z = (1, X2, X3, X2X3). By
integrating (7) with respect to X1, X4, and X5, it can be shown
that this analysis model is correctly specified and the true θ
is (θ0, θ2, θ3, θ23) = (− 3, 0.5, 0.5, 1).

This data-generating mechanism was chosen for three rea-
sons. First, the X1X2 and X1X3 interactions in (7) mean the
relation between Y and (X2, X3) is different in the two strata
defined by X1. Also, the probability that (X2, X3) is observed
differs: in one stratum it is 0.2; in the other, 0.8. Thus, the re-
lation between Y and (X2, X3) is different in individuals with
complete X and incomplete X . Failure to adjust for the miss-
ingness at stage 1, by weighting or imputation, will therefore
lead to bias in θ2 and θ3. Therefore, CC/IPW, CC/MI, and
CC/CC will be biased. Second, for individuals with observed
(X2, X3, X4, X5) the probability Y is observed depends on
X4, which is not in the analysis model but is associated with
Y. This causes the relation between Y and X described by
the analysis model to be different in the set of complete cases
from in the set with complete X but missing Y. In partic-
ular, because the probability of Y being missing depends on
X2X4, the relation between Y and X2 will be different in the
two sets. Failure to adjust for the missingness at stage 2 will
therefore lead to bias (specifically in θ2). Therefore, IPW/CC,
MI/CC, and CC/CC will be biased. Third, X5 is included in
the data-generating mechanism for Y to show that using MI
at stage 1 can cause bias if the imputation model for X is
misspecified (see results for MI*/MI below).

A total of 1000 datasets were generated and the seven meth-
ods applied to each. For each of θ0, θ2, θ3, and θ23 and each
method, the mean of the 1000 parameter estimates and of
the 1000 estimated variances was calculated. The empirical
SE was calculated as the standard deviation of the parameter
estimates. Where a method involved imputation, 10 imputa-
tions were performed.
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For MI/MI, the (correctly specified) imputation model at
stage 1 was (X2, X3, X4) ∼ N{(γ2, γ3, γ4), Σ1} and X5|X2, X3 ∼
N(γ5 + γ6X2 + γ7X3 + γ8X2X3 , Σ2). Noninformative normal
and inverse-Wishart priors were used, yielding normal and
inverse-Wishart posteriors (Gelman et al., 2004, p. 88). For
CC/MI, IPW/MI, and MI/MI, the (correctly specified) im-
putation model used at stage 2 was Y = β0 + β1X1 + β2X2 +
β3X3 + β4X4 + β5X5 + β12X1X2 + β13X1X3 + β23X2X3 +
β123X1X2X3 + ε.

For IPW/CC, IPW/IPW, and IPW/MI, weights were es-
timated by fitting the (correctly specified) missingness model
for stage 1: P(X2, X3, X4 and X5 observed) = δ0 + δ1X1. Note
that, because X1 is binary, W = (δ0 + δ1X1)−1 = δ−1

0 −
X1δ1{δ0(δ0 + δ1)}−1 is a linear function of X1. Hence,
as the stage 2 imputation model includes Z and X1Z ,
it implicitly includes W Z . For CC/IPW and IPW/IPW,
weights were estimated using the (correctly specified) model
for stage 2: logit P (Y observed | X observed) = δ2 + δ3X2 +
δ4X4 + δ5X2X4. For IPW/IPW, the probability of being a
complete case is the product of these two probabilities.

Table 1 shows mean parameter estimates, empirical SEs,
and square roots of the mean estimated variances. It can be
seen that IPW/MI yields approximately unbiased estimators
of parameters and SEs, as expected from Theorem 2. As ex-
plained above, CC/IPW, CC/MI, CC/CC, and IPW/CC are
biased for one or more parameters. IPW/IPW and MI/MI
are both approximately unbiased. The former is less efficient
than IPW/MI because the imputation model at stage 2 uses
auxiliary information, i.e. covariates (notably X4 and X5) not
included in the analysis model. The most efficient unbiased
method is MI/MI, confirming that imputation is the best
method when the imputation models are correct.

However, when the imputation model at stage 1 or stage
2 is misspecified, MI/MI may be biased. First, suppose that
the imputation model at stage 1 is misspecified as (X2, X3, X4,
X5)T ∼ N{(γ2, γ3, γ4, γ5)T , Σ}. As X2, X3, X4 and X5 are un-
correlated (though not independent), Σ will be estimated as
an approximately diagonal matrix. Therefore, for individuals
with incomplete X the imputed values of X5 will be approxi-
mately independent of X2 and X3; the relation between X5 and
the interaction of X2 and X3 (E(X5) = X2X3) is not present in
the imputed data. The missing Y values of these individuals
will then be imputed in such a way that the interaction be-
tween X2 and X3 is only 0.5, half what it should be. As half
the individuals have incomplete X , fitting the analysis model
to the whole sample results in an estimate of θ23 of about 0.75.
This is seen in Table 1 in the row MI*/MI.

Second, suppose the imputation model at stage 1 is cor-
rect but that at stage 2 is misspecified by leaving out the
β23X2X3, β123X1X2X3, and β5X5 terms. Missing Y values will
now be imputed in such a way that there is no interac-
tion between X2 and X3. As approximately 60% of Y val-
ues are missing, θ23 will be underestimated by about 60%.
This result is shown in Table 1 in the row MI/MI*. The row
IPW/MI* shows the result of IPW/MI with the same misspec-
ified imputation model at stage 2. This method is considerably
less biased than MI/MI*, because fewer Y values are being
imputed. Therefore, the IPW element of IPW/MI provides
some protection against misspecification of the imputation
model.

5. Simulation Study: Imputed Covariate
In this section, we investigate the bias of V̂ for IPW/MI in the
case of linear regression with an imputed covariate. In the sim-
ulation study below, we find that the bias is small. This study
also demonstrates again that IPW/MI can be more efficient
than IPW/IPW, and that MI/MI can yield biased estimators
when the imputation model for stage 1 is misspecified. Only
brief details are presented here; full details can be found in
the Web Appendix.

The (correctly specified) analysis model was Y = θ0 +
θ2X2 + θ3X3 + θ4X4 + θ23X2X3 + e, where E(e |X2, X3, X4) = 0.
Variables X1 and Y were always observed; X2 and X3 were
both observed or both missing. The probability they were ob-
served depended on Y and X1. If (X2, X3) was missing, so was
X4; otherwise the probability X4 was observed depended on Y.
The two stages of missingness are that stage 1 is missingness
in (X2, X3) and stage 2 is missingness in X4.

For MI/MI, the imputation model used at stage 1 (to im-
pute X2 and X3) falsely assumed that (Y, X2, X3) was trivari-
ate normal. Although misspecified, this imputation model
might easily be used in practice. As the stage 1 imputa-
tion model is misspecified, we call this method MI*/MI. For
IPW/MI and MI*/MI, the imputation model used at stage 2
(to impute X4) was correctly specified in terms of X1, X2, X3,
Y, and certain interactions. The covariates (X1 and Y) that
determine the weights are included in this model. IPW/MI*
and MI*/MI* used a stage 2 imputation model that was mis-
specified because interaction terms were omitted.

Table 2 shows the results. IPW/IPW and IPW/MI are ap-
proximately unbiased, and SE estimators for IPW/MI are ap-
proximately unbiased. SEs for IPW/MI are smaller than for
IPW/IPW: it is more efficient to impute missing X4 for indi-
viduals with otherwise complete data than to exclude them.

MI*/MI gives biased estimation, because the imputation
model at stage 1 is misspecified. Misspecification also of the
imputation model at stage 2 (MI*/MI*) adds to the bias, es-
pecially in θ4. Bias also occurs when IPW is used at stage 1 in-
stead of MI (IPW/MI*), but is smaller than that of MI*/MI*,
and indeed of MI*/MI.

Theorems 1 and 2 of Robins and Wang (2000) enable the
asymptotic (N → ∞) percentage bias in V̂ M to be calculated
when M = ∞ (see Web Appendix). The asymptotic percent-
age bias in V̂ M was 3.7% for θ4 and less than 1% for θ0, θ2,
θ3, and θ23, which is in line with the finding above that V̂ M

was approximately unbiased for finite N and M.
The results above were obtained using the true weights. In

practice, weights would usually be estimated. Row IPWe/MI
in Table 2 shows the results when weights are estimated. The
variance estimators are approximately unbiased. Note that
for IPWe/MI, V̂ was replaced by a sandwich estimator that
accounts for uncertainty in the weights (Robins et al., 1994).
When V̂ was instead used, the variance for θ0 was overesti-
mated.

6. Application
The NCDS consists of 17,638 individuals born in Britain dur-
ing one week in 1958 (Power and Elliott, 2006). 920 immi-
grants added later are not considered here. Data were col-
lected at birth and at ages 7, 11, 16, 23, 33, and 45. A total
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Table 1
Mean parameter estimate (“mean”), square root of mean estimated variance (“aSE”), and empirical SE (“eSE”) for four

parameters and 10 analysis methods. The true value of θ is (θ0, θ2, θ3, θ23) = (−3, 0.5, 0.5, 1).

θ0 θ2 θ3 θ23

Method Mean aSE eSE Mean aSE eSE Mean aSE eSE Mean aSE eSE

True −3.000 .500 .500 1.000
CC/CC −2.995 .080 .079 .090 .081 .087 .200 .080 .086 1.005 .082 .091
CC/IPW −2.993 .082 .079 .199 .092 .091 .200 .086 .089 1.004 .094 .100
CC/MI −2.994 .075 .076 .202 .081 .081 .201 .079 .083 1.004 .084 .086
IPW/CC −2.993 .102 .101 .382 .110 .112 .495 .109 .114 1.008 .114 .119
IPW/IPW −2.990 .106 .104 .489 .120 .124 .494 .112 .117 1.006 .121 .132
IPW/MI −2.992 .097 .096 .498 .105 .105 .497 .104 .107 1.006 .110 .113
MI/MI −3.000 .089 .081 .503 .092 .087 .497 .090 .088 1.006 .092 .082
MI*/MI −2.998 .092 .085 .498 .095 .093 .496 .094 .094 .749 .100 .083
MI/MI* −2.999 .108 .101 .100 .088 .054 .099 .088 .051 .391 .091 .055
IPW/MI* −2.998 .107 .100 .492 .119 .122 .495 .117 .115 .776 .131 .127

Table 2
Mean parameter estimate (mean), square root of mean estimated variance (aSE), and empirical SE (eSE) for five parameters
and 10 analysis methods. Results for θ2 are omitted because, apart from Monte Carlo error, they are the same as for θ3. The

true value of θ is (θ0, θ2, θ3, θ4, θ23) = (0, 0.5, 0.5, 0.5, 1).

θ0 θ3 θ4 θ23

Method Mean aSE eSE Mean aSE eSE Mean aSE eSE Mean aSE eSE

True .000 .500 .500 1.000
CC/CC .238 .060 .056 .196 .061 .065 .183 .060 .064 .992 .064 .077
IPW/IPW .020 .095 .102 .485 .103 .113 .479 .108 .124 .990 .108 .119
IPW/MI .002 .075 .075 .495 .084 .084 .490 .092 .089 1.001 .089 .088
MI*/MI −.086 .051 .061 .663 .100 .129 .372 .071 .072 .976 .079 .117
MI*/MI* −.087 .051 .060 .674 .100 .126 .337 .077 .081 .970 .080 .112
IPW/MI* −.003 .078 .076 .504 .086 .091 .427 .096 .089 .978 .092 .095
IPWe/MI .003 .061 .060 .497 .081 .083 .491 .089 .087 1.001 .088 .089

of 16,334 nonimmigrants were still alive and free from type 1
diabetes at age 45 and of these, 8953 (55%) participated in a
biomedical survey.

Thomas, Hypponen, and Power (2007) investigated the ef-
fect of characteristics measured at birth and adult adipos-
ity (body mass index [BMI] and waist size at 45) on glu-
cose metabolism at age 45. Subjects were classified as having
high blood glucose if their glycosylated hemoglobin (A1C) was
greater than 6% or they had type 2 diabetes. Immigrants and
individuals with type 1 diabetes were excluded. Data on blood
glucose, BMI and waist size at 45 were available for 7518 of
the 8953 participants. Of these, 1845 (25%) had incomplete
data on the factors measured at birth. Thomas et al., using
the ice command in STATA (Royston, 2005), performed MI by
chained equations (Van Buuren, 2007) on the 7518 subjects,
producing 10 complete datasets. These 7518 were then ana-
lyzed as though representative of all 16,334 nonimmigrants
alive and free from type 1 diabetes at age 45. Thomas et al.
concluded that the factors measured at birth were related to
blood glucose at 45 and that, moreover, some of these effects
were largely mediated through adult adiposity.

We repeated this analysis but used IPW to allow the re-
lation between glucose and the predictors to differ in the
7518 subjects with complete age 45 data from the other
8816 cohort members. Here stage 1 missingness refers to the

age 45 data and stage 2 refers to the data measured at or
before birth. Thomas et al. used a CC/MI analysis (i.e., used
complete cases at stage 1 and MI at stage 2), whereas we use
IPW/MI.

In the missingness model for stage 1, i.e., for the probability
that at least one of glucose, BMI and waist size is missing, we
used the potential predictors of missingness recorded at birth
or age 7 identified by Atherton et al. (2008) and listed in
their Table 3. We also used gestational age (< 38 versus ≥ 38
weeks) and a set of variables recorded at age 11: math
and reading scores (normal/low), internalizing and externaliz-
ing problems (normal/intermediate/problem), and verbal and
nonverbal scores (normal/low). All predictors were categori-
cal, and most binary.

Not everyone attended the age 7 and age 11 visits, and
even those who did had some missing values. Therefore, some
predictors of missingness at stage 1 were themselves missing.
To deal with visit missingness, we partitioned the sample into
four strata according to which of the age 7 and age 11 visits
were attended. A different logistic regression was fitted to each
stratum, using only predictors from the visits attended by in-
dividuals in that stratum. Missing values in these predictors
were dealt with by introducing missing indicator variables.
The missing indicator method can cause bias when used for
variables in an analysis model (Jones, 1996). Although we are
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Table 3
LOR and SEs for predictors of high blood glucose. Binary predictors are gestational age < 38 weeks, preeclampsia, smoking

during pregnancy, prepregnancy BMI ≥ 25Kg/m2, and manual socioeconomic position (SEP) at birth. Ordinal and continuous
predictors are birth weight for gestational age (tertile), BMI at age 45 (Kg/m2), and waist circumference at age 45 (cm).

Adjustment was also made for sex and family history of diabetes.

CC/MI IPW/MI MI/MI

LOR SE LOR SE LOR SE

Short gestation 0.46 0.22 0.48 0.23 0.44 0.20
Preeclampsia 0.46 0.27 0.55 0.27 0.47 0.25
Mother overweight 0.29 0.15 0.36 0.16 0.18 0.12
Smoke in pregnancy 0.02 0.14 0.04 0.14 0.04 0.14
Manual SEP 0.37 0.17 0.44 0.18 0.39 0.17
Birth weight −0.31 0.09 −0.31 0.09 −0.32 0.09
BMI age 45 0.04 0.02 0.02 0.02 0.03 0.02
Waist size age 45 0.07 0.01 0.07 0.01 0.07 0.01

using it to calculate weights, not in the analysis model, this
method is imperfect and we do not recommend it for gen-
eral use. Therefore, we also calculated a second set of weights
by multiply imputing missing predictors of missingness. The
results obtained using this second set of weights were very
similar to those (reported below) obtained using missing in-
dicators.

The mean weight was 2.5; 5th and 95th percentiles were
1.6 and 5.2; the maximum was 23.1. As found by Atherton
et al. (2008), disadvantaged individuals were more likely to
be missing at stage 1. In the stratum who attend both age 7
and 11 visits, the following variables were significant at the
5% level: breastfed <1 month; mother leaving school at or
before statutory age; short stature, overweight, internalizing,
and externalizing problems at age 7; internalizing and exter-
nalizing problems, low math, low reading, and low nonverbal
scores at age 11.

For stage 2 we used the same imputation model as Thomas
et al., except that we included the weights. Following guide-
lines of White, Royston, and Wood (2010), 25 imputations
were used. This MI model used only the variables in the anal-
ysis model and the weights. We also tried adding variables
used as predictors in the missingness model to the imputa-
tion model, but this made very little difference to the results
below.

Table 3 shows the estimated log odds ratios (LOR) and
SEs. Due to the stochastic nature of MI and the inclusion
of weights in the imputation model, the results for CC/MI
are slightly different (maximum difference 0.03) from those
reported by Thomas et al. (2007). As can be seen, using IPW
at stage 1 (IPW/MI) does not substantially change the re-
sults. The biggest differences are that ORs for preeclampsia,
mother overweight, and manual class have risen slightly, and
the first two have changed from being almost significant to
just significant. SEs are also slightly larger.

We investigated why these ORs increased slightly when
weighting was used. The missingness model indicated that
disadvantaged individuals were more likely to be missing at
stage 1. Therefore, using IPW gives more weight to disadvan-
taged individuals. We partitioned the stratum who attended
both age 7 and age 11 visits into two groups, advantaged
and disadvantaged, using the following rule: individuals with

at least three of the following indicators of disadvantage were
classified as disadvantaged: breastfed < 1 month; mother leav-
ing school early; short stature, overweight, internalizing, and
externalizing problems at age 7; and internalizing and ex-
ternalizing problems, and poor math, reading, and nonverbal
scores at age 11. Using this rule, the disadvantaged group con-
tained 29% of individuals. The other 71% were classified as
advantaged. The analysis model was fitted to the two groups
separately. The LORs for preeclampsia, mother overweight,
and social class were 0.59, 0.70, and 0.33, respectively, in
the disadvantaged group, and −0.04, −0.04, and 0.41 in the
advantaged group. Therefore, the observed relation between
glucose and preeclampsia/overweight is stronger in the disad-
vantaged individuals. It seems likely therefore that the reason
why ORs for preeclampsia and overweight in the whole cohort
are greater when IPW is used (IPW/MI versus CC/MI) is
that IPW gives more weight to the disadvantaged group. The
relation between manual class and glucose, however, is slightly
weaker in the disadvantaged group, leaving its increased OR
unexplained.

Assuming then that the probability that glucose, BMI and
waist size at 45 years are complete does not depend on vari-
ables in the analysis model given available predictors of miss-
ingness, the associations found by Thomas et al. in the sample
of 7518 individuals do generalize to the population of nonim-
migrants still alive and free from type 1 diabetes at age 45.

Finally, we used MI/MI, i.e., imputed all missing values for
all 16,334 individuals. Included in the imputation were the
variables in the analysis model and the predictors in the miss-
ingness model of IPW/MI. A total of 100 imputed datasets
were created. Table 3 shows the results. They do not differ
substantially from those of IPW/MI. Some SEs are slightly
smaller. The small increases in the ORs of preeclampsia and
mother overweight seen in IPW/MI relative to CC/MI are not
replicated. In fact, the OR of overweight is lower in MI/MI
than in CC/MI.

To investigate why, we partitioned the 12,501 individuals
who attended both age 7 and age 11 visits into four groups,
using the same rule for disadvantage as before: disadvantaged
with observed glucose; disadvantaged with imputed glucose;
advantaged with observed glucose; and advantaged with im-
puted glucose. The analysis model was fitted to each group
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separately. It was found that, whereas the relation between
blood glucose and its predictors differed considerably between
the advantaged and disadvantaged groups in the set of indi-
viduals whose glucose was observed, this difference was not
seen in those with imputed glucose. In particular, the LORs
for overweight were 0.57 and −0.17 in the disadvantaged and
advantaged groups with observed glucose, respectively, but
were 0.15 and 0.18 for those with imputed glucose. Interaction
terms are needed in the imputation model, e.g., imputation
could be done separately in the two groups. Careful assess-
ment of the imputation model might have revealed this, but
such assessment might not always be made.

7. Discussion
Robins and Wang (2000) derive a general formula for the
asymptotic variance of an MI estimator based on a complete-
data estimator solving a set of estimating equations. This
formula applies when improper imputation and a paramet-
ric imputation model are used. IPW/MI could be carried out
in this way and the Robins and Wang (2000) variance formula
used. The formula is, however, complicated and has not been
implemented in standard software. Using proper imputation
with Rubin’s rules is appealing because it is simpler and can
be used with nonparametric imputation procedures. Robins
and Wang (2000) also give a formula for the asymptotic bias
of the Rubin’s rules variance estimator when M = ∞. We used
this to show that, in the case of linear regression with MI of
a missing outcome, the Rubin’s rules variance estimator for
IPW/MI is consistent when M = ∞. We also used it in the
setting described in Section 5, where a missing covariate is im-
puted. The expression derived for the asymptotic bias in the
Rubin’s rules variance estimator for IPW/MI was complicated
and did not reduce to zero. However, both the asymptotic and
finite-sample biases were found to be small in this study. In the
Web Appendix, we describe two simulation studies of logistic
regression, one with an imputed outcome and one with an im-
puted covariate. In both, the Rubin’s rules variance estimator
was approximately unbiased. Schafer (2003) comments that
“although we may find it difficult to prove good performance
for [MI using a nonmaximum likelihood estimator], that does
not imply that good performance will not be seen in practice.
Experience suggests that Bayesian MI does interact well with
a variety of semi- and nonparametric estimation procedures.”

If the weights are just sampling weights, they will be known,
but if they are used to account for missing data, they will
need to be estimated. A limitation of our proof in Section 4
is that the complete-data variance estimator assumes that
weights are known and ignores any estimation uncertainty
about them. This uncertainty is commonly ignored, thus over-
estimating the variance (Robins et al., 1994), as we saw in
Section 5. If software allows, we recommend using a sandwich
estimator that accounts for the uncertainty in the weights
(Robins et al., 1994).

Some researchers may prefer to use straightforward MI
(what we called MI/MI). Provided that the imputation mod-
els are correctly specified, this will be more efficient than
IPW/MI. However, our (admittedly contrived) simulations
and (not contrived) real data example have shown that those
who prefer IPW/MI have some justification for their caution.
A possible use for IPW/MI is as a check, or diagnostic, for

MI/MI. If the results of IPW/MI and MI/MI are very differ-
ent, further exploration would be warranted, possibly leading
to refinement of the imputation model. We have not consid-
ered the effect of misspecified missingness models. Such mis-
specification would typically cause bias, just like misspecifica-
tion of the imputation model in MI/MI. However, the fit of the
missingness model, which is a model for a univariate response,
is easier to assess, and more able to be assessed (Vansteelandt,
Carpenter, and Kenward, 2010), than that of a complex mul-
tivariate imputation model. Furthermore, IPW/MI is needed
when sampling weights are used, even if all missing values are
imputed.

IPW/MI will be most appealing when the model for the
weights is relatively simple compared with the imputation
model. This will not always be so. Also, a limitation of all IPW
methods is their difficulty in handling nonmonotone missing-
ness in the predictors in the missingness model. Robins and
Gill (1997) propose a procedure for handling such missing-
ness, but this is complicated to use and limited in practice to
a small number of missing predictors.

Another alternative to IPW/MI is IPW/IPW. This is sim-
pler, but has the disadvantage that an individual is excluded
from an analysis even if he/she is missing just one variable.
Furthermore, if multiple analyses are being performed with
different variables, either a different set of weights is needed
for each analysis (because an individual who is complete for
one analysis may be incomplete for another) or a single set
of weights is calculated but only for individuals who are com-
plete cases for all the analyses (Goldstein, 2009). IPW/MI, on
the other hand, would allow a single set of weights to be used,
as imputation could ensure that the set of complete cases were
the same for each analysis.

8. Supplementary Materials
The Web Appendix referenced in Sections 2, 3, 5, and 7 is
available under the Paper Information link at the Biometrics
website http://www.biometrics.tibs.org/.
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