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Objective: Auditory verbal hallucinations (AVHs) are a major symptom of schizophrenia
and are connected with impairments in auditory and speech-related networks. In
schizophrenia with AVHs, alterations in resting-state cerebral blood flow (CBF) and
functional connectivity have been described. However, the neurovascular coupling
alterations specific to first-episode drug-naïve schizophrenia (FES) patients with AVHs
remain unknown.

Methods: Resting-state functional MRI and arterial spin labeling (ASL) was performed
on 46 first-episode drug-naïve schizophrenia (FES) patients with AVHs (AVH), 39 FES
drug-naïve schizophrenia patients without AVHs (NAVH), and 48 healthy controls (HC).
Then we compared the correlation between the CBF and functional connection strength
(FCS) of the entire gray matter between the three groups, as well as the CBF/FCS
ratio of each voxel. Correlation analyses were performed on significant results between
schizophrenia patients and clinical measures scale.

Results: The CBF/FCS ratio was reduced in the cognitive and emotional brain regions
in both the AVH and NAVH groups, primarily in the crus I/II, vermis VI/VII, and
cerebellum VI. In the AVH group compared with the HC group, the CBF/FCS ratio
was higher in auditory perception and language-processing areas, primarily the left
superior and middle temporal gyrus (STG/MTG). The CBF/FCS ratio in the left STG
and left MTG positively correlates with the score of the Auditory Hallucination Rating
Scale in AVH patients.

Conclusion: These findings point to the difference in neurovascular coupling
failure between AVH and NAVH patients. The dysfunction of the forward model
based on the predictive and computing role of the cerebellum may increase the
excitability in the auditory cortex, which may help to understand the neuropathological
mechanism of AVHs.

Keywords: cerebral blood flow, functional connectivity, neurovascular coupling, auditory verbal hallucination,
forward model
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INTRODUCTION

Auditory verbal hallucinations (AVHs) are cardinal symptoms
in schizophrenia. Defined as the auditory experience of “hearing
voices” in the absence of external stimuli that cause them,
AVH is suffered by 60–80% of the patients and often produces
distress, functional disability, and behavioral alterations (Jardri
et al., 2011; Hjelmervik et al., 2020). Considering the severe
cognitive problems, poor quality of life, and high morbidity,
the physiological mechanism underlying AVHs should be fully
understood to promote effective treatment.

Many models have been proposed to account for the different
mechanisms of AVHs involving a wide range of brain regions
far beyond the auditory cortex in schizophrenia, including into
the thalamus (Ferri et al., 2018) and cerebellum (Pinheiro et al.,
2020a). Especially, in recent decades, neuroimaging techniques
have provided evidence for the central role of the cerebellar
circuit in the forward model, which links AVH patients to
impaired cerebellar function or structure by erratic prediction
and imprecise computation of sensory consequences and also
affects higher-level cognitive processes (Sokolov et al., 2017;
Moberget and Ivry, 2019; Pinheiro et al., 2020b). Predictive
timing disturbances in the forward model are a special marker
of SZ and have been associated with other cognitive dysfunctions
documented in prior studies (Ciullo et al., 2018). The forward
model suggests that the cerebellum compares expected and
actual sensory feedback (Martha et al., 2018). Sensory error
messages are specifically encoded in the cerebellum’s Purkinje
cells’ complicated spike discharges (Brooks et al., 2015). The
cerebellar output is small if the entering stimulus matches the
predicted one; if a discrepancy–error message is received, activity
in the cerebellum increases, and a vast area of cerebral cortex is
alerted by increasing excitability (Marco Molinari et al., 2008).
In schizophrenia patients with AVHs, differences are sent to
cortical regions such as the left superior and middle temporal
gyrus (STG/MTG) via the thalamus (Tourville et al., 2008). One
previous study reported that an acute brain disorder causes
interruption of the excitatory projections from the lesioned brain
area to the anatomically intact brain regions (Warren et al., 1958).
Similar to the former, a unilateral cerebellar lesion decreased
the contralateral cortical excitability and remained a baseline
hemispheric CBF unchanging contralateral to a cerebellar lesion,
which was suggested to have impaired neurovascular coupling
between the cerebellum and cerebral cortex (Enager et al.,
2004). Furthermore, a corticocerebellar–thalamic–cortical circuit
connects the cerebellum to numerous areas of the cerebral cortex,
and the cerebellum may play a key role in this circuit in psychosis
by coordinating or modulating elements of cortical activity
(Andreasen and Pierson, 2008; Cao et al., 2018). If this circuitry
is disrupted, it will cause “cognitive dysmetria,” which is difficult
to prioritize, process, coordinate, and respond to information,
eventually leading to function decoupling (Nancy et al., 1998).
However, how the neurovascular coupling alteration involved
in information processing in these brain regions within these
circuits is disrupted remains unknown.

In recent years, to get a deeper understanding of the
alteration of neurovascular relationships in neurological diseases,

researchers began to use the method of neurovascular coupling
to explore the pathogenesis of diseases, such as primary open-
angle glaucoma (Wang Q. et al., 2021), bipolar disorder and
major depressive disorder (He Z. et al., 2019), and Alzheimer’s
disease (Drzezga et al., 2011). The method of neurovascular
coupling, reflected by cerebral blood flow (CBF), functional
connectivity strength (FCS), and their relationship, showed
a direct relationship among functional activity, metabolism,
and neural activity, which demonstrated that brain regions
with higher spontaneous neural activity tend to have more
robust connectivity and increased perfusion (Liang et al., 2013).
Regional CBF is tightly coupled with brain metabolism and can
be measured utilizing functional neuroimaging techniques, such
as arterial spin labeling (ASL), which has been widely used in
schizophrenia (Vaishnavi et al., 2010; Zhuo et al., 2017; Jing
et al., 2018). Increased CBF of the left STG was found in AVH
patients accompanied by the left MTG by using this technique
(Homan et al., 2012; Zhu et al., 2017; Zhuo et al., 2017). The
whole-brain functional connectivity strength (FCS) highlights
the involvement of each voxel in transmitting information in
the overall brain network by depicting a specific voxel as well
as all other voxels in the brain that surpassed a predetermined
optimum threshold (Liang et al., 2013; van Lutterveld et al., 2014;
Li et al., 2020). There are functional connectivity measures on
how well a local activity is integrated across brain regions, which
help researchers better understand the dysfunctions in integrated
brain networks and the exact coordination of inter-regions in
schizophrenia (Lui et al., 2010). In the graph theory, the FCS is
also known as “degree centrality” of weighted networks (Wang
Y. et al., 2021), and brain areas with a high FCS are regarded
functional hubs that are well connected to the rest of the brain
(Liang et al., 2013). The whole-brain functional connectivity
approach solves some of the limitations of seed-based rsFC
analysis and independent component analysis (ICA), all of which
are approaches in quantifying rsFC alterations. For example, in
the absence of the underlying pathophysiology for a disease, the
analysis of seed-based rsFC approach may be difficult due to the
requirement for a priori definition of seed regions (Nair et al.,
2014). The ICA may face uncertainty about the optimal number
of components, contentious criteria for discriminating between
noise and signal, and interpretive complications brought by a
sophisticated algorithm (Fox and Raichle, 2007). Increased FCS
in the left crus I, bilateral crus II, left cerebellum VI, vermis VI,
vermis VII, and decreased FCS in the left temporal cortex have
been discovered using the FCS approach to explore connection
alterations in schizophrenia (Wang et al., 2017; Zhu et al., 2017;
Basavaraju et al., 2019; Ding et al., 2019).

The CBF–FCS correlation measures the spatial consistency of
CBF and FCS across voxels over the entire gray matter (Zhu
et al., 2017). The metabolic demand per unit of connection
strength is measured by the CBF/FCS ratio, which indirectly
indicates the neurovascular coupling of a single voxel or local
region (Zhu et al., 2017). Cerebral volume reduction, neural loss,
abnormal astrocytes, and white matter pathway interruptions
that may contribute to the neurovascular decoupling have been
reported in recent studies (Cocchi et al., 2014; Wang Q. et al.,
2021). Voxel-wise entire brain studies of the CBF/FCS ratios and
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CBF–FCS correlations can provide more precise and sensitive
information on the alterations in brain functional regions than
voxel-wise whole-brain analysis of CBF and FCS indices simply.
Using the approach of neurovascular coupling in individuals
with schizophrenia, Zhu et al. discovered reduced CBF/FCS
ratios in higher-order brain systems related to cognitive control
and affective regulation and elevated CBF/FCS ratios in lower-
order brain systems, such as sensory processing (Zhu et al.,
2017). Unfortunately, up until now, no study has investigated
the alteration in neurovascular coupling specific to first-episode
drug-naïve schizophrenia (FES) patients with AVHs (AVH).

Considering that patients with AVHs are characterized by
impaired information processing related to auditory and speech-
related networks in the forward model, which is believed to be
associated with common pathological processes of AVHs, we
hypothesized that neurovascular coupling alterations should be
atypical in AVH patients. Furthermore, because brain regions
with CBF and FCS changes are spatially inconsistent, with
different effect sizes and directions in the AVH and first-episode
drug-naïve schizophrenia (FES) patients without AVHs (NAVH)
(Figures 1, 2 and Supplementary Tables 1, 2), we hypothesized

that the AVH and NAVH groups would show a reduced and
different CBF–FCS coupling, as well as an increased or decreased
CBF/FCS ratio accompanied by different CBF and FCS changes.
The voxel-based CBF and FCS analyses to detect abnormal
perfusion and neural activity in AVH patients and first-episode
drug-naïve schizophrenia (FES) patients without AVHs (NAVH)
by using ASL and BOLD–fMRI were performed. Three groups
were compared on the basis of CBF–FCS coupling in overall gray
matter and CBF/FCS ratio voxel-by-voxel.

MATERIALS AND METHODS

Participants
This study recruited 50 FES AVH patients, 50 FES NAVH
patients, and 50 age- and sex-matched HC. After preprocessing,
we removed zero patients with AVH, five patients with NAVH,
and zero patients with HC due to head movement parameters
exceeding 3 mm displacement or 3◦ of rotation. Among the
subjects left after preprocessed, we excluded four AVH patients,
six NAVH patients, and two HC subjects because they were

FIGURE 1 | (A) Brain regions with significant CBF changes between the AVH, NAVH, and HC groups. (B) Brain regions with significant CBF changes in the AVH
group. (C) Brain regions with significant CBF changes in the NAVH group. CBF, cerebral blood flow; AVH, schizophrenia patients with AVHs; NAVH, schizophrenia
patients without AVHs; HC, healthy control.
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FIGURE 2 | (A) Brain regions with significant FCS changes between AVH, NAVH, and HC groups. (B) Brain regions with significant FCS changes in the AVH group.
(C) Brain regions with significant FCS changes in the NAVH group. FCS, functional connectivity strength; AVH, schizophrenia patients with AVHs; NAVH,
schizophrenia patients without AVHs.

missing data corresponding to CBF. Finally, included in the study
were 46 AVH patients, 39 NAVH patients, and 48 HC. The
detailed demographic and clinical data for these participants are
shown in Table 1.

The diagnosis of schizophrenia is determined by a psychiatrist
and evaluated and confirmed by an experienced psychologist
using DSM-5 standards (Vahia, 2013). The Positive and Negative
Symptom Scale (PANSS) was used to assess the severity of
psychotic symptoms. A total of 46 patients reported experiencing
AVHs within the past 4 weeks in the AVH group, most within
the past week, while the other 39 patients reported no AVHs in
their lifetime or in the past 4 months in the NAVH group. The
Auditory Hallucination Rating Scale (AHRS) was used to assess
the severity of AVHs. In the end, we collected PANSS data from
46 AVH patients and 39 NAVH patients and AHRS hallucination
data from all AVH patients.

For the patient groups, the following are the exclusion criteria:
(1) mental disorders caused by physical diseases other than
schizophrenia, (2) alcohol addiction or a history of substance
abuse, (3) contraindications to MRI, and (4) traumatic head
injuries. The exclusion criteria for the HCs are any mental illness,
neurological disease, and related family history. The age- and

gender-matched HCs were recruited from the same geographic
area. Moreover, the same exclusion criteria that were used for SZ
patients were used for HCs. All subjects are right-handed. All
subjects signed an informed consent form, and this study has
been approved by the Ethics Committee of the First Affiliated
Hospital of Zhengzhou University.

Data Acquisition
All subjects who met the enrollment conditions used the
same eight-channel 3.0 Tesla magnetic resonance scanner (GE
Discovery MR750, United States) to complete the MRI data
collection. The collection location was located in the Magnetic
Resonance Department of the First Affiliated Hospital of
Zhengzhou University. Spatial 3D high-resolution T1-weighted
images (3DT1) were acquired using a brain volume sequence
with the following settings: repetition time (TR)/echo time (TE)
= 8.2/3.2 ms, slice thickness = 1 mm, slice gap = 0 mm, flip
angle = 12◦, slice number = 1, field of view (FOV) = 25.6
× 25.6 cm2, number of averages = 1, matrix size = 256 ×
256, and voxel size = 1 × 1 × 1 mm3. The resting-state
perfusion imaging was performed using a pseudo-continuous
ASL (pcASL) sequence with a 3D fast spin–echo acquisition
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TABLE 1 | Demographic and clinical data of AVH patients, NAVH patients, and HC.

AVH NAVH HC F/X2/t-values p-Values

Number of subjects 46 39 48

Age (SD) 21.7 (7.86) 20.2 (7.2) 21.9 (7.7) 0.659 0.519

Sex (M/F) 21/25 18/21 23/25 0.033 0.984

Hoffman hallucinations (SD) 23.8 (6.13) – – – –

PNASS (SD)

Positive 20.1(5.6) 18.1 (6.1) – 1.474 0.145

Negative 20.2 (5.1) 21.0 (5.8) – -0.630 0.531

General 41.6 (7.4) 42.6 (8.6) – -0.49 0.626

Total scores 82.3 (14.5) 81.6 (16.4) – 0.189 0.851

PANSS hallucinations 4.1 (1.6) 2.3 (1.5) 4.125 0.000

PANSS delusions 4.7 (1.4) 3.8 (1.7) 2.107 0.040

FD (SD) 0.12 (0.08) 0.13 (0.10) 0.13 (0.07) 0.369 0.692

AVH, schizophrenia with AVH patients; NAVH, schizophrenia without AVH patients; HC, healthy control; F, female; M, male; FD, framewise displacement; PNASS, positive
and negative syndrome scale.

and background suppression, and the parameters are as follows:
TR/TE = 4,886/10.5 ms, slice thickness = 4.0 mm, slice gap
= 0 mm, flip angle = 111◦, slice number = 80, FOV = 24 ×
24 cm2, number of averages = 3, matrix size = 512 × 512, voxel
size = 0.5 × 0.5 × 4 mm3. A state of rest BOLD-fMRI data
were collected using the following parameters in a gradient-echo
single-shot echo-planar imaging (GRE-SS-EPI) sequence: TR/TE
= 2,000/30 ms, slice thickness = 4 mm, slice gap = 0.5 mm, flip
angle = 90◦, slice number = 32, FOV = 22 × 22 cm2, number of
averages = 1, matrix size = 64 × 64, voxel size = 3.4375 × 3.4375
× 3.4375 mm3. The duration of the resting state scan is 6 min.

fMRI Data Preprocessing
The BOLD-fMRI data are preprocessed by the Data Processing
and Analysis of Brain Imaging (DPABI) toolbox1, which is
based on Statistical Parametric Mapping (SPM122) and MATLAB
(MathWorks). The following steps were performed: (1) removing
the first five time points; (2) slice timing correction; (3)
realigning; if a participant’s maximum head motion was greater
than 3 mm or 3◦ of rotation, they were excluded; (4) normalizing
the BOLD-fMRI data space to the template of the Montreal
Neurology Institute (resampled voxel size = 3 × 3 × 3 mm3);
(5) detrending; (6) filtering (0.01–0.08 Hz); (7) scrubbing the
BOLD-fMRI data; and (8) regression of the Friston-24 motion
parameters, cerebrospinal fluid signal, white matter signal.

Functional Connectivity Analysis
The FCS of the whole-brain gray matter is the average value of the
functional connectivity strength between a given voxel X0 and all
other voxels in the whole brain gray matter. Based on the gray
matter template provided by the software, the Pearson correlation
coefficient between each voxel and other voxel BOLD time series
was calculated, the correlation threshold was set at 0.2 (Liu et al.,
2015), and the complete gray matter function connection matrix
of each subject was obtained. We used an isotropic Gaussian

1http://rfmri.org/dpabi
2http://www.fil.ion.ucl.ac.uk/spm

kernel [full width at half maximum (FWHM) = 6 mm] to spatially
smooth the FCS map.

Cerebral Blood Flow Analysis
The CBF images were received from the ASL difference images
by subtracting the label images from the control images. The
CBF images were processed through a cloud platform (Beijing
Intelligent Brain Cloud, Inc.3). (1) The CBF images were
coregistered to the template of the Montreal Neurology Institute
(resampled voxel size = 3 × 3 × 3 mm3) and segmented into
gray matter, white matter, and cerebrospinal fluid maps. (2) The
images were spatially smoothened by using a Gaussian kernel
with 6 mm fullwidth at half-maximum (FWHM).

Cerebral Blood Flow–Functional
Connectivity Strength Correlation
Analysis
We conducted correlation analyses across voxels for each
participant to statistically analyze the correlation relation
between CBF and FCS on the entire gray matter. First, the CBF
and FCS maps were normalized into Z-scores for each participant
by subtracting the mean and dividing by the SD of global
values within the gray matter mask. The df eff of across-voxel
correlations was then calculated using the equation below:

dfeff =
N

(FWHMx × FWHMy × FWHMz)/v
− 2

where v is the volume of a voxel (3 × 3 × 3 mm3), and N
is the number of voxels (N = 66,817) used in the analyses.
FWHMx × FWHMy × FWHMz were the average smoothness
of the CBF and FCS maps (12.1 × 13.0 × 11.9 mm3) estimated
using Matlab’s DPABI software (DPABI V3.04). In our study, the
df eff of across-voxel correlations was 961. Finally, The CBF–FCS
correlation coefficients were compared using one-way ANOVA.

3www.humanbrain.cn
4http://rfmri.org/
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Cerebral Blood Flow/Functional
Connectivity Strength Ratio Analysis
To evaluate the amount of blood supply per unit of connectivity
strength, we computed the CBF/FCS ratio of each voxel. Before
calculating the CBF/FCS ratio, it is necessary to note that both
CBF and FCS are the original values without Z transformation.
After the ratio, perform Z transformation to improve normality.
The operation steps are based on Matlab’s DPABI software, using
the whole-brain gray matter template as the mask, and calculate
the CBF/FCS ratio for each subject.

Voxel-Wise Comparisons in Cerebral
Blood Flow and Functional Connectivity
Strength
To further understand what might be causing changes in
the CBF/FCS ratio, we analyzed CBF and FCS changes
between the three groups voxel-wise while controlling for age,
gender, and GMV.

Clinical and Cognitive Associations
Based on the anatomical template, the average CBF/FCS ratio of
the subregions with significant group differences on F map were
extracted, and the non-parametric Spearman rank correlation
analysis (Bonferroni corrected) was used to test the CBF/FCS
ratio of each significant subregion and the clinical measures in
the AVH and NAVH groups (PANSS positive, negative, general,
total score, and AHRS).

Statistical Analysis
The intergroup differences of voxel-wise CBF, FCS, CBF–
FCS correlation, and CBF/FCS ratio were tested by using
analysis of variance (ANOVA) with age, gender, and GMV
(Crow et al., 1980) of each subject as covariates. Multiple
comparisons were corrected according to the Gaussian random
field (GRF) theory (voxel-wise p < 0.005, cluster-wise p < 0.05,
two-tailed) in the DPABI toolbox (see text footnote 1)4.

Validation Analysis
The correlation threshold of r = 0.2 was applied in the FCS
calculation (Liu et al., 2015). We repeatedly computed the whole-
brain FCS with correlation thresholds of 0.1 and 0.3 to verify the
stability of the results.

RESULTS

Spatial Distribution of the Functional
Connectivity Strength, Cerebral Blood
Flow, and Cerebral Blood
Flow/Functional Connectivity Strength
Ratio
The geographic distributions of FCS, CBF, and the CBF/FCS
ratio were similar in the AVH, NAVH, and HC groups
(Supplementary Figure 1). At the level of CBF index, the brain
regions of the three groups of HC, AVH, and NAVH that showed

similar CBF elevation were distributed in the medial/lateral
prefrontal cortex, anterior/posterior cingulate cortex, precuneus,
lateral temporal and parietal cortices, sensorimotor, and visual
cortices. At the level of FCS index, the brain regions of
the three groups of HC, AVH, and NAVH that showed
similar FCS elevation were distributed in the lateral temporal
cortex, prefrontal cortex, anterior and posterior cingulum, and
visual cortex, which were all shown to have higher FCS.
At the level of CBF/FCS ratios index, the brain regions
of the three groups of HC, AVH, and NAVH that showed
similar CBF/FCS ratio elevations were distributed in the
medial prefrontal cortex, anterior cingulate cortex, sensorimotor
cortex, and thalamus.

Cerebral Blood Flow–Functional
Connectivity Strength Correlation
Although CBF was significantly correlated with FCS in both
AVH, NAVH, and control groups (Figure 3), the three groups
had no significant differences in CBF–FCS coupling (one-way
ANOVA F = 0.473, p = 0.624; Figure 3). Post-hoc analysis: AVH
group compared with HC (two-sample t-test, t = -0.343, p =
0.732), NAVH compared with HC (two-sample t-test, t = 0.692,
p = 0.491), AVH compared with NAVH (two-sample t-test, t =
-1.017, p = 0.321).

Cerebral Blood Flow/Functional
Connectivity Strength Ratio
Compared with the HC group, both the AVH and NAVH
groups exhibited decreased CBF/FCS ratio in left crus I/II, vermis
VI/VII, as well as left cerebellum VI. Compared with the HC
group, the AVH group showed increased CBF/FCS ratio in the
left STG/MTG unparalleled and decreased CBF/FCS ratio in
right cerebellum crus II (voxel level p < 0.005, cluster level p
< 0.05, GRF-corrected, Figure 4 and Table 2). Unfortunately,
there was no difference in CBF/FCS ratio between the AVH
and NAVH groups.

Cerebral Blood Flow and Functional
Connectivity Strength
Compared with the HC group, the significant brain regions of
CBF in AVH and NAVH patients are shown in Figure 1 and
Supplementary Table 1 (p < 0.05, GRF-corrected), and the FCS
is shown in Figure 2 and Supplementary Table 2 (p < 0.05, GRF-
corrected). The AVH group did not show any difference in CBF
compared with the NAVH group (voxel level p < 0.005, cluster
level p < 0.05, GRF-corrected).

The Correlation Between Cerebral Blood
Flow/Functional Connectivity Strength
Ratio and Psychotic Symptoms
Supplementary Table 3 shows the associations of the PANSS
positive, negative, and general subscores with the normalized
CBF/FCS ratio of each significant subregion. Figure 5 and
Supplementary Table 4 exhibit the relationships between the
CBF/FCS ratio of each meaningful ROI and the AHRS. In the
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FIGURE 3 | Whole gray matter level cerebral blood flow–functional connectivity strength (CBF–FCS) coupling changes in schizophrenia. Scatter plots of the spatial
correlations across voxels between CBF and FCS in an AVH (red), an NAVH patient (yellow), and an HC subject (blue), respectively. The mean whole gray matter level
CBF–FCS coupling in AVH patients, NAVH patients, and HC. Although CBF is significantly correlated with FCS in both schizophrenia and control groups, there was
no difference between the three groups. CBF, cerebral blood flow; FCS, functional connectivity strength; AVH, schizophrenia patients with AVHs; NAVH,
schizophrenia patients without AVHs; HC, healthy control.

AVH group, we found a significance positive correlation between
the CBF/FCS ratio in the left STG/MTG and the AHRS (left MTG:
Spearman’s ρ = 0.343, p = 0.020; left STG: Spearman’s ρ = 0.303, p
= 0.041). However, the significance did not survive the Bonferroni
correction (p < 0.05/51 = 0.001).

Validation Analysis
We repeated our analysis using correlation thresholds of r = 0.1
and r = 0.3 to see if the correlation thresholds had any effect
on our FCS calculation results. We found that the brain regions
with significant CBF/FCS differences at r = 0.1 (Supplementary
Figure 2 and Supplementary Table 5) were consistent with r
= 0.2 (Figure 4 and Table 2). With r = 0.3 as the threshold
(Supplementary Figure 3 and Supplementary Table 6), the
vermis VI/VII, left cerebellum crus I/II, left cerebellum VI,
and right cerebellum crus II in the AVH and NAVH groups
were preserved. The spatial distributions of CBF, FCS, and
CBF/FCS ratio at r = 0.1 (Supplementary Figure 4) and r = 0.3
(Supplementary Figure 5) were very similar to those at r = 0.2

(Figure 3). The spatial correlations between CBF and FCS across
voxels in anAVH patient (red), an NAVH patient (yellow), and
an HC subject (blue) at r = 0.1 (Supplementary Figure 6) and
r = 0.3 (Supplementary Figure 7) were comparable with r =
0.2 (Figure 3).

DISCUSSION

In this study, we adopted the method of neurovascular coupling
in three groups (AVH patients, NAVH patients, and HC).
Compared with HCs, the two schizophrenia groups showed
widespread common decreased CBF/FCS ratios in the cerebellum
regions, i.e., the left cerebellar crus I/II, left cerebellum VI, and
vermis VI/VII. The AVH group exhibited additional alterations,
including increased CBF/FCS ratio in the left STG/MTG and
decreased CBF/FCS ratio in the right crus II. These converging
results confirmed differences between patients with and without
AVHs compared with HCs, respectively, suggesting neural
mechanisms for hallucinations.
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FIGURE 4 | (A) CBF/FCS ratio results for HC, AVH, and NAVH groups at a voxel-level height threshold of p < 0.005 (two sided) and cluster size GRF corrected
threshold of p < 0.05. (B) Brain regions with significant CBF/FCS changes in the AVH group. (C) Brain regions with significant CBF/FCS changes in the NAVH
group. CBF, cerebral blood flow; FCS, functional connectivity strength.

TABLE 2 | Brain regions with significant group differences in cerebral blood flow/functional connectivity strength (CBF/FCS) ratio.

Group differences Regions Cluster size (voxels) Peak MNI coordinate Peak t-values

X Y Z

AVH > HC L_STG 98 −63 −24 6 10.91

L_MTG 35 −45 −21 15 9.35

AVH/NAVH < HC Vermis VI 71 3 −72 −18 19.27

L_cerebellum crus II 57 −3 −87 −27 −15.00

L_cerebellum VI 51 −9 −75 −18 −9.10

L_cerebellum crus I 51 −33 −90 −30 −8.19

Vermis VII 27 3 −72 −24 −10.30

AVH < HC R_cerebellum crus II 22 6 −87 −27 −10.45

AVH, schizophrenia with AVHs patients; NAVH, schizophrenia without AVHs patients; HC, healthy control; MNI, Montreal Neurological Institute; L_MTG, left middle
temporal gyrus; L_STG, left superior temporal gyrus.

Increased FCS may reflect a plastic or compensatory response
mechanism to structural abnormalities or an undifferentiated
state of brain activity characterized by a disruption of usually
separated neural activity in schizophrenia (Fornito and Bullmore,
2015). Previous research has found that in schizophrenia,

lower structural integrity is accompanied by better functional
connectivity, implying that structural impairments can be
mitigated by improved functional integration and functional
plasticity (Cocchi et al., 2014; Straathof et al., 2018) or
excessive attention to internal stimuli (Narr and Leaver, 2015).

Frontiers in Neuroscience | www.frontiersin.org 8 April 2022 | Volume 16 | Article 821078

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-16-821078 April 22, 2022 Time: 11:51 # 9

Chen et al. Altered Neurovascular Coupling in Schizophrenia With AVH

FIGURE 5 | The cerebral blood flow/functional connectivity strength (CBF/FCS) ratio of the left STG and left MTG was positively correlated with the severity of
auditory verbal hallucinations, as assessed by AHRS scores in AVH patients.

Cerebellar morphology studies reported reduced GMV in the
left cerebellum VI (He H. et al., 2019), left crus I/II (Ding
et al., 2019), and cerebellum vermis (Zhong et al., 2018)
accompanied by increased FCS between the cerebellum and
cortical/subcortical networks or brain regions. Furthermore,
structural damage, such as GMV reduction, diminished cortical
thickness, and white matter alteration, may impede the exact
coordination of inter-regional functional synchronization and
reduce information transmission, resulting in decreased FCS in
schizophrenia (Kelly et al., 2018; Pan et al., 2019). Previous
studies with schizophrenia, for example, have demonstrated a
disruption or deviations within the white matter interconnecting
left hemisphere language regions (IFG/STG/MTG) accompanied
by a low degree of functional connectivity between them (Jeong
et al., 2009; de Weijer et al., 2013). The CBF changes in
schizophrenia may reflect aberrant neural activity, changes in
neurotransmitters, and microvasculature alterations related to
neuroinflammation (Kirkpatrick and Miller, 2013; Muller, 2018;
Sukumar et al., 2020). Homan et al. has reported that repetitive
transcranial magnetic stimulation (TMS) treatment, associated
with decreased neural activity, can reduce resting-brain perfusion
of the left STG (Homan et al., 2012). AVH patients with persistent
regional high perfusion of the left STG indicated that neuronal
activity in the left STG was a characteristic biomarker in AVHs
(Homan et al., 2013). Groen et al. (2011) showed spontaneous
reactivation of memory traces together with increased CBF
in the left MTG.

Based on the previous research, any single or a combination of
neurovascular unit component impairments and abnormalities
(significantly, the astrocytes), neural activity anomaly, or
structural impairments can lead to abnormal neurovascular
coupling (Howarth, 2014; Stobart and Anderson, 2013), precise
coordination and integration of inter-regional functional
synchronization is impaired (Pan et al., 2019), and information

transmission is decreased eventually (Kelly et al., 2018). Any
cause of abnormality in CBF or FCS might lead to a change
in the ratio of CBF/FCS. Absolutely, many other factors could
also result in neurovascular decoupling, but it is not the focus
of our article (Girouard and Iadecola, 2006). The across-voxel
correlation between CBF and FCS between the three groups
showed no statistical difference on the whole gray matter level
in our results. We speculate that the result may be due to
the mutual cancelation of many influencing factors as above
precisely. However, the CBF/FCS ratio, another coupling
index, could show similar discrepancy. The CBF/FCS ratio
directly indicated neurovascular coupling of a given voxel or
local region and maintained balance in healthy brains (Liang
et al., 2013; Zhu et al., 2017). The CBF/FCS ratio equilibrium
can be altered in schizophrenia and may differ between
AVH and NAVH individuals, with CBF and FCS altering in
different directions.

Compared with HC, in the NAVH patients, the left crus I/II,
vermis VI/VII, and left cerebellum VI showed increased FCS and
normal CBF, suggesting that the decreased CBF/FCS ratio in these
regions is predominantly driven by the increased FCS. Compared
with HC, in the AVH patients, the decreased CBF/FCS ratio in
the left crus I/II, vermis VI/VII, left cerebellum VI, and right
crus II was predominantly driven by both CBF and FCS. Under
these circumstances, the CBF/FCS ratio decrease was based on
ROI analyses in the AVH group (Supplementary Figure 8).
Interactions between the posterior lateral cerebellum (e.g., crus
I/II) and the prefrontal cortex underlie the engagement of the
cerebrum in higher-level functions like cognitive control and
processing (Buckner et al., 2011; Carass et al., 2018). Many studies
on the cerebellum structure have proven that the reduction in
cerebellar gray matter in the left crus I and left crus II was related
to the decrease in cognitive function (Kuhn et al., 2012; Kim
et al., 2018; Moberget et al., 2018; Uwisengeyimana et al., 2020).
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In a functional imaging study, the cerebellar VI, which is coupled
to subcortical limbic regions and covered in the salience network
of the intrinsic connection networks in the cerebral cortex,
prioritizes processing of emotionally significant stimuli in a
context-dependent way (Seeley et al., 2007; Habas et al., 2009).
Moreover, anatomically, the cerebellar vermis VI and VII are
located in the posterior section of the cerebellar vermis (Carass
et al., 2018), The vermis situated in the midline of the cerebellum
is equivalent to the limbic cerebellum, connected to the thalamus
and the limbic system (Ichimiya et al., 2001), and plays a role in
higher-level functions, such as affection or emotional regulation
and cognitive processing (Schmahmann et al., 2007; Yucel
et al., 2013; Womer et al., 2016). Therefore, cerebellar VI may
have a role in determining the valence of important emotional
cues and choosing suitable behavioral responses (Habas et al.,
2009). In other words, these regions, which are associated with
one of the cerebellum’s major tasks in emotional processing,
were activated by computing cues, resulting in diminished
consolidation of emotional signals and delivery to the cerebral
cortex (Adamaszek et al., 2017). Cerebellum VI is the part of
the upper cerebellum that is functionally connected to sensory–
motor-related areas. It is also projected to the sensorimotor brain
network and is considered to be an important component of
motor control and coordination (Grodd et al., 2001; Buckner
et al., 2011; Ding et al., 2019). In cognitive processing, the
sensorimotor network is involved in perceiving face expressions,
emotions, and personal desires (Watanuki et al., 2016). Small
cerebellum VI clusters were found in salience and sensorimotor
networks. The overlap suggests an intracerebellar connection
between them that might relate to limbic control of the motor
system (Habas et al., 2009). Therefore, the motor learning of
the cerebellum in the forward model may straightly exemplify
the intimate relationship between the cerebellum’s motor and
cognitive domains (Jacobi et al., 2021).

Pastor et al. discovered that frequency-specific coupling
between STG and crus II in the auditory cortical–cerebellar–
thalamic loop regulates auditory cortex oscillatory activity in
schizophrenia AVHs (Pastor et al., 2008). Furthermore, Coull
and Nobre (2008) have demonstrated that cerebellar areas are
almost always engaged by explicit time prediction, depending
on the individual task setting. Previous research has suggested
that the left crus I and bilateral crus II may have a role in
AVHs by altering sensory feedback and, as a result, unpredictable
prediction, as shown by the forward model (Runnqvist et al.,
2016; Pinheiro et al., 2020b). In addition, the posterior vermis has
shown involvement in a cerebello–thalamo–cortical circuit for
error-related cognitive control in healthy adults (Womer et al.,
2016) and auditory prediction in AVHs (Pinheiro et al., 2020a).
Given the cerebellum’s role in the forward model and its function
as a comparator, the cerebellum can compare actual input with
previous stimuli and test for discrepancies. If a discrepancy–
error signal is discovered, cerebellar activity increases, and a vast
portion of the cerebral cortex is alerted by increasing excitability
(Marco Molinari et al., 2008). Our findings of decreased CBF/FCS
ratio in cerebellum regions could implicate that cerebellum
cognitive dysmetria is linked to gray matter structural damage or
disruption of the cerebello-cortical circuit, resulting in patients

with AVHs having difficulty synchronizing and integrating
neuronal computations and processing to generate ordered and
meaningful motor and cognitive activities (Nancy et al., 1998).

Compared with HC, the left STG/MTG showed a significantly
increased CBF/FCS ratio in AVH patients. Further analysis based
on ROI showed that these areas of AVH patients have higher
CBF and lower FCS than HC (Supplementary Figure 8). Many
structural (Onitsuka et al., 2004; Cui et al., 2018; Curtis et al.,
2021), functional neuroimaging (Allen et al., 2008), and circuit
studies (Benetti et al., 2015; Huang et al., 2019; Ren et al., 2021)
have indicated that the left STG, particularly the primary and
association auditory cortex, and the left MTG, play a key role
in the etiology of AVHs. The STG on the left mainly deals with
the perception of “speech,” that is, understanding the phonetic
and semantic features of the speech content (Modinos et al.,
2013) and auditory feedback processing originating from the
cerebellum (Christoffels et al., 2007). As we all know, the left
MTG is known to be especially vital for the semantic processing
of speech and mapping sound to meaning (Clos et al., 2014;
Liu et al., 2016). It may be related to the internal attribution
of the event. In this case, the self-stored semantic memory is
considered an active and intentional agent (Blackwood et al.,
2000). Reduced left STG/MTG gray matter volumes are linked
to higher AVH severity (Allen et al., 2008). A recent research
suggests that AVHs are caused by abnormally high resting-
state activity in the auditory cortex (Kuehn and Gallinat, 2012;
Hugdahl and Sommer, 2018). AVHs are caused by abnormal
height or abnormal static activity in the left STG/MTG, which
causes spontaneous internal signals to be misunderstood as
external (Cho and Wu, 2013; Alderson-Day et al., 2015). Internal
speech being mistakenly attributed to external or non-self sources
could be the result of atypical self or reality monitoring, which
is caused by the failure of the internal forward model (Cho and
Wu, 2013; Moseley et al., 2013). Evidence from neuroimaging
suggests that monitoring of one’s own speech, overt or covert,
is related to activity in auditory cortical regions such as the left
STG (Allen et al., 2007; Moseley et al., 2013). In addition, a
greater CBF/FCS ratio in the left STG/MTG was positively linked
with hallucination severity measured by AHRS in patients with
AVHs, probably reflecting these regions based on trait study
engaging in more rapid AVH processing. So, our findings of
increased CBF/FCS in the left STG/MTG may implicate that
the spontaneous auditory activation of auditory representation
information emerged, the coordination and integration of that
local activity across brain regions were impaired, and the event
to another person was misattributed eventually.

In summary, we use the combination of BOLD and ASL
technology to reveal the disordered coupling of resting CBF
and functional connectivity between AVH and NAVH patients.
In addition, our results revealed that schizophrenic patients
had widespread deficits in both low-level sensorimotor and
higher-order cognitive networks of the cerebellum, which
suggest potential impairment affection, emotion, and cognitive
functions. Specifically, our findings may possibly implicate that
the typical symptom of AVHs in schizophrenia might arise
from the failure of a forward model originating from functional
synchronization abnormality among networks in cerebellar
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regions, which in turn might contribute to increase the activity
of the cerebellum and alert the left STG/MTG by enhancing its
excitability and, eventually, not recognizing that the experience is
internally produced.
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