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Summary  

Taking advantage of our understanding of the peptide specifidty of the major histocompatibility 
complex class I-b molecule M3 ~, we sought to determine why these molecules are poorly represented 
on the cell surface. To this end we constructed a chimeric molecule with the ott and c~2 domains 
of M3 ~ and or3 of L a thereby allowing use of available monoclonal antibodies to quantify surface 
expression. Transfected, but not control, B10.CAS2 (H-2M3 b) cells were lysed readily by M3 '- 
restricted monoclonal cytotoxic T lymphocytes. Thus, the chimera bound, trafficked, and presented 
endogenous mitochondrial peptides. However, despite high levels of M3~-L a mRNA, transfectants 
were negative by surface staining. This finding was consistent with ineffident trafficking to the cell 
surface. Incubation at 26~ thought to permit trafficking of unoccupied heavy (H) chains, resulted 
in detectable cell surface expression of chimeric molecules. Incubation with exogenous peptide at 
26~ (but not at 37~ greatly enhanced expression of M3'-L a molecules in a dose-dependent 
manner, suggesting stabilization of unoccupied molecules. Stable association of ~2-microglobulin 
with the chimeric H chain was observed in labeled cell lysates only in the presence of exogenous 
specific peptide, indicating that peptide is required for the formation of a ternary complex. These 
results indicate that surface expression of M3'-L a is limited largely by the steady-state availability 
of endogenous peptides. Since most known M3'-binding peptides are N-formylated, native M3' may 
normally be expressed at high levels only during infection by intracellular bacteria. 

M HC class I molecules monitor the interior of cells for 
the presence of peptides derived from pathogens such 

as viruses and intracellular bacteria (1, 2). Proteins are thought 
to be degraded into peptides by proteasomes (3, 4) and deliv- 
ered to the endoplasmic reticulum through the ATP-dependent 
transporter associated with antigen processing (TAP) 1 (5, 6). 
In the endoplasmic reticulum, the nascent MHC-encoded 
transmembrane H chain (44,000 Mr) forms a ternary com- 
plex with fl2-microglobulin (flzm) (12,500 Mr) (7) and a 
peptide of 8-10 amino acids in length (8). In the absence 
of infection, cellular proteins serve as peptide donors. Studies 
using a variety of mutant cell lines, such as the TAP-mutant 
RMA-S (9, 10) and the fl2m-deficient R1E (11, 12), have 
clearly demonstrated the need for all three components of 
the MHC molecule to be in the endoplasmic reticulum for 

We have chosen to hyphenate I-a and l-b to avoid confusion of l-a with Ia 
as an original designation for MHC class II molecules. 

1Abbreviations used in this paper:/32m, ]32-microglobulin; GAM, goat anti- 
mouse; mCTL, monoclonal CTL; RT, reverse transcriptase; TAP, transporter 
associated with antigen processing. 

proper cell surface expression. At the cell surface, the MHC 
class I molecule presents peptides to CD8 + T cells (13, 14). 

In the mouse, MHC class I H chain genes can be classified 
into the highly polymorphic, class I-a (classical) K, D, and 
L and the relatively invariant, class I-b (nonclassical) Q, T, 
and M (15). Mounting evidence indicates that class I-b gene 
products can bind and present peptides to CD8 + T cells 
(16-19). Similar to other MHC class I molecules, M3' as- 
sociates with/32m and peptide and can present peptides to 
T cells (20-23). The biochemical specificity of M3 a is 
striking in that it binds N-formylated peptides (24, 25). Be- 
cause bacteria and mitochondria both initiate protein syn- 
thesis with N-formyl methionine, we hypothesized that M3' 
binds N-formylated peptides of bacterial origin for presenta- 
tion to T cells (26). Consistent with this hypothesis, recent 
data have shown that M3 a presents peptides from Listeria 
monocytogenes (27, 28). 

To study the intracellular requirements for peptide binding 
and cell-surface expression of M3L we assessed synthetic 
levels of H chain. At the mRNA level, M3 a expression has 
been detected in a variety of cell types and tissues, and is es- 
pecially high in the thymus (29). However, an abundant level 
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of class I mR.NA transcripts does not necessarily equate to 
abundant cell surface expression. For instance, Qa-1 b tran- 
scripts are present at levels comparable to those of H-2K and 
D genes, but  the amount  of  surface product is quite low (30). 
The  same holds true for H-2L d (31, 32). Moreover, the cell 
surface expression of L a can be induced by peptide, sug- 
gesting that some H chain is retained intracellularly (33). 

As in other systems, a specific antiserum or mAb is critical 
for tracking the H chain through the cell. To date, however, 
efforts by ourselves and others to generate a specific antiserum 
to M3 a have been unsuccessful. To circumvent this problem, 
we developed an M H C  class I chimeric molecule in which 
the o~1 and o~2 domains are derived from M3 a and the o~3 do- 
main from L a. Moreover, this construct is driven by the K b 
promoter,  which has strong constitutive expression and is 
readily inducible by IFN-% Similar chimeric Kbm-L a mole- 
cules were recognized by Kb~-specific CTLs and found at 
abundant levels on the cell surface of transfected cells (34). 
In contrast, we found that M3a-L a chimeras were not ex- 
pressed at the cell surface constitutively in quantities ade- 
quate for serological detection. In these studies, we determined 
the intracellular requirements for expression of the M3~-L d 
chimera. 

Materials and Methods 
Construction of the MHC Class I Chimera Vector. The M3~-L d 

expression vector was derived from pKb-L d, a gift from Dr. Larry 
Pease (Mayo Clinic, Rochester, MN). The exons that encode al  
and c~2 domains of M3 a replaced the corresponding exons in the 
original vector utilizing restriction endonuclease sites that were 
introduced in the original vector. Exons 2 and 3 of M3 ' were 
generated independently by genomic PCR. Specifically, intronic 
oligonucleotides that flank each exon were used to amplify these 
gene segments from NZB/B1NJ genomic DNA. For exon 2, the 
5' oligonucleotide (5'-CAATGCTTGTCGACTGGCCC) possessed 
a SalI site and the 3' oligonucleotide (5'-AGAGCTCTGAAGCCC- 
AACTCCAAACATCTAAGCTTGCACCCA) had a HindlII site. 
The gel-purified DNA was separated from the agarose using Magic 
PCR preps (Promega, Madison, WI). The DNA was cut with 
SalI and HindlII and cloned into pBluescript II SK- (Stratagene, 
La Jolla, CA). The resultant plasmid (termed pM3~-C~l) was trans- 
formed into XL-1 Blue Escherichia coli (Stratagene). Plasmid DNA 
was prepared using Magic Mini-prep (Promega) and sequenced using 
Sequenase Version 2.0 (US Biochemical, Cleveland, OH) to ensure 
that the clone was free of PCR-induced mutations. The sequenced 
insert was cut with SalI and HindlII and ligated into the similarly 
cut pKb-L a vector, creating pM3~,,1Kb,~2-Ld. The process was 
repeated to obtain exon 3 of M3 '. In this case the 5' (5'-GGA- 
GTTGGGCTTCAGAGCTCTCAGAAAGCTTTAACC) and the 
3' oligonucleotides (5'-TTCCTCCCTCTCGAGACATCA) had a 
HindllI and XhoI site, respectively. The resultant plasmid (termed 
pM3'-az) was transformed into XL-1 Blue E. coli (Stratagene). 
After sequencing, the pM3'-oe~ insert was cut with HindlII and 
XhoI and ligated into the pM3"~lKb~2-Ld vector cut with HindlII 
and XhoI, creating pM3'-L d. 

Antibodies. Supernatants of hybridomas were used for im- 
munofluorescence, mAbs were specific for the c~3 domain of the 
L d molecule, 28-14-8S (ATCC HB27; American Type Culture Col- 
lection, Rockville, MD) (35); B2m b, $19.8 (a gift from Dr. U. 
H/immerling, Sloan-Kettering Memorial Institute, New York) (36); 

or an MHC class I molecule from the H-2 wt7 haplotype, Tfi232 
(a gift of Dr. Jan Klein, Max Planck Institute, TObingen, Ger- 
many) (37). IgG fractions of culture supematants were separated 
using a protein G column in an FPLC TM system (Pharmacia, Pis- 
cataway, NJ) and used for all immunoprecipitations. 

Cytotoxic T Lymphocyte Generation. The fNDl~-specific, M3'- 
restricted monoclonal CTL (mCTL) clones 1D8 and 3D5 were de- 
scribed elsewhere (24). These mCTLs are specific for a peptide from 
the mitochondrial gene product ND1 (NADH dehydrogenase 
subunit 1) in the context of M3 ~. OVA-specific polyclonal CTL 
were produced by immunizing C57BL/6J (B6) mice with 5 x 
103 E.G7-OVA cells (EL4 cells transfected with chicken OVA gene 
[13]). After 2-3 wk, spleen cells of immunized B6 mice were cul- 
tured for 3-6 d with E.G7-OVA (',/-irradiated 20,000 tad) and syn- 
geneic cells (3/-irradiated 3,000 tad). OVA-specific CTL clone 2G12 
was obtained by limiting dilution and was shown to be restricted 
by H-2K b (25). 

Peptide Synthesis and Purification. The f-ND1%12 peptide cor- 
responds to the NH2-terminus of ND1. f-Bla-zl-8 peptide, from 
Bacillus cereus ~-lactamase binds to M3 ~ as determined by CTL 
competition assays (26). Ac-Bla-z and Bla-z are the N-acetylated 
and unsubstituted forms of this peptide, respectively, f-L25 is 
from E. coli ribosomal protein L25 and also can bind to M3L 
VSVNPs2-59 is the vesicular stomatitis virus nucleocapsid peptide 
that binds to K b, but not to M3 ~ (25). All peptides were synthe- 
sized and HPLC purified as described previously (38). 

Cell Culture. SVCAS2.F6 tail cell fibroblasts were generated 
from B10.CAS2 mice (H-2 w17, M3 b) using SV-40-mediated trans- 
formation. These cells were transfected with EcoRI linearized 
pM3~-L d and KpnI linearized ppo12 (vector encoding G418 resis- 
tance) (39) at a molar ratio of 20:1, by CaPO4 precipitation. Cells 
resistant to 1 mg/ml G418 were isolated by ring cloning and grown 
in separate wells. 35 cell lines were generated from two indepen- 
dent transfections. To generate subline 13S2, cell line "13" was in- 
cubated with 500 nM f-Bla-z peptide overnight at 26~ The ceUs 
were stained as described below, omitting the fixing step. Cells 
were selected using a cell sorter (EPICS model 753; Coulter Elec- 
tronics, Hialeah, FL) for high expression of the 28-14-8S epitope, 
and returned to culture media. After 1 wk, this process was repeated 
to generate subline 13S2 (cell line 13 sorted twice, hence 13S2). 
Cells were then passaged in DMEM plus 10% FCS, 1% gentamicin 
reagent solution, 1 mg/ml total G418 at 37~ in 5% CO2. E.G7 
cells were passaged using the same medium. 24SV cells were gener- 
ated from (B10.CAS2 x NZB/B1NJ) F1 tail cell fibroblasts (40) 
using SV40-mediated transformation. 24SV and SVCAS2.F6 cells 
were passaged in DMEM plus 10% FCS (40). All cell culture re- 
agents were from Gibco BILL (Gaithersburg, MD). 

Cell-mediated Cytolysis. A colorimetric assay was used as de- 
scribed (41) with some modifications. Briefly, 15,000 irradiated 
(1,500 rad) fibroblasts were plated overnight in flat-bottom 96-well 
microtiter plates in 100/zl of supplemented MisheU-Dutton medium 
(SMDM) (42). Triplicate dilutions of mCTL in 100 #1 of SMDM 
were added to targets for 12 h. Surviving cells were stained for 
3 min with 5% ethanol containing 0.5% crystal violet (wt/vol) 
and destained in cold water. The dye was solubilized in acidified 
ethanol (50% ethanol, 0.4% glacial acetic acid [vol/vol]). Absor- 
bances were read at 600 nm on a microplate reader (model 2550; 
Bio-Rad Laboratories, Hercules, CA). Standard errors of the mea- 
surements, calculated by propagation of errors (41), were <~5% un- 
less otherwise indicated. 

Reverse Transc@tase (RT) PCR Assay. RNA was extracted from 
13S2 cells with a standard protocol (43) and reverse transcribed using 
Moloney murine leukemia virus (Mo-MLV) RT (Perkin-Elmer 
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Corp., Norwalk, CT). The RT product served as a template for 
PCR using oligonucleotide pairs that are specific for B-actin 
(5'-GTGGGCCGCTCTAGGCACCAA) and (5'-CTCTTTGATG- 
TCACGCACGATTTC); H-2K (5'-CTCCAGTGACTATTGCAG) 
and (5'-ACCTGGAGGGCGAGTGCGTGGAGTG), or M3~-L a 
( 5 ' - G A G C T G C T C C A C A G A T A C C T A C G G ~ )  and (5'-CAC- 
A G C T C C A A T G ~ C A T A G C T C C A A G ) .  PCR products were 
electrophoresed on a 2.5% agarose gel, stained with ethidium bro- 
mide, recorded with Polaroid type 55 film, and quantified den- 
sitometrically on an Ultrascan XL Enhanced Laser Densitometer 
(Pharmacia). 

Immunofluorescence Staining and Flow Cytometry Analysis. Im- 
munofluorescence analysis was done as described (40). Briefly, 
subconfluent transfected cells were incubated with the designated 
peptide for 12-16 h at 37~ or 26~ in culture media. Cells were 
trypsinized, collected, and washed three times in ice-cold PBS be- 
fore resuspension in PBS at a final concentration of 107 cells/ml. 
100 #1 of cell suspension were incubated with 100 #1 of mAb in 
the appropriate dilution for 30 rain at 4~ After two washes with 
cold PBS, the cells were stained with a 1:50 dilution of FITC- 
conjugated goat anti-mouse (GAMIg) antibodies (Baxter, Mun- 
delein, IL) for 30 rain at 4~ Samples were then fixed with 1% 
paraformaldehyde (vol/vol in PBS) and analyzed on a flow cytom- 
eter (EPICS Profile, Coulter Electronics). Data are expressed as mean 
log fluorescence of a population on a four decade scale (0.1-1,000) 
Voltages were adjusted to ensure that control staining with the 
secondary antibody alone (FITC-GAMIg) was in the range of 
1 + 0.2 U. Additionally, gates were set around narrow win- 
dows of forward light scatter to minimize cell size-dependent ar- 
tifacts (40). 

Preparation of Radiolabeled Proteins. For metabolic labeling, 
subconfluent monolayers of 13S2 or parental SVCAS2.F6 cells 
(•3 x 107 cells) were preincubated for 1 h in methionine-free 
RPMI 1640 medium supplemented with 5% (vol/vol) FCS and 
1% (vol/vol) 200 mM r-glutamine (Gibco BRL). Cells were la- 
beled with 50 #Ci/ml [3SS]methionine (>1,000 Ci/mmol; NEN 
Research Products, Wilmington, DE) for 20 rain at 37~ Labeled 
cells were briefly trypsinized, washed three times in ice-cold PBS, 
and lysed in a lysis buffer containing 1% NP-40 (Calbiochem- 
Novabiochem Corp., La Jolla, CA), 1 mM PMSF, 33 #g/ml 
aprotinin, 0.7 #g/ml pepstatin A, 20 #g/ml leupeptin, and 40 #g/ml 
bestatin (all from Sigma Chemical Co., St. Louis, MO) in PBS. 

Iodination of cell surface molecules was catalyzed by lactoperox- 
idase (44). Briefly, 3 x 107 cells cultured at either 37~ or 26~ 
for 12 h in the presence or absence of specific peptide were washed 
three times in ice-cold PBS and labeled with 180 #1 of 1 mg/ml 
lactoperoxidase, 125 #1 of 0.045% H~O2 in PBS, and 2.5 mCi lz5I 
(17-20 Ci/mM on analysis date; NEN Research Products) for 15 
rain. The reaction was terminated by the addition of 10 ml of ice- 
cold PBS. 

Immunoprecipitation and SDS-PAGE. For in vitro stabilization 
of the MHC complex, lysates were centrifuged at 15,000 g for 15 
rain at 4~ An aliquot of the supernatant was precipitated with 
TCA to assess total radiolabel incorporation. Aliquots of superna- 
tants were equalized on the basis of total radioactivity and incubated 
with specific peptide at 4~ for 16 h. The lysates were precleared 
using 150 #1 of BSA-Sepharose, goat anti-mouse-Sepharose (GAMIg 
from Pel-Freez Biologicals, Rogers, AR), and protein A-Sepharose 
(Pierce, Rockford, IL) sequentially for 5 min each at room temper- 
ature. Precleared lysates were divided into three tubes and incubated 
with specific or control antibodies at 4~ overnight. The immune 
complexes were collected on protein-A-Sepharose at 4~ for 1 h 
and washed four times with 0.5% NP-40, 0.25% sodium deoxy- 

cholate, 0.1% SDS in Tris-buffered saline, and two times with water. 
Immunoprecipitates were eluted from protein A-Sepharose in SDS- 
solubilizing buffer (pH 6.8) containing 62.5 mM Tris, 10% (vol/vol) 
glycerol, 3% (wt/vol) SDS, and 5% (vol/vol) 2-ME, and analyzed 
by SDS-PAGE on a 12.5% gel as described by Laemmli (45). SDS- 
PAGE low range molecular weight standards (Bio-Rad Laborato- 
ties) were used. The gels were treated with Amplify (Amersham 
Corp., Arlington Heights, IL), dried, and fluorographed at - 70~ 
Gels were also analyzed on a Betascope 603 Blot Analyzer (Be- 
tagen, Mountain View, CA). The specific activity of the H chain 
and/32m bands was determined by subtracting the mean back- 
ground count from the actual values. For l~I-labeled proteins, the 
procedure was identical except that cell lysates were directly im- 
munoprecipitated after precleating, and after samples were analyzed 
by SDS-PAGE, the gels were dried and autoradiographed at -70~ 

Immunoblots. Subconfluent 13S2 cells were harvested, washed, 
and lysed in lysis buffer. Lysates were electrophoresed through a 
12% SDS-PAGE gel. For convenience, Rainbow TM protein molec- 
ular weight markers (Amersham Corp.) were used. This gel was 
electroblotted (Trans-Blot Cell; Bio-Rad Laboratories) to Hybond 
C (Amersham Corp.) at 30 V for 16 h in Towbin transfer buffer 
(46). The blots were blocked with 5% (wt/vol) non-fat dry milk 
in PBS-T (PBS plus 0.05% Tween-20) for 1 h and washed three 
times with 1% non-fat dry milk in PBS-T. The blots were probed 
with 28-14-8S in 1% non-fat dry milk in PBS-T for 1 h at room 
temperature. After three extensive washes, GAMIgG conjugated 
to horseradish peroxidase (Amersham Corp.) was added at a dilu- 
tion of 1:3,000 and incubated for 1 h. The blots were washed as 
before and developed using the enhanced chemiluminescent detec- 
tion system (Amersham Corp.) and exposed to film. 

l ~ e s u I t s  

Rationale for Construction of an M3~-M Chime~c MHC 
Class I Gene. We designed a chimeric M H C  class I protein 
wi th  two critical features: (a) the peptide binding specificity 
of  M3 ~ and (b) an epitope for a mAb that would be inde- 
pendent of the o~1 and or2 domains. To this end, we joined 
the oq and or2 domain of M3 a with the or3 domain of  L a 
(Fig. 1). Previous experiments of  others established that the 
T C R  interacts wi th  peptide and residues from or1 and or2 

mAB 28-14-8S (HB27) 

K b promoter / AAUAAA 
J TM+C 

sp (X 1 a 2 (~3 j /  J 

III~oZ 
"~--0.9kb M3 a....~ 

pM3"12 
pUC18 

Figure 1. Diagram of vector construct. To attach a conformationally 
insensitive antibody epitope to the antigen binding domain of M3~, exons 
2 and 3 from M3 a replaced the corresponding exons in the Kb-L d vector. 
This chimera possesses the promoter and signal peptide of K b, and the 
a3 transmembrane domain and cytoplasmic tail of M. 

157 Vyas et al. 



with little, if any, involvement of the cr region (47). In par- 
ticular, Allen et al. (48) showed that L cells expressing a K b 
(cr c~2)-L d (c~3) hybrid molecule were lysed by Kb-restricted 
CTLs equivalently to fibroblasts expressing the native K b 
molecule. A useful feature of the L d c~3 domain is that a 
mAb (28-14-8S) exists that binds to a conformationally- 
insensitive epitope independently of the antigen-binding do- 
main (35). Concerns that the c~3 domain of the L a molecule 
might not bind/52m well (49) were alleviated by two studies 
demonstrating that the inability of native L a to associate 
stably with ~2m is determined by the c~l domain (50, 51). 
Therefore, the L a o~3 domain itself possesses the capacity to 
bind functionally with B2m. 

The M3a-L d Chimera Renders SVCAS2.F6 (M3 b) Fibro- 
blasts Sensitive to Lysis by M3a-restricted mCTLs. The chimera 
was transfected along with a drug-selecting marker into 
SVCAS2.F6 fibroblasts derived from the H-2 w17 mouse 
strain B10.CAS2. This mouse strain carries a different allele 
of the H chain (M3b), rendering these fibroblasts resis- 
tant to lysis by M3~-restricted mCTLs (52). To determine 
whether the chimera could bind the endogenous mitochon- 
drial peptide ND1 ~ and traffic to the cell surface, G418- 
resistant fibroblasts were incubated with M3a-restricted, 
NDl~-specific mCTL (Fig. 2 a). Transfected cells were lysed 
readily by the mCTL, whereas the untransfected control cells 
were not lysed. These data suggested that the MHC mole- 
cule appropriately bound, trafficked, and presented endoge- 
nous peptides. Moreover, this lysis was dose-dependent on 
mCTL (Fig. 2 b). To demonstrate that DNA transfection 
did not cause these fibroblasts to be nonspecific targets of 
CTL-mediated lysis, transfectants were incubated with OVA- 
specific mCTLs that recognize the OVA peptide bound to 
K b (25). As expected, OVA-specific mCTLs failed to lyse 
transfected targets (Fig. 2 b). 

Figure 3. The amount of chimeric mRNA was relatively equivalent 
to another endogenous MHC class I molecule. (a) mRNA from 13S2 trans- 
fectants was extracted, reverse transcribed, and used as template for PCR. 
Using oligonucleotide specific to the M3'-L d chimera, Kw17, and 3-actin, 
the relative level of mRNA could be established. (b) The ethidium bro- 
mide fluorescence (absorbance units) was plotted against the percent reverse 
transcription product used in PCR. 
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Figure 2. The M3~-L a chimera rendered SVCAS2.F6 fibroblasts (M3 b) sensitive to M3~-restricted cytolysis. (a) A panel of G418-resistant transfec- 
tants were tested in a cell-mediated cytolysis assay for their sensitivity to NDl'~-specific, M3~-restricted killing at an E/T ratio of 1:1 with clone 1D8. 
The cell line 24SV, which is ND1 '~ and M3 a, served as the positive control for cytolysis. SVCAS2.F6 (untransfected control) showed only background 
lysis. All but three clones were positive by this assay. It is possible that cell lines 16, 9, and pp14 acquired only the drug-resistance gene, rendering 
them G418 resistant but negative for the chimera. (b) The cell line 13 could be killed in a dose-dependent manner by graded concentrations of mCTL 
clone 3D5, whereas the untransfected control was not lysed. The OVA-specific mCTL clone 2G12 was included as a specificity control. 
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Levels of M3a-L a mRNA Were Not Limiting in Transfected 
Cells. The measurement of transcript levels required probes 
distinguishing the chimeric mR.NA from all endogenous 
MHC class I transcripts. Preliminary experiments using oli- 
gonucleotides designed to react specifically with the hybrid 
joint of the chimeric mRNA were unsuccessful, perhaps be- 
cause the juxtaposed termini of exons 3 and 4 are highly con- 
served. In contrast, by using regions of low homology, R.T- 
PCR primers could be designed that react exclusively with 
the M3"-L a chimera. Graded concentrations of RT product 
served as template in PCR reactions using oligonucleotides 
specific for H-2K,/~-actin, and the chimera (Fig. 3 a). Den- 
sitometry readings of each band were then plotted against 
input RT template. Lines were generated from values re- 
presenting ethidium bromide fluorescence of bands versus KT 
product used as template for PCR reaction (Fig. 3 b). Al- 
though this assay is not a measure of absolute mRNA con- 
centrations, these results suggest mRNA itself was not lim- 
iting surface expression of the M3~-L d chimera. Southern 
blot hybridization revealed that the transfectants had approx- 
imately one to five copies of the transgene (data not shown). 

Very Low Cell Surface Expression of M3aIL d Chimera at 
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37~ We used the mAb 28-14-8S to determine the level 
of cell surface expression. As seen in Fig. 4 a, no signal was 
detected over the nonspecific staining of the secondary anti- 
body alone. This pattern of nonexpression was seen in all 
35 lines from two transfections, suggesting that low expres- 
sion was not linked to integration of the transfected gene 
in a transcriptionally inactive area. The expression of endog- 
enous K w17 molecules could be detected at wild-type levels 
by the antibody T~i232 at 37~ (Fig. 4 e) indicating the ab- 
sence of any general defect in the transport of MHC mole- 
cules to the cell surface. Staining with anti-3zm also revealed 
normal levels of 32m (Fig. 4 f ) .  However, 13S2 cells did 
have some M3~-L d product on the cell surface as previously 
demonstrated in Fig. 2 by specific CTL reactivity. CTLs re- 
quire only 50-200 peptide-class I complexes for efficient lysis 
(53). In contrast, flow cytometric analysis requires at least 
1,000 molecules for detection (54). Therefore, the amount 
of M3~-L a on the cell surface was <1% of the number of 
K wt7 molecules in these transfectants. 

Surface Expression of M3a-L d Chimera Could Be Induced with 
Cold Temperature and further Stabilized with Peptide. Normal 
cell surface staining of other MHC class I molecules sug- 
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Figure 4. Cold temperature and specific peptide synergistically induced cell surface expression of M3'-L d. 13S2 transfectants were incubated at 37~ 
in the absence (a) or presence (b) of 5 #M f-Bla-z peptide and stained with the antibody 28-14-8S. Cells were also incubated at 26~ for 16 h and 
incubated in the absence (c) or presence (d) of 5 #M f-Bla-z peptide and stained with 28-14-8S. 13S2 cells at 37~ with no peptide were also stained 
with T(i232 (anti-K wiT) (e) and $19.8 (anti-/~2m~) (f). 
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gested that the assembly pathway and its related proteins were 
functioning properly. We therefore evaluated the role of in- 
tracellular peptides specific for M3 a in surface expression. 
Data from other laboratories using the RMA-S mutant cell 
line have shown that incubation with peptide could stabilize 
empty H chains on the cell surface (55). Additionally, cold 
temperature is thought to allow the egress of H chain from 
the endoplasmic reticulum through the Golgi apparatus and 
to the cell surface (56). Either cold temperature (26~ or 
specific peptide restored MHC class I expression on P, MA-S 
cells to near wild-type levels (57). To determine the effect 
of cold temperature and peptide on the expression of the chi- 
mera, we incubated 13S2 cells at 26~ or 37~ for 16 h in 
the presence or absence of 5/xM f-Bla-z peptide. As seen in 
Fig. 4 c, the chimera could be detected at the surface of cells 
incubated at 26~ using the anti-L d antibody. This indicated 
that the chimera retained the epitope for this antibody, which 
thus could be used to track the molecule through the cell. 
Peptide incubation at 26~ resulted in significantly more cell 
surface expression than either condition alone (Fig. 4, b-d). 
Additionally, the kinetics of appearance of the chimera at the 
cell surface using cold temperature and specific peptide were 
similar to the kinetics of induction of H-2K b in RMA-S 
cells (data not shown). 

To assess the physical state of the chimeric protein, 13S2 
cells and SVCAS2.F6 cells (untransfected controls) were in- 

cubated at either 37~ or 26~ in the presence or absence 
of 500 nM f-Bla-z peptide for 16 h. Cell surface proteins were 
labeled with 12si. Transfected cells treated with cold temper- 
ature and peptide showed the greatest amount of material 
at 50 kD, the predicted size of the glycosylated chimeric H 
chain (Fig. 5 a). The H chain was also immunoprecipitated 
from cells that were treated with 37~ plus peptide or with 
cold temperature alone, but in lesser amounts. Two additional 
bands (23 and 28 kD) could be seen in the lanes with pep- 
tide. Immunoreactivity with 28-14-8S in immunoblots sug- 
gested that the 28-kD band was a degradation product of 
the H chain (Fig. 5 b). Control immunoprecipitations with 
K wit under identical conditions did not yield any degrada- 
tion products (data not shown). 

The M3a-L a Chimera Retained the Peptide Binding Charac- 
teristics of Native M3 a. The fine specificity of native M3 a for 
peptide binding was established earlier by CTL-peptide com- 
petition assays. These studies established that M3 a could 
bind certain synthetic mitochondrial and bacterial peptides 
(26). The ability to monitor peptide binding by cell surface 
stabilization of the H chain in the presence of specific pep- 
tide and cold temperature allowed us to determine whether 
M3a-L a possessed the peptide binding specificity of the na- 
tive molecule by testing a panel of M3a-binding and non- 
binding peptides. As seen in Fig. 6, the N-formyl ND1%-12 
mitochondrial peptide, the N-formyl ribosomal L25 peptide 

Figure 5. Highest level of cell 
surface chimera could be detected on 
13S2 cells incubated at 26~ with 
f-Bla-z peptide. (a) 13S2 cells were 
incubated at 26~ or 37~ in the 
presence or absence of 500 nM 
f-Bla-z peptide for 16 h. Lysates from 
surface-iodinated cells were im- 
munoprecipitated with 28-14-8S and 
electrophoresed on a SDS-PAGE gel. 
(b) 13S2 cells were incubated at 
26~ in the presence of 500 nM 
f-Bh-z peptide for 16 h. Lysates were 
dectrophoresed on a SDS-PAGE gel 
and transferred to nitrocellulose. 
The blot was then probed with 
28-14-8S. 
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E. coli Ribosomal L25 TITg'n 

VSVNP nTr~ 

sensitive antibody 28-14-8S and monitored the appearance 
of  /32m as a marker of peptide binding. Lysates from 
[35S]methionine-labeled cells were divided into tubes con- 
taining 200/zM of f-Bla-z peptide or an equivalent volume 
of DMSO (peptide solvent control). Immunoprecipitation 
os control lysates produced the H chain alone, even on an 

E. coli Amp-c 

PBS~ o 
Specific Fluorescence 

Figure 6. Synthetic peptide binding profile of the M3~-L d chimera 
mimicked native M3 a. Synthetic peptides were incubated with 13S2 cells 
at 26~ for 16 h at a concentration of 20 #M and stained with the mAb 
28-14-8S. Three known M3~-binding peptides (mitochondrial ND1~1_12, 
E. coli ribosomal L25, and E. coli Amp-c) induced N-formyl dependent 
cell surface expression of the chimera. (D) Acetylated; (~]) unmodified; 
(11) formylated. 

from E. coli, the N-formyl 3-1actamase peptide from E. coli 
all caused significant cell surface stabilization of M3a-L d. 
Similarly, the upregulation of cell surface expression by pep- 
tide and cold temperature was peptide specific; the acetylated 
and nonsubstituted Bla-z peptides caused no specific increase 
of staining over cold temperature alone (data not shown). 
These peptides did not affect surface expression of K wt7, a 
control M H C  class I molecule (data not shown). Moreover, 
the peptides bound in an N-formyl-dependent manner, which 
resembled the peptide-binding profile of the native molecule. 
Finally, an N-formylated version of the vesicular stomatitis 
virus nucleoprotein (fVSVNPs2-sg), which has been shown 
not to bind M3 a (25), also did not stabilize the H chain 
above cold temperature background. 

In Vitro Stabilization of the MHC-Peptide Ternary Complex 
by Addition of Exogenous Peptide. The collective data suggest 
that peptide was the limiting component in the formation 
of the ternary M H C  complex. In this respect, 13S2 cells 
resemble RMA-S cells, as well as other mutant cells (58, 59) 
in which the availability of peptide is limited by a defect in 
the putative peptide transporter protein. Whereas the defect 
in RMA-S cells and others affect all M H C  class I proteins, 
low surface expression was limited to M3~-L a in these trans- 
fectants. Other  investigators have shown that if specific pep- 
tide were added to RMA-S cell lysates, formation of the MHC 
H chain-B2m-peptide complex could be seen as determined 
by the appearance of peptide-dependent, conformationaUy sen- 
sitive epitopes, induding the association with 32m (60-62). 
In contrast, no such dependence on peptide was seen in ly- 
sates from R M A  cells, implying that endogenously bound 
peptides do not dissociate from H chains in this assay (60). 

We immunoprecipitated with the conformationally in- 
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Figure 7. Specific peptide allowed formation of ternary complexes in 
cell lysates. (a) Cells labeled with [3sS]methionine for 20 min were lysed 
in the presence or absence of 200/zM f-Bla-z peptide and incubated at 
4~ overnight. After immunoprecipitation with 28-14-8S, the sample was 
electrophoresed on a SDS-PAGE gel. (b) Labeled lysates were divided into 
tubes containing 0.02, 0.2, 2, 20, and 200 #M of f-Bla-z peptide, 200 
#M Ac-Bla-z, or 200 #M Bla-z, and incubated overnight at 4~ After 
immunoprecipitation with 28-14-8S, the sample was electrophoresed on 
a SDS-PAGE gel. Mouse/32m migrates slightly faster than the 14.4-kD 
marker. (c) The dried gel was analyzed on a betascope and counts for/32m 
and H chain were recorded. The ratio of the 32m cpm to the H chain 
cpm was plotted against the peptide concentration. 



overexposed gel (Fig. 7 a, lane 2). In contrast, immunopre- 
cipitation with peptide-treated lysates yielded both heavy chain 
and 32m. Hence, although H chain can associate with 32m 
quite well, it did so only in the presence of sufficient cognate 
peptide. 32m could be coprecipitated with the H chain in 
cell lysates in a manner dependent on the concentration of 
f-Bla-z (Fig. 7, b and c). Finally, 32m did not associate with 
the H chain if lysates were treated with 200/zM Ac-Bla-z 
or Bla-z peptide, indicating that this ternary complex forma- 
tion occurred only in the presence of specific peptide (Fig. 
7, b and c). 

Discussion 

In this report, we have demonstrated that cell surface ex- 
pression of an M3~-L d chimera is governed by the availability 
of appropriate peptides. Crystal structure analysis of MHC 
class I-a molecules has defined pockets within the antigen- 
binding groove that are thought to determine the specificity 
ofpeptide binding (63-65). One feature common to all crys- 
tallized M H C  class I molecules is the presence of highly con- 
served tyrosines at 7, 59, 159, and 171 in pocket A which 
may establish hydrogen bonds with the positively charged 
peptide NH2 terminus (66-68). In contrast, phenylalanine 
occupies position 171 in M3 ~ (22) and may allow both the 
uncharged N-formyl moiety to bind as well as prevent the 
binding of most charged NH2 termini. Thus, the ultrastruc- 
ture of the antigen-binding domain may allow only a narrow 
range of peptides to bind. This level of selectivity translates 
into fewer peptide-containing molecules of M3 a at the cell 
surface. 

A model for the fate of this H chain can be proposed from 
these data. M3a-L amP, NA was made in the transfectants at 
levels comparable to other endogenous MHC class I mole- 
cules and the protein was normally translated and translo- 
cated into the endoplasmic reticulum. Here, most of the H 
chain was retained because it presumably had not adopted 
the correct conformation. Williams et al. (69) have shown 
that calnexin (p88), a Ca2+-sensitive, endoplasmic reticu- 
lum-resident protein, can bind MHC class I H chains. Thus, 
it is possible that this chimera was retained by calnexin. How- 
ever, some endogenous (mitochondrial) peptide was acces- 
sible to and was bound by the chimera in the endoplasmic 
reticulum. 32m also bound stably, forming a ternary com- 
plex that was transported to the cell surface rendering these 
transfectants sensitive to M3~-restricted mCTLs. However, 
the number of cell surface complexes was quite small as the 
ceils were negative by surface staining. Cold temperature may 
allow empty H chains to adopt the correct conformation, 
to release from the quality control machinery in the en- 
doplasmic reticulum and to egress to the cell surface via the 
Golgi complex. Alternatively, but not mutually exclusively, 
reduced temperatures may inhibit proper function of the en- 
doplasmic reticulum-resident proteins, causing empty H chains 
not to be retained. In any case, empty molecules are allowed 
to come to the cell surface. These molecules are still rela- 
tively unstable. Addition of specific peptide stabilizes the 

M3a-L d chimeras and increases their steady-state surface ex- 
pression. 

The chimeric M3a-L d molecule resembles that of MHC 
class I molecules in RMA-S cells. In both systems, one sees 
low or absent surface expression of M HC class I molecules. 
Both systems can be described as a peptide deprivation pheno- 
type (70). Whereas the defect in processing in R, MA-S cells 
is at the level of the peptide pump, in the M3~-L a transfec- 
tants, it is at the level of H chain specificity for peptide. For 
both RMA-S cells and the chimera transfectants, the incuba- 
tion at 26~ greatly increases relevant class I expression at 
the cell surface. However, there is one major difference. 
Whereas peptide was sufficient to stabiIize empty molecules 
in RMA-S cells at 37~ it did not cause an appreciable in- 
crease in cell surface expression in the 13S2 cells. Hence, the 
level of empty chimeric molecules at 37~ at the cell surface 
is quite small in contrast to R.MA-S cells. 

Low level constitutive expression is a general feature of class 
I-b molecules. Since peptide is the limiting factor for expres- 
sion of the M3a-L d chimera, other class I molecules with low 
cell surface expression may be limited by endogenous pep- 
tides. In this respect, the L ~ molecule resembles a class I-b 
molecule. The L a molecule has been shown to have low con- 
stitutive cell-surface expression, but is induced fourfold by 
the addition of specific peptide (33, 50), suggesting that L d 
may possess an unusual biochemical specificity for peptides. 
Additionally, HLA-C and HLA-E in humans are found at 
low levels at the cell surface (71, 72). We suggest that for 
all of these molecules, extraordinary selectivity of peptide 
binding intracellularly may result in lower surface expression. 

As with other MHC class I molecules (73, 74), the M3 ~- 
L a chimera conformationally changed upon peptide binding. 
This was most clearly identified when peptide was added to 
labeled cell lysates and induced the formation of the ternary 
complex. Also, when 125I-labeled material was immunopre- 
cipitated from cells incubated at either 37 or 26~ in the 
presence of peptide, two additional bands were detected. 
Western blot analysis showed that 28-14-8S reacted with one 
of the lower molecular weight bands, indicating that it re- 
tained the antibody epitope. The fact that this degradation 
product was seen only when peptide was added to cells sug- 
gests that peptide binding to the chimera may cause a con- 
formational change in the H chain, allowing a trypsin-sensitive 
site to be exposed. Conformational effects on the H chain 
by peptide have been seen with other M HC class I molecules 
(75, 76). 

The conclusion that the cell surface expression of M3 ~ is 
strictly regulated by the availability of endogenous peptides 
has important implications for peptide elution from MHC 
molecules. Strategies employed to increase the amount of H 
chain by the use of strong heterologous promoters may not 
yield increased expression of relevant molecules on the cell 
surface. The data from our studies suggest that surface ex- 
pression of MHC molecules is regulated posttranslationally. 
For most MHC class I-a molecules, the peptide pool is not 
limiting and thus overexpression of these molecules at the 
cell surface can be achieved. However, for M3 a and possibly 
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other class I molecules that possess a narrow biochemical 
specificity for their peptide ligands, overexpression of the H 
chain may result in little change at the cell surface, making 
peptide elution from surface molecules more difficult. 

A number of specific hypotheses can be proposed to ex- 
plain the limited availability of M3a-binding peptides to the 
M3 a antigen-binding deft. The simplest explanation is that 
low rates of synthesis of N-formyl peptides limits peptide 
concentration at the site of loading. Alternatively, postsyn- 
thetic mechanisms may play a role in limiting peptides. These 
include proteolytic cleavage by proteasome, ubiquitination, 
and autophagy of organdies (3, 77, 78). The proteosome ma- 
chinery, including the LMP2 and LMP7 subunits, has been 
put forth as the leading candidate for the process of peptide 
generation for MHC class I molecules (3, 79). Peptide trans- 
port by TAP might demonstrate selectively inefficient trans- 
port of N-formylated peptides. Finally, chaperones or other 
hypothesized loading proteins involved with MHC class I 
loading might limit the rate of formation of peptide-M3 a 

complexes. Peptide limited high expression of the M3a-L a 
chimera. This leads us to propose that the pool of N-formylated 
peptides might rise substantially after invasion by intracel- 
lular bacteria. When N-formyl peptides derived from such 
bacteria interact with retained H chains, the complex will 
egress to the cell surface, signaling CD8 + T cells of its in- 
fected state. By extension, we propose that other MHC H 
chains similar to M3 a and L a in displaying narrow biochem- 
ical specificities for their peptide ligands localize predomi- 
nantly to the endoplasmic reticulum. Upon infection by or- 
ganisms that generate appropriate antigens, these specialized 
MHC class I molecules will be mobilized to the cell surface. 
If such MHC class I molecules are poorly expressed in the 
thymus, this hypothesis further predicts that specialized mol- 
ecules will uncommonly serve as selecting agents during 
thymic education, perhaps accounting for the low precursor 
frequency of class I-b restricted T cells in the peripheral lym- 
phoid tissues. 
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