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Background: Recent study demonstrates the comprehensive effects of gut microbiota
on complex diseases or traits. However, limited effort has been conducted to explore the
potential relationships between gut microbiota and BMD.

Methods: We performed a polygenetic risk scoring (PRS) analysis to systematically
explore the relationships between gut microbiota and body BMD. Significant SNP sets
associated with gut microbiota were derived from previous genome-wide association
study (GWAS). In total, 2,294 to 5,065 individuals with BMD values of different sites and
their genotype data were obtained from UK Biobank cohort. The gut microbiota PRS of
each individual was computed from the SNP genotype data for each study subject of UK
Biobank by PLINK software. Using computed PRS as the instrumental variables of gut
microbiota, Pearson correlation analysis of individual PRS values and BMD values was
finally conducted to test the potential association between gut microbiota and target trait.

Results: In total, 31 BMD traits were selected as outcome to assess their relationships
with gut microbiota. After adjusted for age, sex, body mass index, and the first 5 principal
components (PCs) as the covariates using linear regression model, pelvis BMD (P =
0.0437) showed suggestive association signal with gut microbiota after multiple
testing correction.

Conclusion: Our study findings support the weak relevance of gut microbiota with the
development of BMD.

Keywords: gut microbiota, bone mineral density, polygenic risk score, osteoporosis, fracture
INTRODUCTION

Bone mineral density (BMD) is widely used in clinical practice as an indirect indicator of
osteoporosis and fracture risk (Johnell et al., 2005; Kanis et al., 2006). According to a report,
there will be more than 2 million osteoporosis-related fractures in the United States in 2005 which
costing $17 billion and the annual fractures and costs will increase by nearly 50% in 2025
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(Burge et al., 2007). In the developed countries, 2% to 8% of men
and 9% to 38% of women are affected by osteoporosis according
to the method of diagnosis (Wade et al., 2014).

Evidence from intergenerational studies estimated that
genetic factors account for 50–70% of the variance in BMD,
whereas twin studies estimated reach 80–90% (Garabedian, 1995;
Krall and Dawsonhughes, 2009). A multivariate twin study of
Finnish men suggested that the heritability was estimated to
account for 75% of femoral BMD variation and 83% of lumbar
BMD variation respectively (Videman et al., 2007). Up to now,
extensive genetic studies have been conducted to detect genetic
factors underlying BMD. For example, genome-wide association
studies (GWAS) have identified more than 65 novel genome-
wide significant loci for BMD and detected 14 risk loci for
fracture (Estrada et al., 2012). In a targeted sequencing of
genome-wide significant loci for BMD, WLS, ARHGAP1, and
5′ ofMEF2C were identified much more strongly associated with
BMD compared to the GWAS SNPs (Hsu et al., 2016). However,
the full genetic mechanism of BMD remains elusive now.

The intestinal microbiota is the complex community of
microbes colonizing the gastrointestinal tract. Recently, extensive
researches have focused on the human gut microbiota and our
knowledge of the resident flora and its potential functional capacity
is growing rapidly. It has been reported that human gut microbiota
contains tens of trillions of microbes, including at least 1,000
different kinds of known bacteria with more than 3 million genes
(Qin et al., 2010). The activity and composition of the gut
microbiota co-develop with the host from birth and have
complex interactions with the host genome, nutrition, and
lifestyle (Nicholson et al., 2012). The changes of composition and
abundance of microbiota have been linked with many
inflammatory and metabolic disorders, such as inflammatory
bowel disease, rheumatoid arthritis, type 2 diabetes, and obesity
(Ley et al., 2006; Frank et al., 2007; Qin et al., 2012; Zhang et al.,
2015). More recently, Wang et al. conducted a 16S rRNA gene
sequencing to detect the composition and diversity changes of gut
microbiota in patients with primary osteoporosis and primary
osteopenia (Wang et al., 2017). The results suggest that
compared with normal controls, the bacterial composition and
diversity are altered in osteoporosis and osteopenia patients, which
supported the view that the bone health might be influenced by the
gut microbiota (Wang et al., 2017). But limited efforts have been
conducted to explore the relationship between gut microbiota and
BMD of different sites until now.

A polygenic risk score (PRS) is a sum of trait-associated alleles
across many genetic loci, typically weighted by effect sizes
estimated from a genome-wide association study (Euesden
et al., 2014). PRSs are generated by running a GWAS on a
discovery sample, selecting SNPs on the basis of their association
with the phenotype, and creating a sum of their phenotype-
associated alleles (often weighted by the SNP-specific coefficients
from the GWAS) that can be evaluated in a separate replication
sample (Dudbridge, 2013). Polygenic risk score (PRS) analysis is
not only able to evaluate the effects of susceptible loci on
disease risks, but also capable of exploring the genetic
relationships between various complex diseases and traits
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(Euesden et al., 2014). The use of PRS has become increasingly
popular, facilitating genetic discoveries regarding complex traits.
Then, the approach has motivated several other applications,
including polygenic Mendelian Randomization (Hung et al.,
2014). For instance, PRS analysis has been successfully applied
to multiple complex diseases, such as diabetes, sleep traits, and
coronary heart disease (Kawai et al., 2017; Carter et al., 2019;
Nazarzadeh et al., 2019; Richmond et al., 2019).

In this study, we performed a PRS analysis to systematically
explore the relationships between gut microbiota and BMD of
different sites. Our results may substantially expand the
knowledge of relationships between gut microbiota and the
development of BMD.
MATERIALS AND METHODS

UK Biobank Data Set
This study was conducted using the UK Biobank resource. The
UK Biobank study is a large prospective cohort study of
approximately 500,000 individuals aged between 37 and 76
years (99.5% were aged 40–69 years) from all over of the
United Kingdom (Sudlow et al., 2015). All participants
provided a range of information on health status,
demographics, and lifestyle via questionnaires and interviews.
UK Biobank has ethical approval from the Northwest Multi-
centre Research Ethics Committee, and informed consent was
obtained from all participants. Specific for this study, 2,294 to
5,065 individuals with BMD values of 31 different sites were
included (Table 1). BMD values for all body sites were measured
by dual energy X-ray absorptiometry (DXA) (Harvey et al.,
2013). All phenotypic values were adjusted for age, sex, body
mass index, and the first 5 principal components (PCs) as the
covariates using linear regression model. A set of 40 genetic PCs
were pre-calculated by the UK Biobank (Bycroft et al., 2018).
Briefly, by using a set of 407,219 independent, high-quality
samples and 147,604 high-quality markers pruned to minimize
linkage disequilibrium, they calculated the corresponding
principal component-loadings and projected all samples onto
the principal components, thus forming a set of principal
component scores for all samples in the cohort (Bycroft et al.,
2018). Detailed information regarding the calculation is
described elsewhere (Bycroft et al., 2017). The detailed number
of samples for these BMD phenotypes can be found in the
Table 1. The genotypes of the UK Biobank participants were
assayed using either the Affymetrix UK BiLEVE Axiom or
Affymetrix UK Biobank Axiom array. Imputation was
conducted by IMPUTE4 against the reference panel of the
Haplotype Reference Consortium, 1000 Genomes, and UK10K
projects. We used the imputed genetic data set released by UK
Biobank in July 2017 (Bycroft et al., 2018). Full details regarding
these data have been published elsewhere (Canela-Xandri et al.,
2018). This research has been conducted using the UK Biobank
Resource under Application Number 46478. The authors thank
all UK Biobank participants and researchers who contributed or
collected data.
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GWAS Data Sets of the Gut Microbiota
The GWAS summary data sets of gut microbiota were derived
from two previous studies (Goodrich et al., 2016; Turpin et al.,
2016). Briefly, 1,561 healthy individuals and 2,731 subjects were
recruited in the two GWAS data sets, respectively. The V4
hypervariable region of bacterial 16S rRNA was sequenced in
paired-end mode (2 × 150 bp, 2 × 250 bp, respectively) on the
Illumina MiSeq platform using primers 515F and 806R. Mate-
pair merging, de-multiplexing, quality control, and operational
taxonomic units (OTU) picking were performed by QIIME
(v1.8.0) pipeline with default parameters (Caporaso et al.,
2010). SNP–microbe association was estimated using genome-
wide efficient mixed-model association (GEMMA) (Zhou and
Stephens, 2012). Specific in our study, 306 significant SNPs at
P < 5.0 × 10−5 were selected for subsequent PRS analysis
(Supplementary Table 1). Detailed description of experimental
design, sample characteristics, genotyping, imputation, and
statistical analysis can be found in previous studies (Goodrich
et al., 2016; Turpin et al., 2016).

Polygenic Risk Scores (PRS) Analysis
The significant SNPs with genotype data derived from UK Biobank
data set were analyzed in this study. The gut microbiota PRS of each
individual was computed from the SNP genotype data for each
study individual by PLINK according to the standard approach used
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by previous studies (Purcell et al., 2007). Let PRSm denotes the PRS
value of gut microbiota for the mth subject, defined as PRSm =

ol
i=1biSNPim. bi is the effect parameter of risk allele of the ith

significant SNP associated with gut microbiota, which was obtained
from the published study (Goodrich et al., 2016; Turpin et al., 2016).
SNPim is the dosage (0, 1, 2) of the risk allele of the ith SNP for the
mth study subject. l denotes the total number of gut microbiota
analyzed in this study. PLINK 2.0 were used to perform the PRS
analysis (http://www.cog-genomics.org/plink/2.0/). Using
computed PRS as the instrumental variables of gut microbiota,
Pearson correlation analysis of individual PRS values and BMD
values was finally used to detect the potential associations between
gut microbiota and target traits. P < 0.05 was detected to be
significant in this study. All statistical analyses were performed
using R (https://www.r-project.org/).
RESULTS

In total, 31 BMD of different sites were selected as outcome to
assess their relationships with gut microbiota. We calculated the
gut microbiota PRS of each individual from UK Biobank study.
After adjusted for age, sex, body mass index, and the first 5 PCs
as the covariates using linear regression model, pelvis BMD (P =
0.0437, Pearson correlation coefficients = −0.0283) appeared to
be associated with gut microbiota (Table 2). Figure 1 shown the
scatter plot of the adjusted pelvis BMD and gut microbiota PRS.
DISCUSSION

Limited effort has been conducted to explore the potential
relationships between gut microbiota and BMD. In this study,
we conducted a PRS analysis to systematically explore the
relationships between BMD of different sites and gut
microbiota. Pelvis BMD appeared to be associated with gut
microbiota by the PRS analysis in this study.

The direct evidence that gut microbiota modulates BMD is
from a study which compared BMD and microstructure of bone
in germ-free versus conventionally raised mice (Sjögren et al.,
2012). Seven-week-old germ-free female mice had better femurs
bone structure and density than conventionally raised mice:
higher trabecular bone volume to tissue volume, and higher
trabecular BMD (Sjögren et al., 2012). However, both BMD and
cortical cross-sectional area of trabecular decreased when germ-
free mice were recolonized with the gut flora which suggesting
that the gut flora is a main regulator of bone mass (Sjögren et al.,
2012). McCabe et al. (2013) suggested that C57Bl/6J male mice
receiving the probiotic Lactobacillus reuteri ATCC PTA 6475 (a
candidate probiotic with anti-TNFa activity) for four weeks
showed an increase in femoral trabecular BMC, BMD,
trabecular spacing, number, and thickness. In addition, bone
mineral content (BMC) and BMD in children with a perturbed
intestinal microbiota have altered through post-weaning
exposure to low-dose penicillin or introduction of low-dose
penicillin to their mother in pregnancy (Cox et al., 2014).
TABLE 1 | The number of samples for the BMD of different sites from the
UK Biobank.

Phenotypes Total samples

Arm BMD (left) 4267
Arm BMD (right) 4267
Arms BMD 5064
Femur lower neck BMD (left) 2295
Femur lower neck BMD (right) 2294
Femur neck BMD (left) 5063
Femur neck BMD (right) 5062
Femur shaft BMD (left) 5046
Femur shaft BMD (right) 5048
Femur total BMD (left) 5046
Femur total BMD (right) 5048
Femur total BMD 5065
Femur troch BMD (left) 5064
Femur troch BMD (right) 5063
Femur upper neck BMD (left) 2298
Femur upper neck BMD (right) 2295
Femur wards BMD (left) 5064
Femur wards BMD (right) 5063
L1-L4 BMD 5065
Leg BMD (left) 4268
Leg BMD (right) 4268
Legs BMD 5065
Pelvis BMD 5065
Ribs BMD 5065
Spine BMD 5065
Total BMD (left) 4268
Total BMD (right) 4268
Total BMD 5065
Trunk BMD (left) 4268
Trunk BMD (right) 4268
Trunk BMD 5065
BMD, bone mineral density.
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Recent studies have revealed that relationships between gut
microbiota and osteoporosis. Wang et al. demonstrated that
compared with normal controls, the bacterial composition and
diversity are altered in osteoporosis and osteopenia patients (Wang
et al., 2017). In animal experimentation, bone loss in
postmenopausal osteoporosis model is closely related to host
Frontiers in Genetics | www.frontiersin.org 4
immunity, which is affected by the gut microbiota (Li et al.,
2016). The effects of the gut microbiota on bone metabolism
provide a promising target for the management of
postmenopausal osteoporosis (Li et al., 2016).

Gut microbiota can affect bone metabolism, but its exact
mechanism remains unclear now. So far, there are three
hypotheses for the mechanisms by which gut microbes regulate
bone metabolism, including effects on the immune system, the
endocrine system, and calcium absorption. (1) The intestinal
microbiota regulates bone metabolism through the immune
system. For example, segmental filamentous bacteria in the
mouse gut promote the production of IL-17 and IFN-g, which
plays a vital role in the formation of osteoclasts and osteoblasts
(Adamopoulos et al., 2010; Duque et al., 2011). (2) The gut
microbiota regulates bone metabolism through the endocrine
system. In animal experiments, intestinal microbial colonization
in sterile mice significantly increased the levels of serum IGF-1
which leading to normalized bone mass and bone growth (Yan
et al., 2016). (3) The gut microbiota regulates bone metabolism
by affecting the absorption of calcium. In the Caco-2 cell culture
model, a special probiotic, such as Lactobacillus saliva, stimulates
intestinal cells to absorb calcium (Gilman and Cashman, 2006).
Ultimately, it leads to reduced osteoclast activity and/or
increased osteoblast activity, which results in increased bone
structure, density, and strength (McCabe et al., 2015).

This is the first systematic study of the relationship between gut
microbiota and BMD of different sites. However, our study does
have certain limitations. Firstly, the gut microbiota related SNP
sets were obtained from previous published GWAS. Due to the
very limited GWAS of gut microbiota performed at different
platforms, some loci which regulate the gut microbiota have not
been found until now, which may affect the accuracy of our results.
So more GWAS of gut microbiota are needed to illustrate the
interactions between gut microbiota and host genetics. Second, all
subjects in this study are from European ancestry. Therefore, it
should be careful to extrapolate our study findings to other ethnic
groups. Third, it will be helpful to understand the relationship of
BMD and gut microbiota if the correlation between the PRS and
FIGURE 1 | The scatter plot of the adjusted pelvis BMD and gut microbiota PRS.
TABLE 2 | List of the correlation between BMD of 31 different sites and
gut microbiota.

Phenotype Correlation coefficients P

Arm BMD (left) 0.0114 0.4582
Arm BMD (right) −0.0028 0.8530
Arms BMD 0.0047 0.7389
Femur lower neck BMD (left) 0.0032 0.8765
Femur lower neck BMD (right) 0.0196 0.3487
Femur neck BMD (left) 0.0053 0.7068
Femur neck BMD (right) 0.0108 0.4431
Femur shaft BMD (left) −0.0017 0.9039
Femur shaft BMD (right) 0.0141 0.3169
Femur total BMD (left) −0.0055 0.6969
Femur total BMD (right) 0.0105 0.4539
Femur total BMD −0.0187 0.1842
Femur troch BMD (left) −0.0103 0.4636
Femur troch BMD (right) 0.0025 0.8604
Femur upper neck BMD (left) −0.0012 0.9540
Femur upper neck BMD (right) 0.0071 0.7354
Femur wards BMD (left) −0.0045 0.7516
Femur wards BMD (right) −0.0014 0.9212
L1-L4 BMD −0.0202 0.1511
Leg BMD (left) −0.0107 0.4846
Leg BMD (right) −0.0070 0.6497
Legs BMD −0.0053 0.7082
Pelvis BMD −0.0283 0.0437
Ribs BMD −0.0043 0.7593
Spine BMD −0.0086 0.5429
Total BMD (left) −0.0050 0.7459
Total BMD (right) −0.0064 0.6755
Total BMD −0.0045 0.7463
Trunk BMD (left) −0.0181 0.2374
Trunk BMD (right) −0.0155 0.3112
Trunk BMD −0.0164 0.2445
BMD, bone mineral density.
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gut microbiota in two previous GAW studies can be calculated.
However, we are not permitted to obtain the raw data of the
individual level GWAS data of gut microbiota.

In summary, we systematically evaluated the associations
between gut microbiota and BMD of different sites utilizing
UK Biobank individual level BMD and genotype data of BMD
and publicly available GWAS summary data of gut microbiota.
We observed modest associations between gut microbiota and
pelvis BMD, supporting the weak relevance of gut microbiota
with the development of BMD. Our results may help to uncover
the roles of gut microbiota on the development of BMD.
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