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Bone reconstruction includes a steady state system of bone formation and

bone absorption. This tight coupling requires subtle coordination between

osteoblasts and osteoclasts. If this balance is broken, it will lead to bone

mass loss, bone density reduction, and bone metabolic diseases, such as

osteoporosis. Polyphenols in Chinese herbal medicines are active ingredients

in plant extracts with high safety and few side effects, and they can play a role in

affecting bone formation and bone resorption. Some of these have estrogen-

like effects and can better target bone health in postmenopausal women. The

purpose of this review is to provide comprehensive information on the

mechanisms underlying the relationship between traditional Chinese

medicine polyphenols and bone formation or bone resorption.
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1 Introduction

Bones are essential to the human body, providing structural support, protecting vital

organs such as the bone marrow and brain, promoting blood production, and serving as a

reservoir of minerals. From birth to death, bones are constantly reshaped to maintain

critical functions and maintain constant changes in bone mass.

Bone remodeling is achieved through the tight coupling of bone resorption and bone

formation, and this is closely related to the participation of osteoclasts and osteoblasts.

Bone marrow-derived osteoclasts are responsible for the absorption of aged bone, and

mesenchymal osteoblasts are responsible for the synthesis and mineralization of new

bone. If this balance is broken, such as increased bone resorption that is not compensated

for by a similar increase in bone formation, this will lead to bone mass loss, bone density

reduction, and bone metabolic diseases, such as osteoporosis (Crotti et al., 2015). Bone

remodeling is regulated by multiple local cytokines (e.g., platelet-derived growth factor

(PDGF), insulin-like growth factor [IGF), beta tumor growth factor (TGF)], and systemic
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hormones (growth hormones, parathyroid hormone (PTH),

insulin, and oxytocin), vitamin d, energy metabolism

(Karsenty and Khosla, 2022), and the regulation of multiple

signaling pathways. Among these, Wnt, TGFβ, RANK/RANKL,
and the M-CSF/C-FMS pathway regulate the differentiation and

activity of osteoclasts. The Runt-associated transcription factor 2

(Runx 2), Osterix (Osx), β-catenin, activating transcription factor
4 (Atf 4), and the activating protein 1 (AP-1) family are the

primary transcription factors involved in osteoblast

differentiation (Chau et al., 2009; Soltanoff et al., 2009; Meyer

et al., 2014). However, recent research suggests that positioned

bone is also an important organ with paracrine and endocrine

functions. Moreover, there is crosstalk between osteoblasts and

osteoclasts that allow them to communicate and influence each

other. The sympathetic nervous system (SNS) also has an effect

on bone balance (Karsenty and Khosla, 2022).

For the past 3 decades, the mainstay of treatment for

osteoporosis has been antiresorptive agents (e.g.,

bisphosphonates) that reduce fracture risk through continuous

administration. However, some epidemiological studies have

shown an association between long-term bisphosphonate

therapy and atypical femoral fractures (AFF) (Shane et al.,

2014). Therefore, these drugs are not suitable for long-term

use for the treatment of bone-damaging diseases, and they

may not be suitable as oral drugs either. In addition, long-

term medication can cause problems such as gastrointestinal

(GI) toxicity, weight loss, bone pain, low calcium levels (Lu et al.,

2016; Gao et al., 2017; Grigg et al., 2017; Lange et al., 2017;

Monda et al., 2017). Hence, potential new drugs are urgently

needed to replace existing treatment strategies due to clinically

adverse effects (Estell and Rosen, 2021).

Chinese herbal medicine has been used for many centuries.

Polyphenols are the active ingredients extracted from Chinese

herbal medicine. A polyphenol is a type of plant component that

widely exists in plants and contains a variety of hydroxyphenols.

They are important secondary metabolites in plants, with

polyphenol structures. Polyphenols are primarily found in the

bark, roots, shells, leaves, and fruits of plants. Polyphenols can be

divided into flavonoids, phenolic acids, lignans, and stilbenes

according to their structure. As bioactive molecules, polyphenols

derived from Chinese herbal medicines have been shown to have

many effects on human health by acting on different biological

systems. Polyphenols have many physiological activities such as

anti-osteoporosis, anti-oxidation, anti-infection, anti-tumor, and

anti-atherosclerosis activities. In addition, a large number of

studies have shown the effectiveness of polyphenols in the

treatment of bone related diseases (Tao et al., 2016; Zou et al.,

2016; Chen et al., 2017). Polyphenols can play a role in bone

reconstruction by affecting bone formation and bone resorption.

Polyphenols act on osteoclasts, osteoblasts and bone marrow

mesenchymal stem cells, regulate several important signal

pathways, and play a role in bone remodeling. In addition,

these polyphenols are low cost and have fewer adverse

reactions. Therefore, they are more suitable for long-term use

than synthetic drugs. Hence, their therapeutic potential would

represent a new approach for future drug discovery and

development based on polyphenol extracts from Chinese

herbal medicines.

In this paper, the research progress of the specific mechanism

of polyphenol compounds on bone formation and bone

absorption is reviewed. This paper provides a theoretical basis

for the basic research of polyphenol compounds on bone

formation and bone absorption (Figures 1–3). In addition to

the text of the polyphenols, we have summarized the main

traditional Chinese medicine of polyphenols components

(Table 1).

2.1 Flavonoids

2.1.1 Icariin
Icariin.

Icariin (ICA) is 8-isopentenyl flavonoid glycoside and is the

most abundant flavonoid active ingredient in epimedium. Bone

marrow stromal cells (BMSCs) are stem cells isolated from adult

bone marrow that have the ability to differentiate into

osteoblasts, chondrocytes, adipocytes, and myoblasts.

Epimedium has the ability to promote bone formation and

can promote the proliferation of bone marrow mesenchymal

stem cells and the differentiation of osteoblasts. At the level of the

epigenetic regulation mechanism, ICA can regulate the

homeostasis between osteogenic and adipogenic differentiation

of mesenchymal stem cells (MSCs) through ABCB1 promoter

demethylation (Sun et al., 2015). Similarly, it can also conduct

epigenetic modification through miRNA. For example, studies

have shown that ICA regulates the levels of Mir-23a-3p and Mir-

335–5p and regulates the downstream pathway, thus affecting the

osteogenic differentiation of BMSCs (Zhang et al., 2021; Teng

et al., 2022). In addition, up-regulating the expression of Mir-

335–5p and inhibiting phosphatase and tensin homolog deleted

on chromosome ten (PTEN) can improve the susceptibility of

osteoporosis (OP), thus providing new strategies for the

prevention and treatment of OP (Teng et al., 2022). ICA can

promote osteogenic differentiation by regulating the BMP/Smads

pathway, the BMA1-BMP2 signaling pathway, and the BMP-2/

Smad 5/Runx two andWNT/β-catenin pathways in BMSCs (Gao

et al., 2021; Zhang et al., 2021; Jiao et al., 2022). Epimedium

promotes the migration of bone marrow mesenchymal stem cells

in vitro and in vivo through the MAPK signaling pathway (Jiao

et al., 2018). In addition, ICA can promote the in-situ

proliferation and osteogenic differentiation of bone marrow

mesenchymal stem cells, thus improving the curative effect of

bone marrow mesenchymal stem cell transplantation in the

treatment of OP (Gao et al., 2021).

ICA can promote the differentiation of osteoblasts and

increase bone mineral density. Bone formation primarily
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promotes the synthesis and mineralization of the bone matrix

through the proliferation and differentiation of osteoblasts

that play important roles in bone formation and osteoporosis.

ICA has an estrogen-like pharmacological activity that can

stimulate the differentiation and mineralization of osteoblasts,

regulate the differentiation of osteoclasts, inhibit the

adipogenic trans-differentiation of osteoblasts, and increase

the number of osteoblasts differentiated into mature

osteoblasts through the ER-mediated pathway (Zhang et al.,

2016). In vivo, icariin increases the peak bone mass of rats

during the growing period. Osteoblasts respond to icariin

through the activation of cAMP/PKA/CREB signals. After

the cAMP/PKA/CREB signal was blocked, icariin-induced

osteogenesis was inhibited. These results further support

that icariin promotes bone formation through the

activation of the cAMP/PKA/CREB pathway (Shi et al.,

2017). Icariin can also improve OP by regulating the

balance of the EphB 4/ephrin-B2 pathway (Huang et al.,

2020). Interestingly, ICA can also prevent the iron overload

induced reduction of Runx2, alkaline phosphatase, and

osteopontin expression, thereby inhibiting iron-induced

osteoblast apoptosis and promoting bone formation (Jing

et al., 2019). In addition, some studies have shown that

icariin might exert an osteoprotective effect by maintaining

osteocyte viability and thereby regulating bone remodeling

(Feng et al., 2013; Ho et al., 2018; Park et al., 2019)

ICA inhibits the formation of osteoclasts, and ICA inhibits

the differentiation of pre-osteoclasts to osteoclasts. It also inhibits

the expression of various genes involved in osteoclast formation

and bone resorption (Zhang S. et al., 2017). Studies have shown

that icariin can block osteoclast formation induced byMCF seven

andMDA-MB-231 breast cancer cells by inhibiting the activation

of NF-κ B. In addition, icariin inhibits the expression of TRAF-6

stimulated by RANKL and then inhibits ERK phosphorylation,

but it has no effect on the activation of p 38, JNK, and Akt (Kim

et al., 2018). In addition, ICA can also prevent inflammatory

bone loss. ICA inhibits the LPS-induced osteoclast formation

process by inhibiting the activation of the p38 and JNK pathways

(Hsieh et al., 2011).

In summary, ICA can prevent and treat osteoporosis by

improving bone metabolism, promoting the differentiation of

bone marrow mesenchymal stem cells, stimulating osteoblasts,

and inhibiting osteoclast activity.

2.1.2 Bavachin
Bavachin (BA) is the extract of the Chinese medicine

Psoralea corylifolia. BA may stimulate bone formation or have

potential anti-osteoporosis activity (Wang et al., 2001). BA can

obviously stimulate cell proliferation and promote the

differentiation of osteoblasts. This function may be related to

its characteristic structure, that is, the isoprene side chains

connected in each of its molecular skeletons (Li et al., 2014).

FIGURE 1
Chinese herbal polyphenols can play a role in bone reconstruction by affecting bone formation and bone resorption. After being absorbed in the
gastrointestinal tract, Chinese medicine polyphenols act on human bones, and improve bone absorption and bone formation, contributing to bone
remodeling and health, and reducing and improving adverse events.
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FIGURE 2
The chemical structures of several widely studied polyphenols in Chinese herbal medicine.

FIGURE 3
Polyphenols regulate multiple signaling pathways of bone formation or bone resorption.
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TABLE 1 List of Chinese herbal polyphenols connected with the mechanism of bone formation or resorption.

Traditional
Chinese medicine

Polyphenols Mechanism of action References

Glycyrrhiza uralensis Glabridin Glabridin shows slightly positive effect on osteoporotically
changed bone tissue. And glabridin inhibiting RANKL-
induced activation of signaling molecules and subsequent
transcription factors in osteoclast precursors

Kim et al. (2012); Klasik-Ciszewska et al. (2016)

Fisch

Glycyrrhiza uralensis Isoliquiritigenin (ILQ) ILQ reduces bone resorption in vivo and osteoclast
differentiation in vitro, by mechanisms likely differing from
actions of ovarian hormones.In addition, ISL directly reduced
RANKL-RANK-TRAF6 singling pathway induced
osteoclastogenesis

Zhu et al. (2012); Ji et al. (2018); Joyce et al. (2022)

Fisch

Curcuma longa L Curcumin Curcumin Modulates the Crosstalk Between Macrophages
and Bone Mesenchymal Stem Cells to Ameliorate
Osteogenesis. And curcumin enhanced the BMSC function for
the proliferation and migration of articular chondrocytes, and
anabolic gene expression of extracellular matrix in articular
chondrocytes in vitro, and the generation of articular cartilage
in vivo.And Curcumin reduced apoptosis and promoted
osteogenesis under oxidative stress

Yang et al. (2020); Chen et al. (2021); Tan et al.
(2021); Zhang et al. (2021a)

Taxillus sutchuenensis
(Lecomte)Danser

Quercetin Quercetin was shown to inhibit RANKL-mediated
osteoclastogenesis, osteoblast apoptosis, oxidative stress and
inflammatory response while promoting osteogenesis,
angiogenesis, antioxidant expression, adipocyte apoptosis and
osteoclast apoptosis. The possible underlying mechanisms
involved are regulation of Wnt, NF-κB, Nrf2, SMAD-
dependent, and intrinsic and extrinsic apoptotic pathways

Tsuji et al., 2009; Mariee et al., 2012; Xing et al., 2017;
Fayed et al., 2019; Xu et al., 2019; Nani et al., 2021

Tripterygiu m wilfordii <
Hook. F

Celastrol Celastrol could regulate BM-MSCs fate and bone-fat balance
in OP and skeletal aging by stimulating PGC-1α. In addition,
Celastrol inhibits glucocorticoid-induced osteoporosis in rat
via the PI3K/AKT andWnt signaling pathways. And Celastrol
Attenuates RANKL-Induced Osteoclastogenesis in vitro

Xi et al., 2018; Li et al., 2020b; Xu et al., 2021

Zingiber officinale Roscoe 6-Gingerol 6-Gingerol Inhibits Inflammation-Associated Osteoclast
Differentiation via Reduction of Prostaglandin E₂ Levels. And
6-Gingerol-stimulated osteoclast differentiation of bone
marrow macrophages

Khan et al., 2012; Hwang et al., 2018; Zang et al., 2021

Lycium ruthenicum Murr Anthocyanidin Anthocyanins display their beneficial role on bone formation,
including upregulating the osteoblastic genes, promoting the
proliferation of osteoblasts and enhancing the mineral nodule
formation

Li et al., 2017; Melough et al., 2017; Karunarathne
et al., 2021; Liu et al., 2021

Rhodiola rosea L Salidroside Salidroside improves bone histomorphology and prevents
bone loss rats by regulating the OPG/RANKL Ratio, the HIF-
1α/VEGF signalling pathway, the Wnt/β-catenin signaling
pathway

(Zheng et al., 2018; Guo et al., 2020; Li et al., 2021b

Crocus sativus L Crocin Anti-apoptotic effects, as well as osteoclast inhibition effects of
crocin, have suggested it as a natural substance to treat
osteoporosis and degenerative disease of bone and cartilage

Cao et al., 2014; Fu et al., 2017; Algandaby, (2019)

Reynoutria japonica
Houtt

Polydatin Polydatin improves osteogenic differentiation of human bone
mesenchymal stem cells via BMP2-Wnt/β-catenin signaling
pathway. In addition, Polydatin alleviates osteoporosis by
enhancing the osteogenic differentiation of osteoblasts

Shen et al., 2020; Yuan et al., 2022

GALLA CHINENSIS Epigallocatechin
gallate (EGCG)

EGCG repressed new bone formation through Wnt/β-
Catenin/COX-2 pathway. In addition, it may enhance bone
defect healing via at least partly by the de novo bone formation
of BMP-2

Lin et al., 2019; Zhang et al., 2021b

Davallia mariesii Moore
ex Bak

Eriodictyol Eriodicyol inhibits osteoclast differentiation and ovariectomy-
induced bone loss in vivo. In addition, it Inhibits RANKL-
Induced Osteoclast Formation and Function Via Inhibition of
NFATc1 Activity

Lee et al., 2015; Song et al., 2016

Davallia mariesii Moore
ex Bak

Naringenin Naringenin promotes SDF-1/CXCR4 signaling pathway in
BMSCs osteogenic differentiation. And naringenin is a
Potential Anabolic Treatment for Bone Loss by Modulating
Osteogenesis, Osteoclastogenesis, and Macrophage
Polarization

Wang et al., 2021; Zhou et al., 2022
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It has been shown that BA can reduce bone turnover by

decreasing serum alkaline phosphatase, serum carboxy-

terminal collagen crosslinks (CTX) levels, and the urine

deoxypyridinoline (u-DPD)/creatinine ratio, and preventing

OVX-induced urinary calcium and phosphorus excretion.

Similarly, BA can reduce the contents of gamma-aminobutyric

acid (GABA) and GABABRI in the femur, increase the bone

mineral density, and reduce urinary calcium excretion, thus

achieving the purpose of preventing and treating osteoporosis

in vivo (Zhu et al., 2015).

BA may inhibit osteoclast differentiation through the NF-κB
signaling pathway and the MAPK signaling pathway in vitro

(Wei et al., 2022). BA treatment can inhibit osteoclast function

and promote the up-regulation and down-regulation of the

osteoclast marker gene, RANKL, and the osteoblast marker

gene, OPG. Serum aminoterminal propeptide of type I

procollagen (PINP) is widely considered as a biomarker for

evaluating osteoblast activity (Hale et al., 2007). It was found

that BA significantly improved the level of serum PINP. These

results indicated that BA not only has estrogen-like effects, but

also has beneficial effects on the function of osteoblasts. BA can

prevent OVX-induced bone loss, but it does not affect uterine

estrogen. This type of bone protection makes this a promising

alternative to treat postmenopausal osteoporosis (PMOP) safely

and effectively (Weng et al., 2015).

BA can achieve the purpose of anti-osteoporosis through a

delicate balance of bone formation and bone resorption.

2.1.3 Formononetin
Formononetin (FO) is one of the primary isoflavones

extracted from Astragalus membranaceus. Studies have shown

that it can stimulate the formation of osteoblasts, thus increasing

bone mass and improving the microstructure of bone. FO can

regulate the expression of RANKL and OPG at the mRNA level,

as well as related markers of osteogenic differentiation, thus

promoting the mineralization potential of osteoblasts (Zaklos-

Szyda et al., 2020). In addition, FO promoted bone regeneration

in a mouse model of cortical bone defect in a manner similar to

PTH and upregulated the expression of the predominant runt-

related transcription factor 2 and osteocalcin (Singh et al., 2017).

The research results showed that FO inhibited fat formation

through the AMPK/β-catenin signal transduction pathway, thus

improving the inverse relationship between osteoblasts and

adipocytes and preventing obesity and bone loss induced by

high-fat diets (Gautam et al., 2017).

FO can inhibit the activation of osteoclasts and plays an

important role. Studies have shown that FO can inhibit the

proliferation and differentiation of primary bone marrow

mononuclear macrophages into osteoclasts and down-regulate

the expression of proteins and genes related to the bone

resorption function of osteoclasts, and this may be one of the

mechanisms of FO in preventing and treating destruction and

collapse in femoral head necrosis (Hong et al., 2020). FO

attenuates osteoclast differentiation and calcium loss by

regulating the transcription factor, AP-1, in type I diabetic

mice, and it is expected to be a prospective drug for the

treatment of osteoporosis (Jing et al., 2022).

The immunomodulatory activity of formononetin can

prevent OVX-induced bone loss. In addition, the generation

of osteoclasts and apoptosis of osteoblasts induced by IL-17 are

inhibited (Mansoori et al., 2016). FO can reduce the production

of osteoclasts by inhibiting the activation of NF-κ B, c-fos, and

nuclear factors that activate the cytoplasmic one signal pathway

induced by RANKL in T cells (Huh et al., 2014). FO also has

estrogen-like effects that can inhibit bone loss caused by estrogen

deficiency after menopause and improve the activity of alkaline

phosphatase in OVX rats in vivo and in vitro (Ha et al., 2010).

In a word, FO can stimulate the formation of osteoblasts and

inhibit the activation of osteoclasts.

2.1.4 Puerarin
Pueraria, originating from China, has a long history and is

one of the most commonly used Chinese medicines in Asia. Due

to its high isoflavone content, it has been widely used as a natural

alternative to hormone replacement therapy for postmenopausal

symptoms (Lee et al., 2021). Puerarin (PUE) is an isoflavone

isolated from the pueraria root that is widely distributed in

several organs related to aging, such as the hippocampus,

femur, tibia, and mammary gland, after oral administration

(Anukunwithaya et al., 2018). In addition to anti-

inflammatory, antioxidant, and anti-diabetic effects (Xiao

et al., 2011; Chen et al., 2018; Jeon et al., 2020), PUE also

plays an important role in bone diseases such as OP. PUE can

promote bone formation by influencing the expression of

osteogenic related genes and promoting the formation of a

mineralized matrix. PUE can significantly enhance alkaline

phosphatase activity, mineralized matrix generation, and

osteoblast-related protein expression levels. In addition,

microCT imaging measurements demonstrated that PUE

significantly promoted new bone formation (Yang et al.,

2022). At the level of epigenetic modification, PUE regulates

transcriptional expression related to bone formation through

microRNA (Shan et al., 2018; Zhou et al., 2020). For example,

PUE can regulate the up-regulation of Mir-155–3p to promote

BMSCs differentiation and bone formation and increase bone

mass in bone grafted rats.

Studies have shown that PUE also has a regulatory effect

on bone resorption. PUE can down-regulate the mRNA levels

of osteoclast marker genes CTR, CATH-K, NFATc1 and c-fos,

indicating that PUE inhibits osteoclast cell function in vitro

(Yang et al., 2019). In vitro, PUE attenuated bone resorption

without impairing osteoclast viability and significantly

prevented OVX-induced bone loss by inhibiting bone

resorption without altering bone formation (Qiu et al.,

2022). Furthermore, PUE inhibites RANKL-induced

osteoclast activation, the bone resorption capacity, and
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F-actin ring formation in vitro with an increase in the PUE

concentration (Yang et al., 2019). PUE may play a protective

role in osteoclast-related osteolytic diseases. In vitro, PUE

prevented RANCL-induced osteoclast differentiation, bone

resorption, and F-actin ring formation, reduced

phosphorylation of p65, and prevented P65 translocation

from the cytoplasm to the nucleus in a concentration-

dependent manner. PUE also decreased the expression of

osteoclast specific factors (Tang et al., 2020). In vivo

experiments, PUE significantly inhibited bone resorption

mediated wear particles in a skull bone resorption model

(Yang et al., 2019).

PUE can also prevent cell apoptosis through the HDAC1/

HDAC3 signaling pathway and regulate the expression of HIF-

1α, TIMP-3, and Bcl-2, thus playing an anti-osteoporosis role

(Guo et al., 2019; Waqas et al., 2020). For osteoporosis, it also

increases bone mass and inhibits osteoclast formation (Yang

et al., 2018; Xiao et al., 2020). By enhancing osteogenesis and

promoting bone formation, PUE also improves OVX-induced

osteoporosis and lipid metabolism by regulating phospholipid

metabolism and polyunsaturated fatty acid biosynthesis, thereby

reducing adipogenic differentiation. In addition, activation of the

Wnt pathway and inhibition of the PPARγ pathway promote

adipogenesis in osteogenic differentiation of inactivated rat bone

marrow mesenchymal stem cells (Li et al., 2022). For

osteoporosis caused by postmenopausal estrogen deficiency,

the results of a clinical trial showed that PUE was well

tolerated for the short-term treatment of mild to severe

menopausal symptoms in women. Kudzu root extract may

benefit bone and cartilage health and may be a promising

natural alternative to existing treatments for menopausal

symptoms (Bihlet et al., 2021).

Recent studies have found that the microbiota plays an

important role in regulating the skeletal microenvironment,

thereby triggering anti-osteoporosis effects. Furthermore,

intestinal microbiota can participate in the process of

osteoporosis by inducing inflammatory reactions and changes

in the autoimmune system. PUE treatment can improve the bone

microenvironment and inhibit OVX-induced osteoporosis by

regulating the release of short chain fatty acids (SCFAs) from

intestinal flora and repairing the intestinal mucosal integrity (Li

B. et al., 2020). In addition, serum pharmacokinetics suggest that

pueraria root extract may undergo enterohepatic circulation

(Mun et al., 2009).

2.1.5 Genistein
Genistein is a natural isoflavone compound found in legumes

and dentate plants. It is a phytoestrogen that makes up more than

60% of soy isoflavones (Nazari-Khanamiri and Ghasemnejad-

Berenji, 2021). Its pharmacological properties make it a potential

drug for treating a variety of conditions including

postmenopausal symptoms, cancer, and bone, brain, and heart

disease (Nazari-Khanamiri and Ghasemnejad-Berenji, 2021).

It is well known that genistein has been shown to stimulate

bone formation by osteoblasts and inhibit bone resorption by

osteoclasts, thereby increasing bone mass (Yamaguchi, 2012).

Genistein improves bone healing by triggering the estrogen

receptor α-mediated expression of osteogenesis-related genes

and maturation of osteoblasts. The inhibition of ER

expression was shown to immediately reduce the genistein-

induced enhancement of mitochondrial energy production

and osteoblast activation (Wu et al., 2020). Additionally,

studies have shown that genistein promotes osteoblast

differentiation and maturation by activating the ER,

p38MAPK-Runx2, and NO/cGMP pathways and by inducing

the osteoclastogenesis inhibitor, osteoprotegerin (OPG), and

blocking the NF-κB signaling pathway, inhibiting osteoclast

formation and bone resorption (Ming et al., 2013).

At the level of epigenetic modification, genistein counteracts

NF-κB-induced osteoclast generation and downstream signaling

by directly regulating the transcription of histone

methyltransferases EzH2 and EzH1 (Kushwaha et al., 2022).

Furthermore, there are clinical trials showing that

supplementation with the dietary phytoestrogen genistein may

be as effective as hormone replacement therapy in reducing bone

loss associated with menopause without the associated bone loss

side effects (Cotter and Cashman, 2003; Sansai et al., 2020). In

this study, to improve the bioavailability of genistein and reduce

its side effects, the nanofied formulation of genistein with

Vitamin D was invented to enhance the therapeutic efficacy of

the osteoporosis model in vitro and improve alkaline

phosphatase activity and multinucleated giant cell formation

(Kushwaha et al., 2022). If the bioavailability of genistein is

improved, its future market development potential is huge.

2.2 Phenolic acids

2.2.1 Salvia B
Salvia miltiorrhiza Bunge, also known as Salvia miltiorhiza

Bunge, is often used in traditional Chinese medicine (TCM) in

combination with other traditional Chinese medicines to treat

bone diseases. Salvianolic acid B (Sal B) is a water-soluble

phenolic compound isolated from Salvia miltiorrhiza Bunge in

which the active ingredient in the water-soluble phenolic

compound is greater than 50% (Cao et al., 2012). As a

polyphenolic acid compound with seven phenolic hydroxyl

groups, Sal B is one of the strongest natural antioxidants, and

it is metabolized into salvianol in vivo (Chen et al., 2013; Tang

et al., 2014).

It is worth noting that Sal B can also act on osteoblasts and

induce bone marrow-derived mesenchymal stem cells to become

osteoblasts. Studies have shown that Sal B and Salvia miltiorrhiza

can induce osteogenic differentiation of rat bone marrow stromal

cells by up-regulating the nitric oxide pathway (Zhang X. et al.,

2017). In addition, Sal B can protect osteoblasts treated with
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prednisolone acetate by stimulating the activity of osteoblasts and

the expression of genes related to bone formation and

differentiation. It can also increase the alkaline phosphatase

(ALP) activity in osteoblasts and stimulate the expression of

ALP, which is inhibited by prednisolone acetate, and up-regulate

the expression of Runx2, Osx, OCN, IGF-I, Col-I, HO-I, mRNA,

and protein expression (Qiao et al., 2019). For the first time,

studies have shown that Sal B can target TAZ to promote

osteogenesis and reduce adipogenesis by activating MEK-ERK

signaling pathway, which provides evidence that Sal B can be

used as a potential therapeutic agent for the management of bone

diseases (Wang et al., 2019). Sal B can also play a cytoprotective

role to inhibit the apoptosis of BMSCs by regulating H2O2-

mediated ROS/MEK/ERK1/2 pathway (Lu et al., 2010). This

indicated that Sal B had a protective effect on osteoblasts by

stimulating osteoblast activity and the expression of genes related

to bone formation and differentiation.

2.3 Lignans

2.3.1 Flax lignans
Flax lignans are phytonutrient extract of Linum

usitatissimum L. Chemically, the C6-OH of the glucose of flax

lignans is esterified to the carboxylic acid of

hydroxymethylglutaric acid (Imran et al., 2015). Flax lignans

in combination with low-dose estrogen treatment maximally

prevents bone loss induced by oophorectomy (Sacco et al.,

2009). However, its use alone has no effect on the bone

mineral density content, and a clinical study showed no

statistically significant difference in bone turnover markers

between the treatment group and the placebo group (Alcorn

et al., 2017). Flax lignans have no negative effects on bone

strength and bone health in aged rats (Ward et al., 2001a).

These studies indicate that supplementation with flaxseed may

contribute to improving the bone properties of osteoporosis, and

these predominantly protective effects may be attributed to

flaxseed oil (predominantly ALA), not to the fractions of flax

lignans (Ward et al., 2001b; Lucas et al., 2002; Cohen and Ward,

2005). Flax Lignans are characterized by anti-inflammatory,

antioxidant, and neuroprotective properties (Watanabe et al.,

2020; Asad et al., 2021; Wu et al., 2021).

2.4 Stilbenes

2.4.1 Resveratrol
Resveratrol (RES), a non-flavonoid polyphenolic organic

compound and is a bioactive component in Rhizoma Polygoni

Cuspidati. It is easily absorbed after oral administration and is

excreted through the urine and feces after metabolism. A large

number of experimental studies have shown that RES has

antioxidant, anti-inflammatory, anti-cancer, and

cardiovascular and cerebrovascular protection effects (Biswas

et al., 2020; Thaung Zaw et al., 2021; De Luca et al., 2022;

Dzator et al., 2022; Mahjabeen et al., 2022).

Previous studies have shown that RES also plays an

important role in protecting and promoting early bone

metabolism and differentiation through a mechanism

similar to genistein that promotes osteoblast-mediated bone

formation and inhibits osteoclast-stimulated bone formation

(Tou, 2015). RES increased the serum OPG, femoral SIRTI,

and β-catenin expression and significantly decreased the NF-

κB ligand receptor activator (RANKL) by stimulating

SIRT1 expression and Wnt/β-catenin signaling. Finally, the

bone mass of the femur increased and the bone mineral

density significantly increased (Wang et al., 2022). In

addition, RES can also protect bone cells from some

physicochemical damage. For example, studies have shown

that RES pretreatment for 30 min can significantly prevent

cadmium-induced apoptosis and attenuate ERK1/2 and JNK

signaling by regulating ERK1/2 and JNK signaling. It also

produces cadmium-induced inhibition of osteogenic

differentiation (Mei et al., 2021).

The aging of mesenchymal stem cells (MSCs) and the

associated decline of osteogenic function lead to the

disruption of the balance between bone formation and

resorption, which is the key pathogenesis of osteoporosis

during aging. Recent data has shown that RES can improve

the osteogenic differentiation of senescent BMMSCs, and

long-term intermittent applications can enhance bone

formation and compensate for bone loss. The specific

mechanism is that RES up-regulates Mitofilin, promotes the

transcription of mitochondrial autonomous genes, and

restores cell metabolism through mitochondrial function

(Lv et al., 2018). Mitofilin, also known as the mitochondrial

inner membrane protein (IMT) or Mic60, is a core component

of the mitochondrial contact site and crista tissue system

(MICOS) (Li et al., 2016; Tarasenko et al., 2017). Mitofilin

is indispensable for mitochondrial homeostasis and

osteogenesis in bone marrow mesenchymal stem cells

(Chen et al., 2008; Pietilä et al., 2010). Mitofilin deficiency

leads to aging and bone loss in BMMSC (George et al., 2011;

Sahin et al., 2011).

Relevant clinical trials have also proved the efficacy and

safety of RES. A clinical study conducted at the Aarhus

University Hospital showed that high-dose RSE

supplements increased bone mineral density (BMD) and

bone alkaline phosphatase in obese men, with positive

effects on bones (Ornstrup et al., 2014). A 24-month RES

(RESHAW) trial of healthy ageing in women showed that

regular 75 mg resveratrol supplementation twice daily had the

potential to slow bone loss in the lumbar spine and femoral

neck, which is common at fracture sites in postmenopausal

women without significant osteoporosis (Wong et al., 2020).

However, a systematic review and meta-analysis showed that
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RES supplements did not show any significant effect on BMD

or serum bone markers (Li Q. et al., 2021). Therefore, further

research utilizing better organized multicenter randomized

trials is necessary so that physicians can provide more advice

for clinical decision-making.

3 Conclusion

The incidence of bone metabolic diseases has been increasing

annually. The imbalance of bone formation and absorption is an

important mechanism of bone metabolism related diseases.

Chinese herbal medicine has been used for thousands of

years, among which polyphenols are an important active

ingredient. This paper reviewed how polyphenols in Chinese

herbal medicine can help bone reconstruction and improve bone

metabolism by affecting the balance between bone formation and

bone absorption. Generally speaking, regarding the beneficial

effects of polyphenols in bone metabolic diseases, due to the lack

of multi-center randomized trials in polyphenols in this field, it is

considered necessary to conduct human trials, and further

research can be conducted in this research field.
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