
ARTICLE

Cell-Type Heterogeneity in Adipose Tissue Is
Associated with Complex Traits and Reveals
Disease-Relevant Cell-Specific eQTLs

Craig A. Glastonbury,1,2,* Alexessander Couto Alves,1 Julia S. El-Sayed Moustafa,1 and Kerrin S. Small1,*

Adipose tissue is an important endocrine organ with a role in many cardiometabolic diseases. It is comprised of a heterogeneous collec-

tion of cell types that can differentially impact disease phenotypes. Cellular heterogeneity can also confound -omic analyses but is rarely

taken into account in analysis of solid-tissue transcriptomes. Here, we investigate cell-type heterogeneity in two population-level sub-

cutaneous adipose-tissue RNA-seq datasets (TwinsUK, n ¼ 766 and the Genotype-Tissue Expression project [GTEx], n ¼ 326) by esti-

mating the relative proportions of four distinct cell types (adipocytes, macrophages, CD4þ T cells, and micro-vascular endothelial cells).

We find significant cellular heterogeneity within and between the TwinsUK and GTEx adipose datasets. We find that adipose cell-type

composition is heritable and confirm the positive association between adipose-resident macrophage proportion and obesity (high BMI),

but we find a stronger BMI-independent association with dual-energy X-ray absorptiometry (DXA) derived body-fat distribution traits.

We benchmark the impact of adipose-tissue cell composition on a range of standard analyses, including phenotype-gene expression as-

sociation, co-expression networks, and cis-eQTL discovery. Our results indicate that it is critical to account for cell-type composition

when combining adipose transcriptome datasets in co-expression analysis and in differential expression analysis with obesity-related

traits.We applied gene expression by cell-type proportion interactionmodels (G3Cell) to identify 26 cell-type-specific expression quan-

titative trait loci (eQTLs) in 20 genes, including four autoimmune disease genome-wide association study (GWAS) loci. These results

identify cell-specific eQTLs and demonstrate the potential of in silico deconvolution of bulk tissue to identify cell-type-restricted regu-

latory variants.
Introduction

Adipose tissue is the largest endocrine organ in the human

body and has a role in the development of insulin resis-

tance, cardiovascular disease, type 2 diabetes, and many

other cardiometabolic disorders. Adipose tissue is hetero-

geneous; it is comprised of an array of cell types including

adipocytes, pre-adipocytes, endothelial cells, and several

immune cell subtypes.1 Adipose tissue cellular composi-

tion changes in response to obesity, and it is thought

that this change, in particular the marked increase in im-

mune-cell infiltration, contributes to some of the negative

health consequences of obesity.2–4 It is therefore of interest

to understand the cellularity of adipose tissue, its vari-

ability in the population, and how this affects health and

disease.

As a result of the biomedical importance and relatively

easy physical accessibility of subcutaneous adipose tissue,

a large body of adipose transcriptomic datasets has been

generated from multiple studies, including several studies

with more than 200 participants.5–10 To our knowledge,

these studies have not assessed the cellular composition

of their samples, despite the fact that cellular heterogene-

ity is a well-established confounder in transcriptomic anal-

ysis of bulk tissues.11–13 Although extensive investigation

and methodological development has centered on compu-

tationally accounting for cell-type composition in whole

blood,13 very few studies have investigated the extent of
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cellular heterogeneity in other tissues and how it

impacts -omic-level analyses.14 Directly assessing cell-

type composition in adipose tissue is challenging; methods

such as flow sorting face technical difficulties, including

adipocyte rupturing and shared cell-type-specific surface

markers, as well as low throughput and high expense

when applied to hundreds of samples. Single-cell analysis

could overcome some of these considerations; however,

the complex logistics of population-level collection of adi-

pose biopsies and the expense of single-cell analysis mean

that there is considerable utility in in silico deconvolution

of -omic profiles generated from bulk adipose tissue.

Here, we utilize in silico deconvolution to estimate the

relative proportions of four distinct cell types (adipocytes,

macrophages, CD4þ T cells, and micro-vascular endothe-

lial cells [MVEC]) in bulk subcutaneous adipose-tissue

transcriptomes from two independent datasets: 766 indi-

viduals from TwinsUK and 326 post-mortem Genotype-

Tissue Expression project (GTEx) donors. We conduct

extensive simulations to investigate whether our methods

accurately identify the relevant cell types, the range of cell-

type detection possible, and robustness to varying levels of

noise and unknown cell content (contamination). We find

significant cellular heterogeneity within and between

these datasets. We recapitulate the well-known cellular

hallmark of obesity and find a positive association between

adipose-tissue macrophage abundance and body-mass

index (BMI), but we identify stronger relationships to
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dual-energy X-ray absorptiometry (DXA) derived body-fat

distribution traits. We assess the impact of adipose cellular

heterogeneity on standard -omic analyses, including

cis-eQTL discovery, co-expression networks, and differen-

tial gene-expression studies. Finally, we utilize cell-type

composition in interaction models to identify cell-type-

specific expression quantitative trait loci (eQTLs) from

bulk-tissue transcriptomes that are enriched for genome-

wide association study (GWAS) variants and cell-type-rele-

vant enhancers.
Material and Methods

RNA-Seq Alignment and Gene Quantification
All (adipose tissue, primary cells, and iPSCs) reference data were

aligned, subjected to quality control (QC), and quantified with

the same pipeline to ensure comparability. Reads were aligned to

the hg19 reference genome with STAR version 2.4.0.1.15 All

aligned binary sequence alignment maps were then filtered to

isolate those containing reads with a mapping quality greater

than 10, and among those, only reads that were properly paired

and had two or fewer mismatches were kept. Samples were

excluded if they had fewer than 10 million reads mapping to

known genes or if the sequence data did not correspond to actual

genotype data as assessed with the ‘‘mbv’’ mode of QTLtools.16

GENCODE annotation v19 gene counts were calculated via featur-

eCounts17 and only genes that coded for proteins and did not have

retained intron transcripts. All gene counts were transformed into

trimmed mean of M-values (TMM), a unit shown to be well suited

for an across-cell-type study design and that also accounts for

library size differences.18,19 Although all protein-coding genes

were used for cell-type estimation (20,345 genes) because filtering

lowly expressed genes could bias cell-type estimates to highly

abundant cells in a given tissue biopsy, genes with at least 0.5

TMM expressed in 90% of samples within a dataset were retained

for transcription-wide association and eQTL analysis.

TwinsUK Dataset
Sub-umbilical, subcutaneous adipose-tissue punch biopsies were

collected from female twins from the TwinsUK cohort, as

described previously.5,6 RNA-seq data are available in EGA (EGA:

S00001000805). QC) of the TwinsUK genotypes has been

described previously.6,20 After QC, 766 TwinsUK samples were

available for analysis, of which 720 had available genotypes. The

TwinsUK adipose samples had a median age of 60 [38–84] andme-

dian BMI of 25 [16–47]. Cell-type proportions of TwinsUK samples

are listed in Table S1.

GTEx RNA-Seq Dataset
RNA-seq FASTQ data for all GTEx v. 6p subcutaneous adipose-tis-

sue samples were downloaded from the database of genotypes

and phenotypes (dbGaP). GTEx subcutaneous adipose tissue sam-

ples were obtained from the lower legs of post-mortem donors. To

ensure comparability, GTEx data were re-aligned and quantified

with the same pipeline used by TwinsUK. In addition, gene-

expression principal-component analysis (PCA) outliers were

removed; outliers were defined by use of k-means clustering

(k ¼ 2) fit to the first two expression principal components

(PCs). 326 QC’d samples were retained for analysis and are listed

with their cell-type proportions in Table S2.
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Reference Cell-Type Data
To create the adipose signature matrix, we utilized reference RNA-

seq datasets for each cell type selected from publicly available

RNA-seq data from either primary (CD4þ T cells, HMVEC),

PSC-derived (adipocytes), or iPSC-derived (macrophages) sources.

Reference RNA-seq data were obtained from the Sequence Read

Archive (SRA) as raw FASTA files. All datasets are listed in

Table S3. One independent set of experiments was used for con-

struction of the adipose tissue signature matrix, and another in-

dependent set was used for construction of in silico simulated

mixtures for testing deconvolution accuracy. To ensure compara-

bility, we aligned reference cell-type data and quantified them by

using the same pipeline used for bulk tissue. We were prevented

from estimating additional cell types by the unavailability of

reference datasets for those cell types at the time of study, a

lack of replicates that would ensure stable construction of the

signature matrix, or very low frequency in the tissue (e.g., mast

cells). Biological replicates of each of the four reference cell types

were included.

Construction of CIBERSORT Adipose Signature Matrix
RNA-seq data obtained from cell types and their biological repli-

cates were constructed into a reference cell-type matrix with n

rows (genes) and m columns (cell types). We also constructed a

class file to describe the pairwise comparisons that one must

perform between cell types in order to produce the signature ma-

trix.21 The signature matrix contains all genes differentially ex-

pressed between the cell types at a specified false discovery rate

(FDR) (q ¼ 0.30, default). The CIBERSORT analytical tool has the

additional benefit that each tissue or mixture is deconvolved

with potentially different signature genes. This is due to the algo-

rithm’s implementation of a n–support vector regression (n-SVR)

step in which only the maximally separating support vectors are

retained for the linear regression. n-SVR also aids in minimizing

co-linearity as measured through the matrix condition number

(k), an ideal step during estimation of cell types that are biologi-

cally closely related.

Estimating Cell Types from Bulk Adipose-Tissue RNA-

Seq Data
CIBERSORT was used for estimation of cell-type proportions from

adipose-tissue RNA-seq samples from both TwinsUK and GTEx.21

For signature matrix construction in CIBERSORT, we used the

default value of q¼ 0.30 for the FDR because CIBERSORT’s support

vector regression procedure ensures that a subset of genes that

maximally separate cell types is present in each individual adipose

tissue sample, so it is therefore better to have a lower-false negative

rate when detecting the initial set of signature genes. CIBERSORT

also reports the condition number (k) of the signature matrix, a

measure of co-linearity and matrix stability. The signature matrix

has a low kappa (k¼ 3.22), suggesting that a well-conditionedma-

trix was achieved. CIBERSORT provides a deconvolution p value

per sample, calculated from 1,000 bootstrapped permutations.21

We required a deconvolution p value < 0.01 corresponding to

an FDR of 1%.

In Silico Mixture Simulations
Reference cell types were combined in random proportions to

generate 1,000 in silico simulated cell mixtures, termed ‘‘the

ground truth’’ (S). We generated a mixture matrix (M) by drawing

variables (equal to the total number of cells to form a mixture
e 6, 2019



with) from a random uniform distribution normalized to sum to

one and multiplied by the reference cell matrix (C):

S ¼ CMT

S ¼ truth (known simulated proportions)

C ¼ matrix of reference cell expression profiles

M ¼ mixture matrix specifying amount of each cell type [0–1]

A natural amount of noise is introduced into this problem

because the reference cell types are obtained from different labora-

tories that use different sequencing chemistries. This is ideal

because the same problem is present for the deconvolution of

the real adipose-tissue mixtures, making the simulated data

more realistic. However, to make the problem more challenging

and to assess the signature matrix’s limit and ability to deal with

noise in mixture profiles, we added 10% to 100% scaled randomly

distributed Gaussian noise to each simulated sample:

y1 ¼y0 þ X þ y0 S

x ¼ random normal variable with X �N (0, 1)

y0 ¼ simulated in silico mixture

y1 ¼ simulated in silico mixture with added noise

S ¼ scale factor [0–1]

GTEx Histology Images and Pathologist Notes
Histological images of GTEx biopsies along with accompanying

pathologist notes were obtained from the GTEx web portal.

Although the GTEx histology slides were prepared from a piece

of material adjacent to the piece utilized for RNA-seq, they are

reflective of the overall tissue sample taken.

Association between Cell-Type Composition and GTEx

Covariates
To assess the relationship betweenGTEx adipose tissue cell propor-

tion estimates and ischemic time, we fit a linear model controlling

for age, sex, BMI, and batch against each cell type estimated. Addi-

tionally, we performed PCA on the cell-type proportion matrix

and assessed whether ischemic time was correlated to any one of

the first three PCs. Finally, given that GTEx is composed of both

male- and female-derived samples, we tested for any presence of

sexual dimorphism for each cell type while controlling for BMI,

age, ischemic time, and batch.

Heritability Estimation
Heritability calculations were performed with OpenMx.22 We fit a

standard additive genetic variance, common environmental fac-

tors, and nonshared environment model in which additive ge-

netic, common, and unique environment-variance components

were estimated formacrophage and adipocyte proportion between

twin pairs.

Association between Cell-Type Composition andWhole-

Body Phenotypes
Association between cell-type proportion and whole-body pheno-

types (BMI, body-fat distribution, and age) were conducted in the

TwinsUK datasets under linear models (lm) in R. All phenotypes

were collected at the time of biopsy. Body-fat distribution mea-

surements of android, gynoid, and visceral fat volume were

quantified (n ¼ 652) via dual-energy X-ray absorptiometry

(DXA; Hologic QDR 4500 plus) according to the standard manu-

facturer’s protocol.
The America
Association between BMI and Gene Expression
Each gene-expression measurement (TMM) was tested as a depen-

dent variable in a linear mixed-effects model that accounted for

family structure as previously described in detail.20 Independent

variables in addition to BMI and macrophage proportion included

technical covariates that are well known to have strong effects

on RNA-seq gene expression studies (fixed effects: insert-size

mode, mean GC content, primer index) (random effects: date

of sequencing). Using a single-degree-of-freedom ANOVA, we

compared the model fit, which was adjusted for macrophage

proportion with the null model but was not adjusted for

macrophages.

Weighted Gene Co-Expression Network Analysis
Signed weighted gene co-expression network analysis (WGCNA)

was carried out with WCGNA version 1.62 in R as previously

described.23 Gene networks have been shown to follow a scale-

free topology. WGCNA uses soft thresholding to find modules of

highly correlated co-expressed genes. The overall process has

been described previously.

cis-eQTL Analysis
For global cis-eQTL analysis, each cis-window was defined as a

1 MB region around the transcription start site (TSS) of each

gene. SNPs with an MAF R 5% were analyzed. We used eigenMT

to determine significant associations.24 eigenMT calculates the

number of effective tests per cis-window by performing eigenvalue

decomposition and taking the effective number of tests as equal

to the eigenvalues that explain 99% of the variance. This proced-

ure has been shown empirically to control the FDR similarly to

permutations. All analysis was performed with inverse-rank-

normalized gene-expression residuals corrected for experimental

covariates.20 All analysis was conducted with the MatrixeQTL

package.25 We obtained probabilistic estimation of expression

residuals (PEER)-corrected residuals by correcting for 30 PEER

factors.26

Gene-by-Cell Proportion Interaction Modeling
Interaction models were fitted with the ‘‘modellinear cross’’

function in MatrixQTL.25 To maximize the power to detect

cis-eQTLs that are dependent on cell-type proportion, we in-

ferred 30 PEER factors by using inverse-rank normalized gene

expression residuals corrected for sequencing date, zygosity,

and family structure. Interaction models for relative macrophage

proportion were adjusted for the following covariates: 30 PEER

factors, mean GC content, insert size, BMI, and age. We also in-

verse normalized macrophage proportion to ensure normally

distributed errors.
Results

Accurate Cell-Type Estimates That Are Robust against

Unknown Content and Noise

We estimated cell-type proportion in bulk adipose tissue

RNA-seq profiles with CIBERSORT, a n-support vector

regression (n-SVR) method that estimates cell proportions

by using gene expression obtained from solid tissues.21

CIBERSORT identifies cell-type-specific marker genes

from reference cell transcriptome profiles to construct a

tissue-specific signature matrix, a set of differentially
n Journal of Human Genetics 104, 1013–1024, June 6, 2019 1015
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Figure 1. Cell-Type Proportion Is Accu-
rately Estimated in In Silico Mixture
Simulations
Each panel displays cell-type estimation in
1,000 in silico mixtures. Each point repre-
sents one simulation.
expressed genes across all cell types, and utilizes this signa-

ture matrix to perform the deconvolution step.

To construct theCIBERSORTadipose-tissue signaturema-

trix, we obtained previously published RNA-seq datasets

from reference in vitro cells, including both primary cells

and iPSC-derived cells that are known to be present in sub-

cutaneous adipose tissue; these include adipocytes, macro-

phages, CD4þ T cells, and microvascular endothelial cells

(MVECs) (Table S3). Adipose tissue is comprised of many

more cell types than the four we focus on here. Hierarchical

clustering of the reference transcriptional profiles recapitu-

lated developmental cellular hierarchy (Figure S1). Thefinal

CIBERSORT adipose signature matrix is comprised of 658

genes, including several encoding well-known cell-type-

specific markers. Examples include SCD (MIM: 604031),

COL1A1 (MIM:120150), andADIPOQ (MIM:612556) in ad-

ipocytes; SERPINE1 (MIM: 173360),MMP1 (MIM: 120353),

and VWF (MIM: 613160) in endothelial cells; SPP1 (MIM:

166490), F13A1 (MIM: 134570), and CTSC (MIM: 602365)

in macrophages; and FOS (MIM: 164810), TCF7 (MIM:

189908), and CD3 (MIM: 186780) in T cells. The full signa-

ture matrix is included in Table S4.

To test deconvolution ability, accuracy, and robustness to

noise, we performed several simulations that are typically

used for benchmarking deconvolution accuracy.19,21 First,

we tested whether the adipose tissue signature matrix can

accurately identify the four cell types when applied to a

set of independent reference cell-type RNA-seq datasets.
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All benchmark cell types were esti-

mated with high accuracy: three out

of four cell types attainedR 99% accu-

racy in prediction (Table S5). Macro-

phages (93% accuracy) are particularly

difficult to purify, so it is possible that

the 6% CD4þ T cells we estimate in

the macrophage benchmark sample

were present in the original reference

macrophage sample.

We next assessed the ability to esti-

mate the constituent cell proportions

of a mixture of known cell types. We

created 1,000 in silico mixtures of

known proportions of each of

the four cell types with the indepen-

dent reference cell-type datasets

(Table S3). Application of CIBERSORT

to the in silicomixtures yielded highly

accurate estimates of cell-type propor-

tion; values for the mean absolute de-
viation (mAD) of estimated proportions to ground truth

ranged from 0.019 to 0.068 (Figure 1). Biopsies can contain

contaminant cells from other tissues, which could inflate

cell-type proportion estimates if contaminant cells share

marker genes with any of the four cell types we are esti-

mating. To test this, we added proportions of smooth-mus-

cle cells, dendritic cells, and neutrophils to the in silico

mixtures of the four cell types. These cell types can be pre-

sent in adipose tissue and therefore reflect realistic

‘‘contaminant cells.’’ Neutrophils make up 60%–70% of

whole blood and are a likely contaminant. Cell-type pre-

diction was accurate when up to 10% of a sample was

composed of contaminant cell types (Figure S2). We note

that adipose-resident cells not included in our matrix but

with similar expression profiles to that of a reference cell

could inflate estimates of that cell type; in particular, the

estimated adipocyte proportion might be inflated because

of the lack of appropriate reference RNA-seq for adipocyte

mesenchymal stem cells and pre-adipocytes. It is likely

that the content of unknown cells in the samples is %

10% given previously published cell-type estimates from

adipose tissue,;27,28 thus, the adipose tissue signature ma-

trix is robust in estimating cell types from mixtures with

some unknown content.

Technical factors during library preparation and

sequencing introduce noise in RNA-seq experiments.

Therefore, as in previous work, we tested how much

noise we could introduce into the simulations and still



Figure 2. Distribution of Relative Cell-
Type Estimates in TwinsUK and GTEx
Adipose Samples
TwinsUK samples are shown on the left,
and GTEx samples are on the right.
accurately predict cell-type proportions.21 We added 10%,

50%, and 90% Gaussian noise, in addition to the naturally

occurring noise present in each of the separate experimen-

tally derived reference RNA-seq datasets. The estimates are

robust when up to 10% of the mixture is distorted with

noise, and a linear relationship between ground truth

and predicted estimates still holds when large amounts

of noise are introduced (Figure S3).

Estimation of Relative Cell-Type Proportions in Bulk

Adipose RNA-Seq Datasets

We applied CIBERSORT and the adipose-tissue signature

matrix to a previously published dataset of 766 subcutane-

ous adipose-tissue biopsies obtained from female twin par-

ticipants in TwinsUK.5,6 All 766 TwinsUK RNA-seq samples

were successfully deconvolved at an FDR of 1%. Adipocytes

were the most dominant relative cell type (0.73–0.99), but

also showed significant inter-subject variability (Figure 2).

Proportions of the other estimated cell types ranged from

0.004–0.22 for macrophages (M1 and M2 combined),

0–0.19 for MVEC, and 0– 0.11 for CD4þ T cells (Figure 2).

These estimates agree with previously published studies us-

ing flow cytometry (Table S6). Because the vast majority of

TwinsUK adipose samples had CD4þ Tcell estimates below

1%, we chose to focus on adipocyte, macrophage, and

endothelial-cell estimates for downstream analysis. How-

ever, we investigated whether there were any distinct

differences between individuals who had non-zero CD4þ
The American Journal of Human Ge
T cell counts. In total, two individuals

had CD4þ proportions >5%, and 24

individuals had CD4þ proportions

>1%. Neither BMI nor age differed

significantly between these subjects:

BMI (BMIlow CD4þ 26.6, BMIhi CD4þ
26.7) and age (Agelow CD4þ 59.4,

Agehi CD4þ: 60.9).
We next applied CIBERSORT to an

independent sample of 326 post-mor-

tem subcutaneous adipose tissue bi-

opsies from the GTEx. In contrast to

the samples from TwinsUK, �23% of

GTEx samples (75/326) failed success-

ful deconvolution (1% FDR), suggest-

ing substantial differences in cell

types present in the tissue from the

signature matrix. As compared to the

TwinsUK samples, the 251 GTEx sam-

ples that passed deconvolution had

markedly different cell-type composi-

tion profiles, including a lower adipo-
cyte fraction (GTExmedian ¼ 0.62, TwinsUKmedian ¼ 0.82),

twice as much vasculature (GTEx median MVEC propor-

tion¼ 0.30, TwinsUK¼ 0.15), and four times asmanymac-

rophages (GTEx median macrophage ¼ 0.08, TwinsUK ¼
0.02) (Figure 2). Overall, all cell types between GTEx and

TwinsUK differed significantly (adipocytes—t statistic ¼
39.78, p value ¼ 7.77 3 10�211; macrophages—t

statistic ¼ �22.585, p value ¼ 4.89 3 10�92; MVEC—t

statistic ¼ �32.02, p value ¼ 5.75 3 10�157).

To assess the GTEx estimates, we investigated whether

there were visible histological differences between samples

with differential macrophage proportion estimates in

GTEx adipose histology slides. We observed concordance

between our estimates and visual inspection of the histol-

ogy slides. We demonstrate this in Figure 3, where the sam-

ple with the lowest macrophage proportion (estimated at

0%) is composed primarily of adipocytes with few addi-

tional cells present. In stark contrast, the sample with the

highest macrophage proportion (estimated at 49%) has

substantial vasculature and blood cells present.

Tovalidate thedifference inadipocyteproportionbetween

thedatasets,we focusedontheexpressionofADIPOQ,which

encodes the hormone adiponectin. ADIPOQ is expressed

highly in adipocytes and pre-adipocytes.29 ADIPOQ was ex-

pressed 4-fold higher in the TwinsUK dataset (median

TMM ¼ 3998, expression rank ¼ 19) compared to the

GTEx dataset (median TMM ¼ 963, expression rank ¼ 59).

The distribution and range of ADIPOQ expression varied
netics 104, 1013–1024, June 6, 2019 1017



Figure 3. Estimated Cell-Type Composition of GTEx Samples
Corresponds to Image Data
Histology images from the GTEx adipose samples with the highest
(49%) (top) and lowest (0%) (bottom) macrophage estimates are
shown. Both whole-biopsy (left) and zoomed-in images (right)
are presented. Estimated cell-type composition of all GTEx sam-
ples is provided in Table S2.
between thedatasets; it followedanormaldistribution in the

TwinsUKdataset (untransformed, TMMdata) andwasheavi-

ly skewed to the right in the GTEx dataset (Figure S4).

ADIPOQ expression is very low in some GTEx samples as

compared to TwinsUK, which suggests fewer viable

adipocytes (GTEx ADIPOQmin ¼ 3.13 TMM; TwinsUK

ADIPOQmin¼986TMM)(FigureS4).TheADIPOQ results sup-

port theCIBERSORTestimatesof loweradipocyteproportion

in the GTEx samples.

There are several possible additional explanations of

why cell-type proportions differ between the TwinsUK

and GTEx datasets. The function and metabolic activity

of adipose tissue is known to vary between fat depots—

markedly between android (above the hip) and gynoid

(below the hip) depots. The GTEx adipose samples were

obtained via surgical incision from the lower left leg (gy-

noid fat depot), whereas the TwinsUK samples were

derived from punch biopsies from the abdomen (android

fat depot). Additional fibrosis is likely to alter the number

of viable cells available for sequencing in post-mortem

samples; GTEx pathologist notes frequently recorded the

presence of large fibrotic regions (up to 60% of a given his-

tology slide). In the GTEX data, ischemic time was not

associated with any individual cell type but was

correlated with the overall cellular heterogeneity of a sam-

ple (p value ¼ 0.0085, r ¼ 0.15), indicating that differences

in cell estimates among GTEx samples are partially due to

variability in ischemic time between samples. We also note

that sex was associated with both adipocytes (p value ¼
0.028) and MVEC (p value ¼ 0.019) proportion in the
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GTEx dataset, whereas the TwinsUK population was all fe-

male. Given the large disparities in estimated cell composi-

tion between the datasets, we chose to focus on the

TwinsUK dataset for the following analysis.

Adipose Cell-Type Proportions Are Heritable

Several studies have demonstrated that the cell-type

composition of whole blood is heritable, but the influence

of genetics on adipose cell-type composition has not been

explored.30,31 Using structural equation models, we esti-

mate the narrow-sense heritability (h2) of adipocyte,

macrophage, and endothelial cell proportion to be 17%,

30%, and 21% respectively in the TwinsUK data. The her-

itability of adipose tissue cell composition might be medi-

ated by genetic drivers of whole-body traits, such as BMI,

that in turn drive changes in cell-type proportion or might

be mediated by local effects within adipose tissue—effects

such as rates of adipogenesis or angiogenesis.

Adipose Tissue Cell-Type Proportion Is Associated with

Whole-Body Obesity Traits but Not Age

Macrophage infiltration and abundance in adipose tissue is

known to increase with obesity and its associated chronic

inflammation.32 Recapitulating this finding, we demon-

strate a significant correlation between BMI and estimated

adipose macrophage proportion in the TwinsUK data

(Table 1). To explore the relationship between cell-type

compositionandbody-fat distribution,weusedhighly accu-

rate dual X-ray absorptiometry (DXA) measures of visceral

fat volume (VFAT) and android/gynoid (A/G) ratio in a sub-

set of twins (n ¼ 652) with concurrently measured DXA

scans. Despite the smaller sample size, the correlation coeffi-

cients between the A/G ratio and visceral fat with relative

macrophage estimateswere significantly larger than the cor-

relationofBMIwith relativemacrophageestimates (Table1).

IncludingBMI as a covariate did not change the associations

to DXA-derived traits, indicating that body-fat distribution

is associated with adipose tissue cell composition indepen-

dent of overall adiposity. This finding confirms the impor-

tance of macrophage biology in obesity but also suggests

that inflammation plays a more prominent role in body-

fat distribution than is currently appreciated.

In contrast to the well-documented association between

whole-blood cell-type composition and age, there was no

association between age and either macrophage or adipo-

cyte proportion (r ¼ �0.02).13 This indicates that adipose

cell-type composition is not a major confounder in identi-

fication of age-related transcripts,33 nor is it differentially

methylated in adipose tissue.34

Adjusting for Macrophage Heterogeneity Accounts for

11% of Genes Displaying BMI-Related Differential

Expression

BMIhasaprofoundeffectonadipose tissuegeneexpression;

themajority of the adipose transcriptome is associatedwith

BMI in studies conducted with both microarrays and

RNA-seq in independent populations.7,9,20 It is unclear
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Figure 4. Adjusting for Macrophage Proportion Accounts for
11% of Associations between Gene Expression and BMI
Each point represents one gene and is colored as follows: red –
significant in neither association; light blue – significant in
macrophage-adjusted association only; dark blue – significant in
unadjusted association only; and green – significant in both
associations.
how many BMI-associated changes in gene expression are

mediated by the changes in cell-type composition that

accompany increasingBMI.Toaddress this,we identifiedas-

sociations between gene expression and BMI under two

models, one model adjusting and one not adjusting for

macrophage proportion. In the first model, we recapitulate

previous results with expression of 6,366/14,897 protein-

coding genes significantly associated with BMI (Bonfer-

roni-corrected p ¼ 3.56 3 10�6). When we adjusted for

macrophageproportion,11%ofassociationswereno longer

significant (Figure 4). This demonstrates that although

inflammation is an important aspect of obesity etiology,

themajority (89%) of BMI-expression associations are likely

to be independent of macrophage proportion. An example

of one of the 707 genes that are no longer significant after

adjustment for macrophage proportion is CD209 [MIM:

604672] poriginal ¼ 7.72 3 10�8, padj ¼ 0.0019), a gene that

encodes for a C-type lectin that is found primarily on the

surfaces of macrophages and dendritic cells. Additional

example genes that were no longer significant include

LILRA2 [MIM: 604812], MNDA [MIM: 159553], and

CMKLR1 [MIM: 602351] which are known to be primarily

expressed in macrophage and immune cell lineages.35,36
Cell-Type Proportion Explains Major Components of

Gene Expression Variance and Co-Variance

Principle component analysis (PCA) is commonly used to

understand the sources of gene expression variance. We

identified principle components in the TwinsUK samples
The America
and correlated them to cell-type proportion estimates.

PC1 was correlated with adipocyte and endothelial cell

proportion (R ¼ 0.40, p value % 2.2 3 10�16; R ¼ 0.41,

p value ¼ 2.2 3 10�16, respectively). PC2 was negatively

correlated with macrophage proportion (R ¼ �0.63,

p value % 2.2 3 10�16) and positively correlated with

endothelial cell proportion (R ¼ 0.21, p value % 3.7 3

10�9). PC1 and PC2 cumulatively explained 25% of adi-

pose tissue gene expression variance (Figure S5). This indi-

cates that cell-type heterogeneity at the population level is

a major driver of gene expression variation in adipose tis-

sue, and accounting for principle components in down-

stream analysis should account for some of this variability.

Weighted gene co-expression network analysis (WGCNA)

is a widely used technique that uses the correlation structure

of global gene expression profiles to construct modules of

genes, some of which have been ascribed distinct functional

roles or correspond to gene networks. 11 out of 13WCGNA

modules in the TwinsUK data correlated with cell-type pro-

portion (Figure S6, p.< 0.0038). Themost significantmacro-

phage-proportion-associated module (Pearson’s R ¼ 0.67,

p value% 2.23 10�16) (Figure S6A) recapitulated themacro-

phage-enriched metabolic network (MEMN), an adipose

gene expression signature associated with increasing

BMI.7,37 The MEMN-green module’s constituent genes

were enriched for glycoproteins (p value¼ 7.13 10�63), im-

munity (p value ¼ 1.1 3 10�23), and the innate immune

response (pvalue¼4.5310�12). Endothelial-cell proportion

was positively correlated with the turquoise module

(r ¼ 0.41), which was significantly enriched for GO terms

related to angiogenesis (p value ¼ 6.4 3 10�12). These find-

ingsdemonstrate that cell-type composition is amajor driver

of co-expression in bulk-tissue RNA-seq samples and could

confound analysis if samples are not matched for cell-type

proportion.

Correction for Macrophage Heterogeneity in Adipose

Tissue Increases Cis-eQTL Discovery Yield

To determine whether adipose cell-type heterogeneity can

confound cis-eQTL analysis, we investigated the effect of

correcting for cell type in cis-eQTL analysis. We imple-

mented a naı̈ve cis-eQTL discovery model (we did not

adjust for any cell-type proportion) and a separate, macro-

phage-corrected eQTL model. Adjusting for macrophage

heterogeneity among samples led to a modest increase in

cis-eQTL yield (2.3%) (naive model ¼ 5,531, macrophage-

adjusted model ¼ 5,665 SNP-gene pairs, FDR5%). However,

it has become standard practice in cis-eQTL studies to use

gene expression principle components, PEER factors, or

other factor-analysis-based methods to estimate and adjust

out confounding factors from gene-expression data. To test

whether latent factors account for cell-type proportion vari-

ability, we re-ran the naive and cell-type-adjusted cis-eQTL

scans and included adjustment for 30 PEER factors. PEER-

factor adjustment achieved a similar increase in cis-eQTL

yield in the naive and cell-type-adjusted models and re-

sulted in near identical results (naı̈ve PEER ¼ 7,665,
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Table 1. TwinsUK Macrophage Proportion in Adipose Tissue Is
Associated to Obesity-Related Traits but Not Age Suggested edited
table:

Trait r2 p Value

Macrophage

BMI 0.22 2.2 3 10�8

visceral fat 0.29 4.9 3 10�15

visceral fat (BMI adjusted) 0.28 1.9 3 10�9

android/gynoid ratio 0.36 1.2 3 10�16

android/gynoid ratio (BMI adjusted) 0.35 1.8 3 10�12

age �0.02 n.s

Adipocyte

BMI 0.15 5.7 3 10�5

visceral fat 0.13 3.4 3 10�4

visceral fat (BMI adjusted) 0.07 0.05

android/gynoid ratio 0.16 2.7 3 10�5

android/gynoid ratio (BMI adjusted) 0.11 0.002

age �0.004 n.s

MVEC

BMI �0.21 3.62 3 10�9

visceral fat �0.23 6.2 3 10�10

visceral fat (BMI adjusted) �0.14 1 3 10�4

android/gynoid ratio �0.26 6.5 3 10�13

android/gynoid ratio (BMI adjusted) �0.20 1.1 3 10�7

age �0.006 n.s

BMI: body mass index
macrophage-adjusted PEER ¼ 7,664). This confirms that

latent factors capture the cell-type composition differences

among adipose samples, as well as many other unmeasured

latent factors, but if covariates are known, it is better to

adjust with a fully specified model than to estimate latent

factors given the known risk of collider bias.38

Identification of Cell-Type-Specific eQTLs from Bulk

Tissue

Previous studies have identified cell-type-specific eQTLs in

bulk whole-blood expression profiles by fitting gene

expression to cell-type interaction models.39 We utilized

this strategy to detect cell-type-specific cis-eQTLs in the

TwinsUK adipose data. At a strict Bonferroni-corrected

threshold (p value threshold ¼ 1.01 3 10�9, based on

49,219,795 association tests in the 1-MB TSS-centered win-

dow around 14,897 genes), we identified 26 G 3 cell-type

interactions at 20 unique genes (Table 2) (Figure S7).

Twelve gene-SNP pairs had an interaction with macro-

phage proportion, 10 with endothelial proportion, and

four with adipocyte proportion (Table 2). Examples

include MARCO [MIM: 604870], encoding a macrophage

receptor that has collagenous structure and whose expres-

sion depends on macrophage proportion, and rs1884841.
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TC2N, which is responsible for the secretion of VWF

from endothelial cells, and DEFB1 [MIM: 602056] both

showed a positive interaction with adipocytes and a nega-

tive interaction with endothelial cells.

Five macrophage-dependent eQTLs were replicated in a

context-specific monocyte eQTL dataset.41 Four of the five

were detected in an IFN-g- or LPS-challenged state. Overall,

the lead G 3 cell-type-proportion SNPs were enriched for

overlap with HaploReg enhancer annotations in primary

monocytes (p value ¼ 0.001) and neutrophils (p value ¼
0.004), consistent with the large number of G 3 cell eQTLs

dependent on macrophage proportion (60%).

We intersected all 26 significant G 3 cell interactions

with genome-wide significant (GWS) associations in the

NHGRI GWAS catalog and identified nine G 3 cell lead

SNPs that overlap with GWAS variants or are in strong link-

age disequilibrium (LD) (r2> 0.80, D’> 0.9) with GWS loci.

Seven out of nine of these SNPs are within the MHC and

are coincident with multiple immune- and autoimmune-

disorder GWAS loci. The seven G 3 cell interaction SNPs

in the MHC appear to represent independent signals, and

only two (rs28383362 and rs28383372, r2 ¼ 0.66) showed

a pairwise r2 greater than 0.51. TwoMHC genes,HLA-DRB5

[MIM: 604776] and HLA-DBQ1 [MIM: 604305], had inter-

actions with both the endothelial and the macrophage

proportion at two different SNPs that are not in LD

(HLA-DRB5-rs9270111 and rs28383362 r2 ¼ 0.1; HLA-

DBQ1-rs1063347 and rs3819715 r2 ¼ 0.003), indicating

that different SNPs regulate these genes in the different

cell types. The two non-MHC GWAS coincident G 3 cell

interaction SNPs are rs1351111, which is coincident with

GWAS lead SNPs for Behcets disease (r2 ¼ 1; rs2617170)

and whose regulation of KLRK1 [MIM: 611817] is depen-

dent on macrophage proportion,42 and rs4728142, whose

regulation of IRF5 [MIM: 607218] is dependent on endo-

thelial proportion and which is the lead SNP in GWASs

for a range of auto-immune diseases including ulcerative

colitis and systemic lupus erythematous.43,44

Cell Types Are Not Associated with BMI Genetic-Risk

Scores

To understand whether adipose cell-type variability was

due to the genetic control of BMI, we sought to determine

whether any of our cell proportion estimates were

associated with BMI genetic-risk scores (GRSs). First, we

calculated weighted BMI GRSs on the full set of

TwinsUK-genotyped individuals. For the GRS calculations,

we used the 941 BMI SNPs reported in the latest BMI GWAS

meta-analysis.45 Of these, 926 were present in our QC-ed

imputation. Betas and effect alleles were extracted from

meta-analysis summary statistics. We note that the GRS

are positively associated with median BMI (median of all

longitudinal measurements) in the full TwinsUK sample

(beta ¼ 3.6; p value ¼ < 2.23 10�16. R2 for median BMI re-

siduals adjusted for all other covariatesz1.7%, n¼ 6K). To

assess whether BMI GRS is associated with macrophage

infiltration or in fact any cell type estimated in these
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Table 2. G 3 Cell-Proportion Interactions Identify Cell-Type-Specific eQTLs from Bulk Adipose-Tissue Gene-Expression Profiles

Cell Type SNP Gene b p Value

Fairfax et al.
Stimulus &
Proxy SNP GTEx Top eQTL Tissues Regulatory Regions

macrophage rs61913538 CLEC12A 0.37 8.4 3 10�25 naive, rs7313235 WB, adipose, muscle blood promoter

macrophage rs1063355 HLA-DQA1 0.29 3.0 3 10�18 NA WB, skin, muscle blood promoter. breast/
skin DNAase

macrophage rs1351111 KLRC4-KLRK1 �0.34 4.6 3 10�15 NA NA blood þ skin promoter

macrophage rs1351111 KLRK1 �0.35 1.5 3 10�14 NA adipose, fibroblast, muscle blood þ skin promoter

macrophage rs2422631 SIRPB1 �0.40 2.2 3 10�13 NA WB, lung, nerve blood DNAase

macrophage rs28383372 HLA-DQA2 0.25 2.2 3 10�13 NA WB, lung, adipose 5þ-tissue promotor

macrophage rs866865 KCNMA1 �0.30 3.7 3 10�13 IFN-g, rs752372 WB, adipose, lung blood enhancer

macrophage rs2278589 MARCO �0.40 1.8 3 10�12 NA adipose, WB, skin adipocytes, monocytes

macrophage rs1063347 HLA-DQB1 �0.29 7.9 3 10�12 NA WB, lung, skin blood promoter þ histone
marks

macrophage rs634512 LYZ �0.27 2.2 3 10�11 LPS24, rs1384 WB, lung, artery blood promoter. breast/skin
DNAase

macrophage rs4528348 MS4A14 0.26 5.4 3 10�11 LPS24, rs2233253 adipose, lung, nerve blood promoter þ enhancer
liver/lung enhancer þ DNAase

macrophage rs2327276 VNN2 �0.34 7.8 3 10�11 IFN-g, rs1883613 adipose, WB, lung blood þ skin promoter

endothelial rs28383362 HLA-DQA2 �0.34 1.5 3 10�22 NA WB, muscle, adipose blood promoter þ enhancer

endothelial rs1884841 TC2N �0.23 1.0 3 10�12 NA nerve, adipose, artery blood DNAse þ enhancer

endothelial rs182366 B3GALNT2 0.26 7.0 3 10�12 NA nerve, adipose, thyroid blood promoter, skin DNAase

endothelial rs2744944 UHRF1BP1 �0.26 8.16 3 10�12 NA artery, muscle, fibroblast blood enhancer

endothelial rs2977786 DEFB1 �0.27 4.3 3 10�11 NA adipose, heart, nerve 5-þ tissue promotor

endothelial rs61799378 SLC25A24 �0.28 1.5 3 10�10 NA testis, WB, fibroblast blood promoter

endothelial rs4728142 IRF5 �0.28 3.2 3 10�10 NA WB, artery, thyroid blood/fat promoter

endothelial rs9270111 HLA-DRB5 0.30 6.3 3 10�10 NA muscle, WB, adipose blood cell enhancer

endothelial rs3819715 HLA-DQB1 �0.35 9.0 3 10�10 NA adipose, muscle, skin blood cell enhancer

endothelial rs3760516 VAMP2 �0.33 9.6 3 10�10 NA nerve, brain, thyroid blood promoter þ enhancer

adipocyte rs28383362 HLA-DQA2 0.26 4.2 3 10�13 NA WB, muscle, adipose blood promoter

adipocyte rs2977786 DEFB1 0.27 4.6 3 10�11 NA adipose, heart, nerve blood promoter

adipocyte rs1812350 B3GALNT2 �0.25 6.1 3 10�11 NA nerve, adipose, thyroid blood promoter

adipocyte rs1884841 TC2N 0.20 6.2 3 10�10 NA nerve, adipose, artery heart/muscle promoter

The first column, ‘‘Cell Type,’’ lists the cell-type proportion estimate included in the G 3 cell-proportion interaction model. Macrophage proportion interactions
replicated in Fairfax et al., 201540 have proxy SNPs and stimuli condition annotated. The top three eQTL tissues in GTEx are listed on the basis of effect size.
The ‘‘Regulatory Regions’’ column lists HaploRegv4 annotations at the lead SNP. All promoters, enhancers, and other regulatory annotation enrichments are
derived from HaploRegv4.
analyses, we fit linear mixed models accounting for twin

relatedness and age. We find no association between BMI

GRS and cell estimates (all p value > 0.05); this suggests

that cell proportion variation isn’t driven by genetically

influenced obesity, and it is therefore likely to be a second-

ary effect of becoming overweight or obese.
Discussion

RNA-seq profiling of bulk-tissue biopsies is widely used for

biomarker discovery, genetics of gene expression studies,
The America
and differential expression analysis5,9,20,40 but the cellular

complexity of primary-tissue biopsies is often unaccounted

for. In this study, we used in silico methods to characterize

the variability of adipose cell-type composition in two large

bulk-tissue transcriptomic datasets and explored the effects

of adipose cellular heterogeneity on a range of transcrip-

tomic analyses. Our results indicate that it is critical to ac-

count for cell-type composition when combining adipose

transcriptome datasets in co-expression analysis and in dif-

ferential expression analysis with obesity-related traits.

Although the ability to detect interactions with esti-

mated cell proportions is limited in terms of both sample
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size and the accuracy of cell-type estimation from a com-

plex tissue such as adipose, we have demonstrated that

its possible to detect cell-type-proportion-dependent

eQTLs in whole adipose tissues. We identified 26 macro-

phage-, endothelial-, or adipocyte-specific eQTLs within

our bulk adipose tissue RNA-seq datasets, and we note

that all of these hadmain-effect eQTLs in TwinsUK adipose

tissue and in several GTEx tissues (Table 2). The presence of

immune- and endothelial-specific eQTLs is expected in

other tissues with resident immune cells and blood vessels,

however, three of the four adipocyte-dependent eQTLs

have been found to be eQTLs in GTEx nerve tissue. Adi-

pose tissue is spread throughout the body and around or-

gans, and obtaining adipose-free biopsies of many tissues,

including nerve, thyroid, and muscle tissues, is technically

difficult, as is clearly documented in the GTEx pathologist

notes and histology slides that are provided for every

biopsy. Our conjecture is that the presence of adipocyte-

specific eQTLs in nerve tissue is a result of adipose contam-

ination of the nerve biopsies. This suggests that estimates

of tissue sharing of expression or regulatory effects be-

tween adipose and some tissues are likely to be an overes-

timated.46 It is thus important to consider the cell-type

composition of biopsies prior to utilizing expression or

eQTL data to interpret disease loci, and in particular

before prioritizing a tissue or cell type for downstream

experiments.

Several shortcomings of our study are worth mentioning

for future improvements. We have estimated the relative

proportion of cell types in two biopsy datasets, and it is

important to note that the content of a biopsy might not

be representative of the cell content of the in vivo tissue

from which it was extracted. Many technical factors,

includingmethod of retrieval (surgical biopsy versus lipoas-

piration versus needle biopsy) and sample handling (as

demonstrated by the association between cell-type hetero-

geneity and ischemic time inGTEx), are known to influence

adipose biopsy composition. Second, CIBERSORTestimates

relative fractionsof cell types, not absoluteproportions. This

means the cell-type proportion estimates are only interpret-

able relative to what is included in the signaturematrix and

should not be interpreted as absolute proportions of those

cell types in vivo. Finally, a broader and better-defined signa-

ture matrix would increase both accuracy and utility of the

method. We did not include additional adipose-resident

cell types such as adipose mesenchymal stem cells, pre-adi-

pocytes, and a wider range of lymphocytes due to the lack

of suitable available reference RNA-seq datasets. In partic-

ular, the lack of reference adipose mesenchymal stem cells

andpre-adipocytes could inflate our estimates of the propor-

tion of adipocytes (the cell typemost closely correlatedwith

these cell types) relative to the other cell types in thematrix.

We expect the utility of deconvolution of bulk-tissue gene

expression to further improve as more RNA-seq datasets of

primary and purified cells become available.

We have shown in silico deconvolution to have strong

utility for understanding how cell-type proportions vary
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in population studies of adipose tissue. We demonstrate

that adipose-cell composition is heritable and associated

with body-fat distribution. Although some of this herita-

bility might be mediated by overall BMI heritability, which

in turn might drive changes in cell composition, it is

possible that certain genotypes could predispose individ-

uals to or protect them from macrophage infiltration and

thereby the consequences of inflammation in obesity. Her-

itable variability in adipocyte number could also underlie

differential capacity for adipose-tissue expansion and stor-

age, which can drive ectopic fat deposition and subsequent

susceptibility to downstream cardio-metabolic disease. The

role of cellular heterogeneity in modulating human health

and disease is a growing area of interest,12 and further

deconvolution of bulk RNA-seq datasets, aided by the ex-

panding availability of RNA from primary and iPSC-

derived cell populations and single-cell analysis, should

contribute to our understanding of how genetics influence

cell-type heterogeneity and its impact on health and

disease.
Supplemental Data

Supplemental Data can be found online at https://doi.org/10.

1016/j.ajhg.2019.03.025.
Acknowledgments

Wewould like to thank AaronNewman, the author of CIBERSORT,

for significant and useful discussions. This study was supported by

an MRC Project grant (MR/L01999X/1) to K.S.S and an MRC Pro-

gramme grant (MR/M004422/1) to K.S.S. The TwinsUK study was

funded by the Wellcome Trust and the European Community’s

Seventh Framework Programme (FP7/2007-2013). The TwinsUK

study also receives support from the National Institute for Health

Research (NIHR)-funded BioResource, Clinical Research Facility,

and Biomedical Research Centre based at Guy’s and St Thomas’

NHS Foundation Trust in partnership with King’s College London.

This project was enabled through access to the MRC eMedLab

Medical Bioinformatics infrastructure, supported by the Medical

Research Council (grant number MR/L016311/1).
Declaration of Interests

The authors declare no competing interests.

Received: November 15, 2018

Accepted: March 26, 2019

Published: May 23, 2019
Web Resources

Data and summary statistics can be found here, https://github.

com/GlastonburyC/CellTypeDeconvolution

CIBERSORT, https://cibersort.stanford.edu/

Database of Genotypes and Phenotypes (dbGAP), https://www.

ncbi.nlm.nih.gov/gap

Genotype-Tissue Expression project (GTEx) Portal, https://

gtexportal.org/home/

Online Mendelian Inheritance in Man, https://www.omim.org/
e 6, 2019

https://doi.org/10.1016/j.ajhg.2019.03.025
https://doi.org/10.1016/j.ajhg.2019.03.025
https://github.com/GlastonburyC/CellTypeDeconvolution
https://github.com/GlastonburyC/CellTypeDeconvolution
https://cibersort.stanford.edu/
https://www.ncbi.nlm.nih.gov/gap
https://www.ncbi.nlm.nih.gov/gap
https://gtexportal.org/home/
https://gtexportal.org/home/
https://www.omim.org/


References

1. Boker, S., Neale, M., Maes, H., Wilde, M., Spiegel, M., Brick, T.,

Spies, J., Estabrook, R., Kenny, S., Bates, T., et al. (2011).

OpenMx: An open source extended structural equation

modeling framework. Psychometrika 76, 306–317.

2. Boutens, L., and Stienstra, R. (2016). Adipose tissue macro-

phages: Going off track during obesity. Diabetologia 59,

879–894.

3. Briggs, R.C., Kao, W.Y., Dworkin, L.L., Briggs, J.A., Dessypris,

E.N., and Clark, J. (1994). Regulation and specificity of

MNDA expression in monocytes, macrophages, and leuke-

mia/B lymphoma cell lines. J. Cell. Biochem. 56, 559–567.

4. Brodin, P., Jojic, V., Gao, T., Bhattacharya, S., Angel, C.J.L., Fur-

man, D., Shen-Orr, S., Dekker, C.L., Swan, G.E., Butte, A.J.,

et al. (2015). Variation in the human immune system is largely

driven by non-heritable influences. Cell 160, 37–47.

5. Buil, A., Brown, A.A., Lappalainen, T., Viñuela, A., Davies,
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new susceptibility loci for Behçet’s disease and epistasis be-

tween HLA-B*51 and ERAP1. Nat. Genet. 45, 202–207.

26. Langfelder, P., and Horvath, S. (2008). WGCNA: an R package

for weighted correlation network analysis. BMC Bioinformat-

ics 9, 559.

27. Lappalainen, T., and Greally, J.M. (2017). Associating cellular

epigenetic models with human phenotypes. Nat. Rev. Genet.

18, 441–451.

28. Lara-Castro, C., Fu, Y., Chung, B.H., and Garvey, W.T. (2007).

Adiponectin and themetabolic syndrome: Mechanismsmedi-

ating risk formetabolic and cardiovascular disease. Curr. Opin.

Lipidol. 18, 263–270.

29. Lee, D.J., Sieling, P.A., Ochoa, M.T., Krutzik, S.R., Guo, B., Her-

nandez, M., Rea, T.H., Cheng, G., Colonna, M., and Modlin,

R.L. (2007). LILRA2 activation inhibits dendritic cell differen-

tiation and antigen presentation to T cells. J. Immunol. 179,

8128–8136.
n Journal of Human Genetics 104, 1013–1024, June 6, 2019 1023

http://refhub.elsevier.com/S0002-9297(19)30121-1/sref1
http://refhub.elsevier.com/S0002-9297(19)30121-1/sref1
http://refhub.elsevier.com/S0002-9297(19)30121-1/sref1
http://refhub.elsevier.com/S0002-9297(19)30121-1/sref1
http://refhub.elsevier.com/S0002-9297(19)30121-1/sref2
http://refhub.elsevier.com/S0002-9297(19)30121-1/sref2
http://refhub.elsevier.com/S0002-9297(19)30121-1/sref2
http://refhub.elsevier.com/S0002-9297(19)30121-1/sref3
http://refhub.elsevier.com/S0002-9297(19)30121-1/sref3
http://refhub.elsevier.com/S0002-9297(19)30121-1/sref3
http://refhub.elsevier.com/S0002-9297(19)30121-1/sref3
http://refhub.elsevier.com/S0002-9297(19)30121-1/sref4
http://refhub.elsevier.com/S0002-9297(19)30121-1/sref4
http://refhub.elsevier.com/S0002-9297(19)30121-1/sref4
http://refhub.elsevier.com/S0002-9297(19)30121-1/sref4
http://refhub.elsevier.com/S0002-9297(19)30121-1/sref5
http://refhub.elsevier.com/S0002-9297(19)30121-1/sref5
http://refhub.elsevier.com/S0002-9297(19)30121-1/sref5
http://refhub.elsevier.com/S0002-9297(19)30121-1/sref5
http://refhub.elsevier.com/S0002-9297(19)30121-1/sref5
http://refhub.elsevier.com/S0002-9297(19)30121-1/sref6
http://refhub.elsevier.com/S0002-9297(19)30121-1/sref6
http://refhub.elsevier.com/S0002-9297(19)30121-1/sref6
http://refhub.elsevier.com/S0002-9297(19)30121-1/sref6
http://refhub.elsevier.com/S0002-9297(19)30121-1/sref6
http://refhub.elsevier.com/S0002-9297(19)30121-1/sref6
http://refhub.elsevier.com/S0002-9297(19)30121-1/sref7
http://refhub.elsevier.com/S0002-9297(19)30121-1/sref7
http://refhub.elsevier.com/S0002-9297(19)30121-1/sref7
http://refhub.elsevier.com/S0002-9297(19)30121-1/sref8
http://refhub.elsevier.com/S0002-9297(19)30121-1/sref8
http://refhub.elsevier.com/S0002-9297(19)30121-1/sref8
http://refhub.elsevier.com/S0002-9297(19)30121-1/sref8
http://refhub.elsevier.com/S0002-9297(19)30121-1/sref9
http://refhub.elsevier.com/S0002-9297(19)30121-1/sref9
http://refhub.elsevier.com/S0002-9297(19)30121-1/sref9
http://refhub.elsevier.com/S0002-9297(19)30121-1/sref9
http://refhub.elsevier.com/S0002-9297(19)30121-1/sref9
http://refhub.elsevier.com/S0002-9297(19)30121-1/sref10
http://refhub.elsevier.com/S0002-9297(19)30121-1/sref10
http://refhub.elsevier.com/S0002-9297(19)30121-1/sref10
http://refhub.elsevier.com/S0002-9297(19)30121-1/sref10
http://refhub.elsevier.com/S0002-9297(19)30121-1/sref11
http://refhub.elsevier.com/S0002-9297(19)30121-1/sref11
http://refhub.elsevier.com/S0002-9297(19)30121-1/sref11
http://refhub.elsevier.com/S0002-9297(19)30121-1/sref11
http://refhub.elsevier.com/S0002-9297(19)30121-1/sref11
http://refhub.elsevier.com/S0002-9297(19)30121-1/sref12
http://refhub.elsevier.com/S0002-9297(19)30121-1/sref12
http://refhub.elsevier.com/S0002-9297(19)30121-1/sref12
http://refhub.elsevier.com/S0002-9297(19)30121-1/sref13
http://refhub.elsevier.com/S0002-9297(19)30121-1/sref13
http://refhub.elsevier.com/S0002-9297(19)30121-1/sref13
http://refhub.elsevier.com/S0002-9297(19)30121-1/sref13
http://refhub.elsevier.com/S0002-9297(19)30121-1/sref14
http://refhub.elsevier.com/S0002-9297(19)30121-1/sref14
http://refhub.elsevier.com/S0002-9297(19)30121-1/sref14
http://refhub.elsevier.com/S0002-9297(19)30121-1/sref14
http://refhub.elsevier.com/S0002-9297(19)30121-1/sref15
http://refhub.elsevier.com/S0002-9297(19)30121-1/sref15
http://refhub.elsevier.com/S0002-9297(19)30121-1/sref15
http://refhub.elsevier.com/S0002-9297(19)30121-1/sref15
http://refhub.elsevier.com/S0002-9297(19)30121-1/sref15
http://refhub.elsevier.com/S0002-9297(19)30121-1/sref16
http://refhub.elsevier.com/S0002-9297(19)30121-1/sref16
http://refhub.elsevier.com/S0002-9297(19)30121-1/sref16
http://refhub.elsevier.com/S0002-9297(19)30121-1/sref16
http://refhub.elsevier.com/S0002-9297(19)30121-1/sref16
http://refhub.elsevier.com/S0002-9297(19)30121-1/sref17
http://refhub.elsevier.com/S0002-9297(19)30121-1/sref17
http://refhub.elsevier.com/S0002-9297(19)30121-1/sref17
http://refhub.elsevier.com/S0002-9297(19)30121-1/sref17
http://refhub.elsevier.com/S0002-9297(19)30121-1/sref18
http://refhub.elsevier.com/S0002-9297(19)30121-1/sref18
http://refhub.elsevier.com/S0002-9297(19)30121-1/sref18
http://refhub.elsevier.com/S0002-9297(19)30121-1/sref18
http://refhub.elsevier.com/S0002-9297(19)30121-1/sref18
http://refhub.elsevier.com/S0002-9297(19)30121-1/sref19
http://refhub.elsevier.com/S0002-9297(19)30121-1/sref19
http://refhub.elsevier.com/S0002-9297(19)30121-1/sref19
http://refhub.elsevier.com/S0002-9297(19)30121-1/sref19
http://refhub.elsevier.com/S0002-9297(19)30121-1/sref19
http://refhub.elsevier.com/S0002-9297(19)30121-1/sref20
http://refhub.elsevier.com/S0002-9297(19)30121-1/sref20
http://refhub.elsevier.com/S0002-9297(19)30121-1/sref20
http://refhub.elsevier.com/S0002-9297(19)30121-1/sref20
http://refhub.elsevier.com/S0002-9297(19)30121-1/sref20
http://refhub.elsevier.com/S0002-9297(19)30121-1/sref21
http://refhub.elsevier.com/S0002-9297(19)30121-1/sref21
http://refhub.elsevier.com/S0002-9297(19)30121-1/sref21
http://refhub.elsevier.com/S0002-9297(19)30121-1/sref21
http://refhub.elsevier.com/S0002-9297(19)30121-1/sref21
http://refhub.elsevier.com/S0002-9297(19)30121-1/sref22
http://refhub.elsevier.com/S0002-9297(19)30121-1/sref22
http://refhub.elsevier.com/S0002-9297(19)30121-1/sref22
http://refhub.elsevier.com/S0002-9297(19)30121-1/sref23
http://refhub.elsevier.com/S0002-9297(19)30121-1/sref23
http://refhub.elsevier.com/S0002-9297(19)30121-1/sref23
http://refhub.elsevier.com/S0002-9297(19)30121-1/sref24
http://refhub.elsevier.com/S0002-9297(19)30121-1/sref24
http://refhub.elsevier.com/S0002-9297(19)30121-1/sref24
http://refhub.elsevier.com/S0002-9297(19)30121-1/sref24
http://refhub.elsevier.com/S0002-9297(19)30121-1/sref24
http://refhub.elsevier.com/S0002-9297(19)30121-1/sref25
http://refhub.elsevier.com/S0002-9297(19)30121-1/sref25
http://refhub.elsevier.com/S0002-9297(19)30121-1/sref25
http://refhub.elsevier.com/S0002-9297(19)30121-1/sref25
http://refhub.elsevier.com/S0002-9297(19)30121-1/sref25
http://refhub.elsevier.com/S0002-9297(19)30121-1/sref25
http://refhub.elsevier.com/S0002-9297(19)30121-1/sref25
http://refhub.elsevier.com/S0002-9297(19)30121-1/sref26
http://refhub.elsevier.com/S0002-9297(19)30121-1/sref26
http://refhub.elsevier.com/S0002-9297(19)30121-1/sref26
http://refhub.elsevier.com/S0002-9297(19)30121-1/sref27
http://refhub.elsevier.com/S0002-9297(19)30121-1/sref27
http://refhub.elsevier.com/S0002-9297(19)30121-1/sref27
http://refhub.elsevier.com/S0002-9297(19)30121-1/sref28
http://refhub.elsevier.com/S0002-9297(19)30121-1/sref28
http://refhub.elsevier.com/S0002-9297(19)30121-1/sref28
http://refhub.elsevier.com/S0002-9297(19)30121-1/sref28
http://refhub.elsevier.com/S0002-9297(19)30121-1/sref29
http://refhub.elsevier.com/S0002-9297(19)30121-1/sref29
http://refhub.elsevier.com/S0002-9297(19)30121-1/sref29
http://refhub.elsevier.com/S0002-9297(19)30121-1/sref29
http://refhub.elsevier.com/S0002-9297(19)30121-1/sref29


30. Liao, Y., Smyth, G.K., and Shi, W. (2014). featureCounts: An

efficient general purpose program for assigning sequence

reads to genomic features. Bioinformatics 30, 923–930.

31. Lonsdale, J., Thomas, J., Salvatore, M., Phillips, R., Lo, E.,

Shad, S., Hasz, R., Walters, G., Garcia, F., Young, N., et al.;

GTEx Consortium (2013). The Genotype-Tissue Expression

(GTEx) project. Nat. Genet. 45, 580–585.

32. McCall, M.N., Illei, P.B., and Halushka, M.K. (2016). Complex

sources of variation in tissue expression data: Analysis of the

GTEx lung transcriptome. Am. J. Hum. Genet. 99, 624–635.

33. Newman, A.M., Liu, C.L., Green, M.R., Gentles, A.J., Feng, W.,

Xu, Y., Hoang, C.D., Diehn, M., and Alizadeh, A.A. (2015).

Robust enumeration of cell subsets from tissue expression pro-

files. Nat. Methods 12, 453–457.

34. Nilsson, E., Jansson, P.A., Perfilyev, A., Volkov, P., Pedersen,

M., Svensson, M.K., Poulsen, P., Ribel-Madsen, R., Pedersen,

N.L., Almgren, P., et al. (2014). Altered DNA methylation

and differential expression of genes influencing metabolism

and inflammation in adipose tissue from subjects with type

2 diabetes. Diabetes 63, 2962–2976.

35. Ren, S., Peng, Z., Mao, J.-H., Yu, Y., Yin, C., Gao, X., Cui, Z.,

Zhang, J., Yi, K., Xu, W., et al. (2013). Erratum: RNA-seq anal-

ysis of prostate cancer in the Chinese population identifies

recurrent gene fusions, cancer-associated long noncoding

RNAs and aberrant alternative splicings. Cell Res. 23, 732–732.

36. Robinson, M.D., and Oshlack, A. (2010). A scaling normaliza-

tion method for differential expression analysis of RNA-seq

data. Genome Biol. 11, R25.

37. Roederer, M., Quaye, L., Mangino,M., Beddall, M.H.,Mahnke,

Y., Chattopadhyay, P., Tosi, I., Napolitano, L., Terranova Bar-

berio, M., Menni, C., et al. (2015). The genetic architecture

of the human immune system: a bioresource for autoimmu-

nity and disease pathogenesis. Cell 161, 387–403.
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