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The abnormal iron deposition of the deep gray matter nuclei is related to many
neurological diseases. With the quantitative susceptibility mapping (QSM) technique,
it is possible to quantitatively measure the brain iron content in vivo. To assess the
magnetic susceptibility of the deep gray matter nuclei in the QSM, it is mandatory
to segment the nuclei of interest first, and many automatic methods have been
proposed in the literature. This study proposed a contrast attention U-Net for nuclei
segmentation and evaluated its performance on two datasets acquired using different
sequences with different parameters from different MRI devices. Experimental results
revealed that our proposed method was superior on both datasets over other commonly
adopted network structures. The impacts of training and inference strategies were also
discussed, which showed that adopting test time augmentation during the inference
stage can impose an obvious improvement. At the training stage, our results indicated
that sufficient data augmentation, deep supervision, and nonuniform patch sampling
contributed significantly to improving the segmentation accuracy, which indicated that
appropriate choices of training and inference strategies were at least as important as
designing more advanced network structures.

Keywords: convolutional neural network (CNN), deep learning, medical image segmentation, gray matter nuclei,
quantitative susceptibility mapping, strategically acquired gradient echo (STAGE) imaging

INTRODUCTION

In the last decade, the advent of the quantitative susceptibility mapping (QSM) technique can
achieve the quantitative measurement of brain iron content in vivo (Langkammer et al., 2010; Liu
et al., 2015, 2017). QSM employed the magnetic susceptibility of tissue as the inherent physical
magnetic resonance imaging (MRI) parameter, which indicated how the local magnetic field in
tissues changes when an external magnetic field is applied (Li et al., 2019). Magnetic susceptibility
of tissue can provide unique information of tissue iron composition (Li et al., 2019). Compared
with other iron-sensitive techniques, including the transverse relaxation rates (R2, R2

∗, and R2’),
field-dependent rate increase, phase information from susceptibility-weighted imaging (SWI), and
magnetic field correlation imaging, QSM can overcome the limitations of these techniques, such as
the relatively low accuracy of R2

∗ due to other confounding factors (water content and calcium),
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geometry- and orientation-dependence of phase images, and low
sensitivity to small changes in brain iron (Stankiewicz et al.,
2007; Bilgic et al., 2012; Deistung et al., 2013; Chai et al., 2019).
QSM was more accurate in measuring the iron content and
strongly correlated with the iron concentration of postmortem
brain tissues (Langkammer et al., 2010).

The quantitative measurement of brain iron content using
QSM has brought into focus the role of iron in the brain
development, physical function modulation, and aging (Salami
et al., 2018; Peterson et al., 2019), as well as in various neurological
diseases, including Alzheimer’s disease, Parkinson’s disease,
multiple sclerosis, metabolic diseases (hepatic encephalopathy
and renal encephalopathy), sleep disorders, hematological system
diseases, and cerebrovascular diseases (Chai et al., 2015a; Xia
et al., 2015; Miao et al., 2018; Chai et al., 2019; Valdés Hernández
et al., 2019; Pudlac et al., 2020; Cogswell et al., 2021; Thomas
et al., 2021; Zhang et al., 2021; Galea et al., 2022). As iron has
been proned to accumulate in the gray matter nuclei in normal
people and all these neurological diseases have abnormal iron
deposition in the gray matter nuclei, the gray matter nuclei
are the critical target structures to explore the abnormal iron
deposition. Previous studies have found that routine structural
MR images such as T1-weighted images could hardly show iron-
rich gray matter nuclei clearly, such as substantia nigra (SN), red
nucleus (RN), and dentate nucleus (DN; Beliveau et al., 2021).
Therefore, these nuclei were not found in the most popular brain
atlas, including FreeSurfer, FMRIB Software Library (FSL), and
Statistical Parametric Mapping (SPM). Most segmentation tools
cannot extract these nuclei (Beliveau et al., 2021). However, all
the gray matter nuclei, including SN, RN, and DN, showed the
obvious contrast (high signal) relative to the surrounding brain
tissues in the QSM images because QSM was very sensitive to
the iron, even when the amount was small and QSM can also
enhance the iron-related contrast (Beliveau et al., 2021). The
apparent contrast can help to identify the gray matter nuclei
clearly and accurately. The measurement of iron content needs
to manually outline the volumes of interest (VOIs) of the gray
matter nuclei, which heavily depend on the operator’s experience
and cause some bias (Chai et al., 2022). The manual drawing
of VOIs was also a tedious task and consumed an amount of
time, which limited the wide application beyond research interest.
To date, one study has used the SWI as the target modality
because SWI can provide the enhanced contrast to visualize
the gray matter nuclei compared to the other iron-sensitive
modalities besides QSM and SWI also has a wide range of clinical
applications (Beliveau et al., 2021). However, it was not far from
enough to visualize and segment the nuclei using SWI, and the
quantitative measurement of iron content was also a very critical
step for the clinical evaluation of abnormal iron deposition for
the diagnosis of neurological diseases. Therefore, QSM as the
target modality can provide the enhanced contrast as good as SWI
and directly quantitatively provide the information about iron
content (Liu et al., 2015).

Deep learning has recently been successfully applied in
biomedical image segmentation tasks (Minaee et al., 2021). It
has been shown that, in many medical image segmentation
tasks, such as tumor segmentation (Menze et al., 2015;

Chang et al., 2018), stroke lesion segmentation (Maier et al.,
2017; Liu et al., 2018), and organ segmentation (Gibson et al.,
2018), deep learning methods were able to significantly exceed
the conventional atlas-based methods. Most deep-learning-
based medical image segmentation tasks adopted the U-Net
(Ronneberger et al., 2015) or its variants (Cicek et al., 2016; Chang
et al., 2018; Liu et al., 2018; Meng et al., 2018; Wang et al., 2020).
By introducing dense skip connections between the encoder and
decoder layers, U-Net like structures were able to effectively fuse
the spatial and semantic information even when the training
set was small. To further improve the segmentation accuracy of
U-Net, some modifications at the encoder part or at the skip
connections were proposed in the literature. The modications at
the encoder mainly focused on making the encoders wider (Chen
et al., 2019; Wang et al., 2019; Ibtehaz and Rahman, 2020), so as to
enrich the feature maps from multiple fields of view. At the skip
connections, the modifications were applied by incorporating
various attention mechanisms to guide the decoder to utilize the
most essential features (Oktay et al., 2018; Guo et al., 2021).

When applied to the brain gray matter nuclei segmentation
task, deep learning methods have also been more robust and
accurate than the atlas-based methods (Guan et al., 2021; Chai
et al., 2022). For instance, Chai et al. (2022) proposed a double-
branch U-Net structure for gray matter nuclei segmentation in
the QSM images, which incorporated the local feature maps from
image patches with the original resolutions and the global feature
maps from down-sampled image patches and presented high
accuracy in nuclei segmentation with a light-weighted neural
network. Guan et al. (2021) also developed a segmentation
method known as DeepQSMSeg to segment five pairs of nuclei,
including CN, PUT, GP, SN, and RN in the QSM images,
which incorporated the spatial-wise and channel-wise attention
mechanism into the U-Net architecture.

Most deep-learning methods mainly focused on proposing
novel network architectures, and most of them were developed
based on U-Net. The training strategies, however, were not
emphasized. In this study, we attempted to emphasize not
only the network structures, but also the importance in fine
tuning the networks with appropriate training and inference
strategies. In particular, we adopted a minor modification in the
U-Net by introducing contrast attention (CA) modules at the
skip connections and attempted to improve the segmentation
accuracy without introducing additional network parameters.
Experiments were conducted on two different datasets (Datasets
I and II) with QSM acquired using different MRI sequences
with different imaging parameters from different MRI devices.
Dataset I was randomly split as a training set with 42
subjects and a test set with 20 subjects. The network was
trained on the training set and evaluated on the test set
and Dataset II. Experimental results revealed that on both
datasets, the proposed method was able to overperform the
other popular U-Net-shaped structures, including 3D U-Net
(Cicek et al., 2016), Attention U-Net (Oktay et al., 2018),
and DeepQSMSeg (Guan et al., 2021), which highlighted
the ability of generalization of our proposed method. The
effects of various training strategies were also discussed,
which implied that data augmentation, deep supervision, and
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nonuniform patch sampling were beneficial for improving the
segmentation accuracy.

MATERIALS AND METHODS

Datasets
This prospective study was approved by the Tianjin First
Central Hospital Review Board and Ethics Committee. The
informed consent of all subjects was obtained before the MRI
examination. Our study included two datasets acquired using
different MRI sequences from different MRI devices, Dataset I
with sixty-two healthy subjects (age range 22–60 years, mean
age 37.34 ± 11.32 years; male 24 and female 38) and Dataset
II with twenty-six healthy subjects (age range 54–72 years,
mean age 62.44 ± 4.35 years; male 18 and female 9). All were
enrolled from Tianjin First Central Hospital staff or community
members by advertisement. The inclusion criteria were as follows:
(1) the age of the subjects was 18 years or older; (2) the
subjects had no MRI contraindications, including metal implant,
pacemaker, or claustrophobia; (3) the subjects had no history of
central nervous system diseases, including the cerebral infarction,
cerebral hemorrhage, cerebral tumor, traumatic cerebral injury,
or contusion, which might affect the segmentation of the cerebral
structures. The exclusion criteria were as follows: (1) the subjects
cannot finish the MRI scanning and acquire the available SWI
images and 3D T1-weighted images; (2) the subjects had the
congenital abnormalities and above central nervous system
diseases, which might affect the segmentation of the cerebral
structures; (3) the quality of MRI images was not good for the
post process and analysis.

Dataset I was randomly split into the training set and test set,
with 42 (age range 22–55 years, mean age 36.6± 10.94 years; male
15 and female 27) and 20 subjects (age range 25–60 years, mean
age 38.9 ± 12.22 years; male 9 and female 11), respectively. The
training set was used to train the neural networks, while the test
set was used to evaluate the performance. All subjects in Dataset
II were used for evaluation.

MRI data of Dataset I included SW images and 3D T1W
images and were collected using a 3.0 T MRI scanner (Magnetom
TIM TRIO scanner, Siemens Healthineers, Erlangen, Germany)
equipped with an 8-channel phased-array head coil. The
acquisition parameters of Dataset I were listed as follows: (1) the
parameters of SWI: TR (time repetition)/TE (time echo) = 27/20
ms, number of slices = 56, FoV = 230 mm × 200 mm, voxel
resolution = 0.5 mm × 0.5 mm × 2 mm, corresponding matrix
sizes = 336 × 448 × 56, receiver bandwidth = 120 Hz/pixel, flip
angle = 15◦, and acquisition time = 334 s; (2) the parameters
of 3D T1WI: TR/TE = 1,900/2.52 ms, TI (time inversion) = 900
ms, number of slices = 176, FoV = 250 × 250 mm2, voxel size
= 1.0 mm × 1.0 mm × 1.0 mm, corresponding matrix sizes =
256 × 256 × 176, flip angle = 9◦, and acquisition time = 258 s.
MRI data of Dataset II were collected using another 3.0T MRI
scanner (MAGNETOM Prisma, Siemens Healthcare, Erlangen,
Germany) equipped with a 20-channel phased-array head coil.

The subjects of Dataset II had strategically acquired the
gradient echo (STAGE)-MR angiography and venography

(MRAV) sequence instead of the SWI sequence and also 3D
T1WI. The STAGE-MRAV sequence is a multi-parametric MRI
sequence, which can be post-processed to acquire the QSM
images directly. The acquisition parameters of Dataset II were
listed as follows: (1) the parameters of STAGE sequence:
TR/TE = 20/(2.5, 12.5) ms, matrix sizes = 384 × 288, flip angle =
12◦, number of slices = 64, slice thickness = 2 mm, in-plane spatial
resolution = 0.67 mm × 0.67 mm, FoV = 256 mm × 192 mm,
receiver bandwidth/pixel = 240 Hz/pixel, and total acquisition
time = 368 s; (2) the parameters of 3D T1WI: TR/TE = 2,000/2.98
ms, TI = 900 ms, number of slices = 176, FoV = 256 mm × 248
mm, voxel size = 1.0 mm × 1.0 mm × 1.0 mm, corresponding
matrix sizes = 256 × 248 × 176, flip angle = 9◦, and acquisition
time = 269 s.

Considering that the SWI and QSM images of STAGE-MRAV
and 3D T1WI were acquired using different parameters and
different FoVs, we first registered the T1WI images and the
SWI images or QSM images of STAGE-MRAV using rigid affine
transformation with mutual information as the criterion, and
then resampled the T1WI images using linear interpolation, so
that the T1WI image and its corresponding SWI image or QSM
images of STAGE-MRAV were with the same spatial resolutions
and matrix sizes.

The QSM images were reconstructed from the phase and
magnitude images of SWI by employing the SMART software
(Susceptibility Mapping and Phase Artifacts Removal Toolbox,
Detroit, MI. The QSM images from the STAGE-MRAV sequence
were acquired using the STAGE software (SpinTech Inc., MI,
United States). The postprocessing steps of reconstruction
of QSM have been reported in several studies (Chai et al.,
2015b, 2022; Tang et al., 2020; Zhang et al., 2021). First, the
elimination of the skull and other regions with low signals
was performed using the Brain Extraction Tool (BET) in the
FMRIB Software Library (FSL; Smith, 2002). Second, excluding
the phase wraps in the original phase images was performed
using a 3D best-path algorithm (Abdul-Rahman et al., 2007).
Third, the elimination of the background phase information
was performed using a sophisticated harmonic artifact reduction
for the phase data (SHARP) algorithm (Schweser et al., 2011).
Finally, the reconstruction of QSM images was performed using
the truncated k-space division algorithm with a k-space threshold
of 0.1 (Haacke et al., 2010).

Manual Annotation
The drawing of gray matter nuclei’s volume of interest (VOI)
in the QSM images was performed using the SPIN software
(Signal Processing in Nuclear Magnetic Resonance, Detroit, MI,
United States). The gray matter nuclei in our study included
the bilateral caudate nuclei (CN), globus pallidus (GP), putamen
(PUT), thalamus (THA), red nuclei (RN), substantia nigra (SN),
and dentate nuclei (DN), as shown in Figure 1. These nuclei
showed a high signal in the QSM images. Considering the
personal difference in the shape and size of the nuclei in different
people and in order to assure that the susceptibility values were
assessed as accurately as possible for each subject, the VOIs were
outlined manually on the contiguous slices of gray matter nuclei
to include the whole volume of each nucleus by two well-trained
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FIGURE 1 | The deep gray matter nuclei of interest outlined in the QSM
images.1, CN; 2, GP; 3, PUT, 4, THA; 5, SN; 6, RN; and 7, DN.

neuroradiologists (C.C. and H.Y.W.) with 11 and 6 years of
experience in neuroradiology who were blinded to the clinical
and epidemiological information. When drawing the VOIs of
the nuclei, we also magnified the images to obtain the more
precise margin of nuclei. The topmost and lowermost slices of
nuclei were excluded to eliminate the influence of edge partial
volume effects. The susceptibility values of gray matter nuclei
were presented as mean values and standard deviation.

Proposed Method
In this study, we employed both T1WI and QSM for nuclei
segmentation, so as to utilize the high structural contrast of
T1WI and the enhanced iron-related contrast of QSM. To
better segment the nuclei, a contrast-attention U-Net (CAU-
Net) was proposed for nuclei segmentation. In the classical
U-Net, skip connections were employed to fuse the feature maps
hierarchically with the decoder feature maps. In our proposed
network, the CA module was added at the skip connections to
encourage the network to extract the most prominent features
and pass them to the decoder. As shown in Figure 2, the proposed
CAU-Net employed a U-Net like structure in general, but made
several significant modifications. The detailed hyperparameters,
such as the numbers of filters and kernel sizes, can be found in
Figures 2, 3.

Contrast Attention
U-Net is the most successful network architecture in medical
image segmentation, which fuses high-level and low-level
features by skipping connections to obtain rich contextual
information and precise location information.

Basically, to obtain accurate segmentation results, the network
should be able to utilize both semantic and spatial information.
In the encoder layers of a U-Net, the semantic information is
extracted by many consecutive convolution layers, making it
necessary to down-sample the feature maps to enlarge the FoVs
of the convolution layers. In the decoder part, to recover the
spatial information and generate accurate segmentation, it has
to utilize both the semantic information from the deepest layer
of the encoder and the spatial information from the shallower
layers of the encoder. To generate a fine segmentation map,
contour information and local details of images are meaningful

for semantic segmentation. For instance, high-pass filters, such
as Sobel and Laplacian operators, are widely used to extract the
image’s contour in image signal processing. Therefore, we assume
that it is more important to pass the contour information to the
decoder layers, instead of directly passing all output feature maps
of the encoder layers to the decoder.

To cope with this problem, we added the CA at the skip
connections of the U-Net, which can remove the identical
information and extract the local differential information from
the feature maps. Figure 4 shows the structure of the CA module.
The CA module does not include any parameter, and it is simply
calculated as follows:

Y = X − Avg3(X), (1)

where Avg3(X) denotes the output of the average pooling layer
with kernel size 3 and stride 1. It can be easily seen that the
CA module works as a high-pass filter, which captures the local
differential information and filters out the identical information
from each feature map. It can also be interpreted as an implicit
edge attention module, making the model better distinguish the
edges of different tissues.

Training Strategy
Before training, both the T1WI and the QSM images were
normalized to zero mean and unit variance. The mean and
variance values were calculated on all foreground regions of the
training set. The T1WI and corresponding QSM images were
then concatenated to a dual-channel 3D image.

Due to limited GPU memory, cutting the whole volume
into volumetric patches was necessary and commonly used in
training 3D CNN segmentation networks. In our method, the
whole volume was split into multiple patches with the size
128 × 128 × 32. The patches were randomly sampled while
ensuring that at least 2/3 of the patches were centered at the
foreground voxels.

In our study, the training dataset size was significantly limited.
Deep supervision was adopted to train the millions of network
parameters and force the convolution layers to efficiently extract
valuable features. In particular, a convolution layer with softmax
activation was used at each stage of the decoder to generate a
segmentation map, as shown in Figure 2. The deep supervision
outputs were then up-sampled to the original size and the losses
were computed. All deep supervision losses were summed up
with the loss at the final output with equal weights, and the sum
loss was used to update the network parameters. We used the
same loss function at the deep supervision outputs and the final
output, which was the sum of Dice loss and the cross entropy loss
given as follows:

L
(
y, ŷ

)
=−

7∑
k = 0

∑
i

yi,k log ŷi,k−
7∑

k = 1

2
∑

i yi,k · ŷi,k∑
i yi,k +

∑
i ŷi,k

, (2)

where yi,k ∈ {0, 1} denotes whether the i-th voxel was classified
as the k-th class or not, and ŷi,k denotes the value of the i-th voxel
at the k-th channel of the network output. It is noted that we
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FIGURE 2 | The architecture of our proposed CAU-NET. The red arrows denote maxpooling, and the blue arrows denote the transposed convolution. The black
arrows denote the copying of feature maps. “Concat” denotes the channel-wise concatenation. “ResBlk” denotes the residual block, whose structure is shown in
Figure 3.

FIGURE 3 | Structure of the residual blocks in CAU-Net. Conv, ConvTrans, IN, and LReLU denote the convolution layer, transposed convolution layer, instance
normalization, and Leaky ReLU activation function, respectively. “+” denotes the element-wise addition.

FIGURE 4 | Structure of the CA module. “−” denotes the element-wise
subtraction.

only computed the Dice loss of the foreground voxels because
the numbers of the foreground and the background voxels were
significantly imbalanced.

Sufficient data augmentation is another appropriate technique
in dealing with the small training dataset. In our method, we used
random zooming, random rotation within the range [−30, 30],

TABLE 1 | Data augmentation methods adopted in our proposed method.

Data augmentation method Probability Parameter

Random flipping 0.5 Along with X, Y, and Z axes

Random zooming 0.2 Range: 0.7–1.3

Random rotation 0.2 Range: [−30,30]

Gaussian smoothing 0.1 σ=0.125

Random intensity rescale 0.2 Range: [0.9,1.1]

random flipping, and random Gaussian smoothing to improve
the data diversity. The detailed parameters of data augmentations
are summarized in Table 1.

The network parameters were initialized as suggested by He
et al. (2015). Stochastic gradient descent (SGD) with Nestrov
trick was adopted as the optimizer. The momentum was set to
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FIGURE 5 | Architectures of the comparative structures. (A) U-Net. (B) AU-Net. (C) DeepQSMSeg. AG denotes the attention gate. EA and DA denote the encoder
attention and decoder attention, respectively.

FIGURE 6 | Visualized examples of the segmentations of manual delineation, U-Net, AU-Net, DeepQSMSeg, and our proposed method on the test set of Dataset I.
The segmentation results were overlaid on QSM images.

be 0.99, and the initial learning rate was set to be 0.01. To train
the network parameters sufficiently, we trained the network for
a sufficient number of updates. We defined an epoch as 250
batch iterations and trained the network for 500 epochs. The
learning rate was adjusted after each epoch, and reduced in
a polynomial way.

Inference Strategy
During inference, the patches of matrix size 128 × 128 × 32
were extracted from the image with the overlapping rate
of 0.5. The whole segmentation map was constructed by
combining the segmentations of all patches. Test time
augmentation (TTA) was also adopted to further improve

the segmentation accuracy. The augmentation included four
procedures, namely, augmentation, prediction, disaugmentation,
and merging. During the inference, to avoid introducing
errors on the segmentation maps due to interpolation, we
only used the augmentation methods without requiring
interpolation. In particular, we adopted mirroring along
all 3 axes and rotating ±90◦ and generated 8 augmented
copies of the original image. We predicted on both the
original and the augmented images, and then reverted the
transformations on the predictions. Finally, we merged the
predictions to generate the final prediction. In our study,
we used the soft majority voting method to merge the
multiple predictions.
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Evaluation Metrics
In this study, we adopted both symmetric and surface distance
metrics to evaluate the segmentation performance. In particular,
the symmetric metric we adopted was Dice Coefficient (DC),
which was defined as

DCk = 2 ×

∣∣Pk⋂Gk
∣∣

|Pk| + |Gk|
,

where Pk and Gk denote the regions identified as the k-
th class at the prediction and the ground truth, respectively.
| · | denotes the area. DC measured how similar the two
segmentation maps were.

In addition to DC, we further used surface distance metrics,
including surface Dice Coefficient (SDC), Hausdorff distance
(HD), and average symmetric surface distance (ASSD) to
thoroughly evaluate the segmentation accuracy. These metrics
were calculated based on the measurement of the surface
distances, i.e., the distances between the surface points of the
two segmentation volumes. Similar to the DC, the SDC was also
defined as follows:

SDCk = 2 ×

∣∣A⋂B
∣∣

|A| + |B|
,

where A and B are surface point sets of the prediction and the
ground truth volumes, respectively, and the intersection between
the two sets was measured with a given tolerance. In our study,
we set the tolerance as 1 mm.

The HD measured the maximum distance between two
volume surface points, which was defined as follows:

HD (A,B) = max
(

max
a∈A

min
b∈B

d
(
a, b

)
,max
b∈B

min
a∈A

d
(
a, b

) )
.

To reduce the influence of some rare outliers, we used the 95%
HD, denoted as HD95, which was obtained by measuring the
95th percentile value instead of the maximum value. The ASSD
denoted the average distance between the volume surface points
averaged over both directions, which was given as follows:

ASSD (A,B) =
1
2

(∑
a∈A minb∈B d

(
a, b

)
|A|

+

∑
b∈B mina∈A d

(
b, a

)
|B|

)

Both HD95 and ASSD were given in mm, and the lower, the
better. Unlike DC and SDC, the HD95 and ASSD worked equally
well for large and small objects.

RESULTS

Comparative Methods
To evaluate the performance of our proposed method, we further
trained three other models on the same training set, which were
3D U-Net (Cicek et al., 2016), 3D Attention U-Net (AU-Net;, and
DeepQSMSeg (Guan et al., 2021). The network structures can be
found in Figure 5, and the detailed structures of the attention
modules can be found in their studies.

The U-Net had a similar structure to the CAU-Net, and the
only difference was the absence of the CA modules. On the
other hand, the AU-Net introduced an additive soft attention
mechanism at the attention gates (AGs) at the skip connections
of U-Net. The AG fused the feature maps from the current layer
and the next lowest layer of the network to generate the attention
weights for the most critical positions. DeepQSMSeg was a
network structure specifically designed for nuclei segmentation
from the QSM. It employed the basic encoder-decoder structure
as U-Net, while inserting attention modules between the last
two encoder stages and the first two decoder stages to capture

TABLE 2 | Numerical evaluation results on the test set.

Metric CN GP PUT THA SN RN DN Average

DC U-Net 0.8232 0.8620 0.8582 0.8595 0.7142 0.8271 0.8050 0.8213

AU-Net 0.8128 0.8472 0.8559 0.8563 0.7052 0.8418 0.8056 0.8178

DeepQSMSeg 0.7551 0.8278 0.8137 0.7997 0.6391 0.7966 0 0.6617

Proposed 0.8306 0.8694 0.8629 0.8595 0.7161 0.8465 0.7950 0.8257

SDC U-Net 0.8169 0.8843 0.8596 0.76 0.8588 0.9354 0.8661 0.8544

AU-Net 0.8033 0.8677 0.8584 0.7582 0.852 0.9431 0.8701 0.8504

DeepQSMSeg 0.7167 0.8321 0.7968 0.6533 0.7864 0.911 0 0.6709

Proposed 0.8240 0.8913 0.8675 0.7648 0.8600 0.9515 0.8549 0.8591

ASSD (mm) U-Net 0.5183 0.3272 0.3881 0.5544 0.3794 0.2235 0.3614 0.3932

AU-Net 0.5548 0.3725 0.3972 0.5620 0.3994 0.1934 0.3540 0.4047

DeepQSMSeg 0.7622 0.4693 0.5448 0.8131 0.5503 0.2705 ∞ /

Proposed 0.4995 0.3055 0.3676 0.5505 0.3763 0.1837 0.3992 0.3832

HD95 (mm) U-Net 2.7923 1.6541 1.9375 2.1780 2.1834 1.2474 1.9552 1.9926

AU-Net 2.9685 1.8428 1.9730 2.1899 2.2985 1.1228 2.0141 2.0585

DeepQSMSeg 3.5513 2.3229 2.5590 2.9516 2.9403 1.3858 ∞ /

Proposed 2.6380 1.5405 1.8432 2.1323 2.0489 1.0143 2.1697 1.9124

The most prominent value for each metric is highlighted in bold font. DeepQSMSeg fails in segmenting DN on all subjects.
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the small target structures’ semantic features. In each attention
module of DeepQSMSeg, the channel-wise attention and spatial-
wise attention were consecutively used to exploit both the
channel and spatial relationships, and guide the decoder to
generate a finer segmentation.

In our study, as the U-Net and AU-Net were not specifically
designed for nuclei segmentation, we used the same training
strategy as our proposed one. For DeepQSMSeg, we strictly
followed the training protocol introduced by Guan et al. (2021).

Implementation Setup
The experiments were performed on a workstation with an Intel
Core i7-7700K CPU, 64GB RAM, and Nvidia Geforce GTX
1080Ti GPU with 11GB memory. The workstation operated
on Linux (Ubuntu 18.04 LTS) with CUDA 11.1. The networks

were implemented on PyTorch (Paszke et al., 2019) v1.9.0 and
trained using the framework of monai (MONAI Consortium,
2021) v0.6.0. The MR image files were stored as Neuroimaging
Informatics Technology Initiative (NIfTI) format, and processed
using a Simple Insight Toolkit (SimpleITK; Lowekamp et al.,
2013) v2.1.0. The visualized results were presented using ITK-
SNAP (Yushkevich et al., 2006) v3.8.0.

Results on the Test Set
We evaluated the segmentation performance on the test dataset
with 20 subjects. Figure 6 presents the visualized examples on
a randomly chosen subject. As we can see, U-Net, AU-Net,
and our proposed CAU-Net achieved better performance than
DeepQSMSeg. The DeepQSMSeg failed in identifying DNs on
all subjects. To further compare the results, we presented the

FIGURE 7 | Scatter plot of susceptibility values measured from manual segmentations and automatic segmentations on the subjects of the test set of Dataset I. The
correlation lines are also plotted. For DeepQSMSeg, we omitted the results on DN.
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FIGURE 8 | Visualized examples of the segmentations of manual delineation,
U-Net, AU-Net, DeepQSMSeg, and our proposed method on Dataset II. The
segmentation results were overlaid on QSM images.

DC, SDC, ASSD and HD95 of our interested deep nuclei in
Table 2. To compare the overall performance, the mean value of
the metrics over all 7 nuclei was also presented in the last column.

As we can see from Table 2, our proposed CAU-Net achieved
the best segmentation accuracy on all nuclei except DN. On DN,
our proposed method was slightly worse than AU-Net. Across the
nuclei, all methods achieved lower DC and SDC values on SN.
The main reason was that the DC was more sensitive to small
objects, while ASSD and HD95 were equally sensitive to small
and large objects.

To further show the accuracy in segmenting each nucleus of
each subject, we plotted scatter maps to show the correlations
between the ground truth and the predictions in terms of

the measured susceptibility values, as shown in Figure 7. Our
proposed method presented the highest correlation with the
manual delineations, while the DeepQSMSeg presented the
lowest. As the DeepQSMSeg was originally developed on a large
QSM dataset with 631 subjects, which is much larger than ours,
it did not include as many data augmentation approaches as we
did, and it may lead to the performance reduction compared with
that reported by Guan et al. (2021).

Results on Dataset II
All subjects in Dataset II were used as an additional test set. We
adopted the networks trained on the training set of Dataset I
to generate the segmentation maps on the subjects in Dataset
II. Figure 8 presents some visualized examples. As we can see
from Figure 8, most methods presented good segmentation
accuracy on Dataset II. For DeepQSMSeg, it can still not segment
the DN out, which implies that it may not be able to learn
the features of DN.

To better investigate the segmentation accuracy, the
segmentation metrics are summarized in Table 3. As we can see,
our proposed method achieved the best performance in terms of
mean DC, mean SDC, and mean ASSD. The U-Net performed
the best on HD95, while our proposed CAU-Net had a very
close performance. Our proposed method achieved the highest
segmentation accuracy on CN, GP, PUT, and RN, while U-Net is
the best on THA and DN.

As Dataset II was acquired by using a different machine
with different parameters from the training set, the overall
performance of all methods degraded compared to their
performance on the test set of Dataset I. Interestingly, when
segmenting DN, all methods had better accuracy on Dataset II,
which implies that the QSMs stemmed from STAGE had better
tissue contrast on DN.

The correlations of the measured susceptibility values between
the manual segmentations and the automatic segmentations
are also plotted in Figure 9. As shown in the figure,

TABLE 3 | Numerical evaluation results on the Dataset II.

Metric CN GP PUT THA SN RN DN Average

DC U-Net 0.7694 0.8428 0.8502 0.7920 0.6724 0.7685 0.8472 0.7918

AU-Net 0.7511 0.8507 0.8517 0.7811 0.6949 0.7725 0.8381 0.7914

DeepQSMSeg 0.7129 0.8199 0.8232 0.7516 0.7544 0.7145 0 0.6538

Proposed 0.7792 0.8519 0.8561 0.7782 0.6816 0.7750 0.8448 0.7953

SDC U-Net 0.7741 0.8729 0.8919 0.6565 0.8199 0.9030 0.9138 0.8331

AU-Net 0.7565 0.8860 0.8942 0.6370 0.8343 0.8983 0.9044 0.8301

DeepQSMSeg 0.7194 0.8491 0.8559 0.6054 0.8942 0.8800 0.0000 0.6863

Proposed 0.7847 0.8866 0.9005 0.6343 0.8258 0.8994 0.9109 0.8346

ASSD (mm) U-Net 0.6605 0.3863 0.3536 0.9056 0.5126 0.2995 0.2683 0.4838

AU-Net 0.7164 0.3482 0.3445 0.9447 0.4704 0.3055 0.2924 0.4889

DeepQSMSeg 0.8148 0.4584 0.4326 1.0112 0.3216 0.3625 ∞ /

Proposed 0.6246 0.3535 0.3334 0.9515 0.4958 0.2992 0.2764 0.4763

HD95 (mm) U-Net 2.9219 1.9752 1.8634 2.8873 2.7109 1.5878 1.6721 2.2312

AU-Net 3.1908 1.9015 1.9278 2.9552 2.5247 1.6501 1.7910 2.2773

DeepQSMSeg 3.3003 2.3239 2.1374 3.2131 1.9669 1.7993 ∞ /

Proposed 2.9194 2.0064 1.8305 2.9671 2.5369 1.6748 1.7071 2.2346
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FIGURE 9 | Scatter plot of susceptibility values measured from manual segmentations and automatic segmentations on the subjects of the Dataset II. The
correlation lines are also plotted. For DeepQSMSeg, we omitted the results on DN.

all segmentation methods presented a high agreement with
the values measured on manual segmentations. DeepQSMSeg
had the highest correlation, which, however, was calculated
by omitting the DN. Our proposed method achieved the
highest performance among the other three methods, which all
successfully segmented all nuclei.

DISCUSSION

To further investigate the impact of various training and
inference strategies on the segmentation accuracy, the
segmentation performance under different training and
inference settings is discussed.

Test Time Augmentation
In our proposed method, we adopted TTA to improve the
segmentation accuracy during inference. To illustrate the impact
of TTA on the segmentation accuracy, we evaluated the
segmentation performance without using TTA as summarized
in Table 4. To clearly illustrate the gain, the column “Delta”
explicitly quantized the improvement on the average metrics of
all 7 gray matter nuclei. As we can see from Table 4, U-Net,
AU-Net, and CAU-Net had achieved prominent improvement
on the DCs of all nuclei. DeepQSMSeg, on the other hand,
suffered from performance loss when TTA was introduced. It
implied that the DeepQSMSeg might overfit on the training
set. On the other hand, our proposed method presented the
most significant difference with and without TTA. It implied
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that our proposed CA module might be able to filter irrelevant
features from the encoder output feature maps, and had less
risk in overfitting.

As Table 4 shows, the TTA was an effective method for
improving the DC. However, it is interesting to observe from
Table 4 that when TTA is adopted, the performance of U-Net
and AU-Net became worse in terms of surface distance metrics,
i.e., SDC, ASSD, and HD95. Our proposed CAU-Net, on the
other hand, presented substantial performance improvement
in all metrics when TTA was adopted. Such a phenomenon
indicates that the CAU-Net could be much more robust to
the input variations, and the generalization ability of the
proposed CAU-Net is stronger than that of other comparative
methods. The improvement in the generalization capability
should be attributed to the high-pass filter nature of the CA
module. By filtering out unnecessary information and only
preserving the edge information on each feature map, the
feature maps fed to the decoder layers were simplified by the
CA module, making the decoder layers easier to utilize the
spatial information.

The expense of using TTA was, however, the inference time.
With TTA, as we had to make predictions on the original
and augmented images, we had to take much more time
for inference. For instance, in our study, as we generated 9
augmented images, the inference time with TTA would be 10
times that without TTA.

Training Strategy
This subsection would like to demonstrate the importance
of properly designed training strategies. In our proposed
method, we adopted data augmentation, deep supervision, and a
nonuniform patch sampling strategy to train the neural network
well. To demonstrate the effectiveness of training strategies,
we trained the CAU-Net using different training setups. In
particular, in the three experiments shown in Table 5, we
removed the nonuniform patch sampling, deep supervision,
and data augmentation as shown in Table 1 to see their
contributions to the segmentation accuracies. To make it clear,
we only presented the average values of DC, SDC, ASSD, and
HD95. As we can see, the segmentation accuracies reduced
in all the three additional experiments, indicating that they
contributed to improving the segmentation performance. The
data augmentations contributed most to the DC, while the deep
supervision was the most essential factor in terms of surface
distance metrics.

In particular, data augmentation techniques have
been shown to be one of the most essential approaches
in image segmentations. It has been well known that
data augmentation approaches have been beneficial
for improving the classifiers’ performance since the
success of AlexNet. In our study, we used various data
augmentation methods to improve the performance as
summarized in Table 1. As shown in Table 5, after removing

TABLE 4 | Segmentation performance on the test set of Dataset I without adopting TTA during inference.

Metric CN GP PUT THA SN RN DN Average Delta

DC U-Net 0.8204 0.8594 0.8577 0.8593 0.7134 0.8215 0.8029 0.8192 −0.0021

AU-Net 0.8112 0.8472 0.8533 0.852 0.7021 0.8421 0.7991 0.8153 −0.0025

DeepQSMSeg 0.7943 0.8447 0.8348 0.8375 0.6669 0.8194 0 0.6854 +0.0237

Proposed 0.8263 0.8669 0.8598 0.859 0.7097 0.8383 0.794 0.822 −0.0037

SDC U-Net 0.8252 0.8897 0.8719 0.7765 0.8609 0.9342 0.8613 0.86 +0.0056

AU-Net 0.8183 0.8753 0.87 0.7661 0.858 0.9453 0.8661 0.857 +0.0066

DeepQSMSeg 0.77 0.8545 0.8299 0.7319 0.8098 0.9289 0 0.7036 +0.0327

Proposed 0.8177 0.889 0.8641 0.7662 0.8562 0.9498 0.8528 0.8565 −0.0026

ASSD U-Net 0.5045 0.3142 0.3646 0.5285 0.3736 0.2289 0.3708 0.3836 −0.0096

(mm) AU-Net 0.519 0.3521 0.3681 0.5521 0.3872 0.1896 0.3651 0.3904 −0.0143

DeepQSMSeg 0.6277 0.4268 0.4786 0.6453 0.4964 0.2361 ∞ ∞ /

Proposed 0.5147 0.3133 0.3754 0.5514 0.3823 0.1957 0.4025 0.3908 +0.0076

HD95 U-Net 2.7117 1.5892 1.8551 2.108 2.0384 1.258 1.9874 1.9354 −0.0572

(mm) AU-Net 2.7192 1.7431 1.8281 2.123 2.2067 1.1061 2.0545 1.9687 −0.0898

DeepQSMSeg 3.1397 2.8627 2.2427 2.4159 2.4404 1.3513 ∞ ∞ /

Proposed 2.6915 1.5994 1.8388 2.104 2.0481 1.1243 2.1912 1.9425 +0.0301

The Delta value indicates the difference with and without TTA.

TABLE 5 | Segmentation performance on the test set under different training strategies.

Method DC SDC ASSD (mm) HD95 (mm)

Proposed 0.8257 0.8591 0.3832 1.9124

w/o nonuniform patch sampling 0.8108 (−0.0149) 0.8455 (−0.0136) 0.4259 (+0.0427) 2.1384 (+0.2260)

w/o deep supervision 0.8048 (−0.0209) 0.8324 (−0.0267) 0.4500 (+0.0668) 2.2460 (+0.3336)

w/o data augmentation 0.7893 (−0.0364) 0.8461 (−0.0130) 0.4242 (+0.0410) 2.1782 (+0.2658)
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the data augmentations from training, the DC significantly drops
from 0.8257 to 0.7893. The main reason should be blamed for
the small size of our dataset. When data augmentation was
adopted, the methods listed in Table 1 can generate many
different versions of images, which increased the diversity of
the training data and improved the representation ability of
the neural network.

Deep supervision was also a critical approach that affected
the performance. As Table 5 shows, when deep supervision is
absent, the DC drops to 0.0209 and the SDC drops to 0.0267.
In our study, deep supervision is implemented by adding a
convolution layer at each decoder stage to generate an auxiliary
segmentation map. By incorporating additional classifier outputs
at the middle stages, the network can be forced to learn effective
representations to reduce the loss. Moreover, it also helped
the deeper layers to be updated at the beginning of training,
and was beneficial for improving the convergence behavior.
By introducing deep supervision at the decoder layers, all the
decoder layers were forced to extract spatial information from the
skip connections. Combined with the edge information extracted
from the CA module, much finer segmentation maps can be
obtained as the decoder layers recover the feature maps to their
original resolution.

The effect of the patch sampling scheme was also discussed.
In our task, as it is not possible to feed the whole volume into
the memory due to the limited memory size, splitting the images
into patches was necessary. In our study, we chose to sample
the patches with bias because the foreground voxels (i.e., the
nuclei) and the background voxels are severely imbalanced. In
particular, the sampling method ensured that at least two-third
patches were centered at the foreground voxel during training.
The nonuniform patch sampling method can also be regarded
as an implicit way of data augmentation, which over-samples
the foreground voxels to train the network. As we can see from
Table 5, the segmentation performance was slightly improved by
using the nonuniform patch sampling scheme. Despite that the
contribution is relatively small compared to the contributions
of deep supervision and data augmentation, the nonuniform
patch sampling was shown to be able to further improve the
performance with almost no additional computational cost.

After all, to improve the segmentation accuracy, it has been
shown in our experiments that the training strategy was at least
as important as developing more advanced networks. In our
study, we can see that the performance gain of our proposed
method came from several aspects, which are as follows: (1)
the CA module that reduces the redundant information passed
to the decoder layers; (2) the deep supervision’s assistance in
forcing the decoder layers to learn effective representations;
(3) sufficient data augmentation and the bias patch sampling
strategy to increase the diversity of patches; (4) TTA to utilize the
ensembling of various predictions.

CONCLUSION

In our study, a deep-learning-based method was proposed for the
gray matter nuclei segmentation task on T1WI and QSM. A CA

module was proposed and incorporated in the skip connections
of U-Net to filter out the redundant information from the
encoder feature maps. Experimental results on two test sets
acquired with various parameters revealed that our proposed
method could overperform all popular network structures. To
investigate the origination of our proposed method, the results
obtained under different training and inference strategies were
also discussed, which implied that the appropriate choices of
training and inference strategies were at least as important as
developing more effective network structures.
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