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Abstract: In the last decade, the development of radiogenomics research has produced a significant
amount of papers describing relations between imaging features and several molecular ‘omic
signatures arising from next-generation sequencing technology and their potential role in the
integrated diagnostic field. The most vulnerable point of many of these studies lies in the poor
number of involved patients. In this scenario, a leading role is played by The Cancer Genome Atlas
(TCGA) and The Cancer Imaging Archive (TCIA), which make available, respectively, molecular ‘omic
data and linked imaging data. In this review, we systematically collected and analyzed radiogenomic
studies based on TCGA-TCIA data. We organized literature per tumor type and molecular ‘omic data
in order to discuss salient imaging genomic associations and limitations of each study. Finally, we
outlined the potential clinical impact of radiogenomics to improve the accuracy of diagnosis and the
prediction of patient outcomes in oncology.
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1. Introduction

The development of high-throughput technologies in biomedical research has led to the high
availability of data and, as a reflection, to the development of new techniques and methods to
analyze the amount of these data. In the field of cancer diagnosis and therapy, both molecular
biology and imaging shall be a reference tool to better characterize tumor phenotype. In recent
years, advances of both approaches and the promising results arising from the correlation of cancer
imaging features (radiomics) with high-throughput data (or transcriptomic, proteomic, etc.) has
led to the new research area known as “radiogenomics” [1]. The mainstay of radiogenomics is the
potential to investigate the relationship between different types of data by using advanced computer
science methods able to manage and analyze a very large number of variables arising from many
acquisition modalities [2]. Different and complementary layers of information (i.e., radiomics, genomics,
transcriptomics, proteomics) contribute to identifying more and often distinct aspects of a disease.
Integrating all features, considering data from each level, can increase the capacity to predict patient
clinical outcomes. We referred to each level as omic. In this context, some data integration and
data processing challenges need to be addressed [3]. One of the most critical challenges regards the
‘omics data acquisition and the obstacle of missing data, which may occur due to data filtering or
non-execution of a specific analysis on a subset of specimens originating from separate laboratories. For
these reasons, it is often hard for a research group to collect a significant quantity of both radiomic and
biological omic data. A solution to this kind of problem is the use of public databases for molecular and
imaging data available for different biomedical research fields. Among them, are the National Institute
of Mental Health (NIMH) Data Archive (NDA) [4], stores clinical/phenotypic, imaging, genomic, and
other data from hundreds of thousands of research participants. Moreover, The Cancer Genome
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Atlas (TCGA), [5] in connection with The Cancer Imaging Archive (TCIA) [6], represents the largest
data repository in cancer research. TCGA-TCIA data have become crucial support also for cancer
radiogenomics studies, owing to their collections for several primary sites and a large amount of
available data (over 20,000 primary cancer and matched normal samples crossing 33 cancer types). In
this scenario, also the role of the database that contains non omic data should not be underestimated.
An example is the Atlas of Genetics and Cytogenetics in Oncology and Hematology [7] that makes
available relevant biomarkers for diagnosis or therapeutic targets as well as the clinical outcome of
patients. These data can be combined into a radiogenomic framework, adding new knowledge in
order to identify cancer genes pathways or characterize different phenotypes. This review provided an
extensive overview of works (Table 1) based on TCGA-TCIA data and, consequently, defined the role
of these databases in radiogenomics cancer research. To this purpose, we first grouped the studies
based on the tumor type and involved molecular features. We also described some studies not properly
definable as radiogenomic studies. Indeed, many “radiogenomics” studies are actually based on a few
features and do not consider overall information from ‘omic experiments. Moreover, in several cases,
the involved features cannot be considered as true ‘omics, as in the case of radiological parameters.
Finally, we discussed the search strategy, articles selection, the current challenges of radiogenomics,
and the common limitations of each study.

Table 1. Unequivocal radiogenomic studies using TCGA-TCIA data.

Tumor Type TCGA/TCIA Project Sum of Study

Glioblastoma and low grade glioma GBM and LGG 21
Breast cancer BRCA 10

Clear cell renal carcinoma KIRC 2
Other OV and STAD 2

GBM: Glioblastoma Multiforme, LGG: Low-Grade Glioma, BRCA: Breast cancer, KIRK: Kidney Renal Clear Cell
Carcinoma, KIRC: Kidney Renal Clear Cell Carcinoma, OV: Ovarian Cancer, STAD: Stomach adenocarcinoma.

2. Results

According to our search strategy, many unequivocal radiogenomic studies arise from investigations
performed on the brain (GBM—glioblastoma multiforme and LGG—low-grade glioma) and breast
tumors (BRCA, breast cancer) (Table 1). For this reason, we organized these two large collections of
studies in subsections based on tumor type along with the analyzed molecular features, respectively.
In addition, we shed light on the clinical aspects investigated for both diseases. In particular, for GBM,
we discussed cancer sub-groups classification (also based on gene expression data), relations between
imaging features and gene expression data and mutation data and proteomic data. Instead, for breast
cancer, we discussed associations between imaging features and cancer subtypes, correlations between
imaging features and gene expression data, and relations between imaging features and multiple
molecular omic features. Doing that, we found that each study pointed out to establish a relationship
between imaging features and genomic signature to clarify several clinical-pathological characteristics,
including diagnosis, tumor stage, treatment response, and clinical outcome. For example, early
detection of breast cancer intrinsic molecular subtypes is crucial to predict the most effective therapeutic
strategy; also, the breast patients’ prognosis can be different based on tumor aggressiveness. From a
genomic point of view, our results indicated that transcriptomic profiles represented the leading omic
data type used so far for the study of disease genotype. Indeed, aberrant gene expression between
healthy individuals and patients is commonly used to identify a relationship between imaging features
and genomic pathways. The general approaches used by each study and the principle identified
relationships are summarized in Table 2.
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2.1. Glioblastoma Multiforme (GBM) and Low-Grade Glioma (LGG)

The overwhelming volume of literature within TCGA-TCIA radiogenomics studies has concerned
brain tumors, such as the glioblastoma multiforme (GBM) and, at less extend, low-grade glioma (LGG).
Glioblastoma is the most frequently occurring primary malignant brain tumor in the adult [8], and it is
characterized by poor response to treatment. Some reasons are the histological and genetic intratumor
heterogeneity and the consequent coexistence of different subpopulations of glioblastoma. Twenty-one
radiogenomic studies were included for GBM and LGG (for a complete overview of radiogenomics
in glioblastoma, see Kazerooni et al. [9]). The more detailed relations by the original articles are
graphically represented in Figure 1.
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Figure 1. Radiogenomic associations in TCGA-TCIA GBM. Molecular omic features are represented
on the top of the image, while imaging features are represented on the bottom. The arcs represent
relations. (–) indicates a negative relation, (+) a positive relation, (m) mutation of the corresponding
gene, (l) a low value of the corresponding feature, and (h) a high value. CER: Contrast-enhancing
ratio, CEV: Contrast-enhancing volume, TCGA: The Cancer Genome Atlas, TCIA: The Cancer Imaging
Archive, GBM: glioblastoma multiforme.

2.1.1. Cancer Sub-Groups Classification

The first extensive radiogenomic investigation using quantitative volumetrics features from
magnetic resonance imaging (MRI) and gene/microRNA expression profiling in TCGA-GBM was
performed by Zinn et al. [10]. They applied a novel diagnostic method to discriminate among molecular
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cancer subtypes and genomic correlates of cellular invasion patterns. A total of 78 treatment-naïve
patients were equally split into three sub-groups (high, medium, and low) based on FLAIR (Fluid
Attenuated Inversion Recovery) signal volume, which matched the volume level of peritumoral
edema/invasion. Differential expression was inferred only between the “high” and “low” subgroups
(52 patients). A total of 53 mRNAs (32 of which were up- and 21 down-regulated) and five microRNAs
(three of which were up- and two down-regulated) were identified as differentially expressed. The
detected mRNA and microRNAs were individually analyzed in ingenuity pathway analysis (IPA).
As a result, the study identified, in both discovery and validation sets, PERIOSTIN (POSTN) as
the top up-regulated gene and miR-219 as the top down-regulated microRNA in the high group.
Moreover, the expression levels of POSTN were associated with low survival and shorter time to disease
progression. These findings suggested that FLAIR could be an imaging surrogate for edema/invasion
features and that POSTN inhibition could be proposed as a target for two major causes of GBM
aggressiveness and failure of therapy: mesenchymal transition and cancer cell invasion. However,
two limitations were present in the study: lack of image-sample registration (gene expression profiles
could not be matched to a specific location on MRI) and false-positive gene hits due to a large
number of probes of microarray technology. The same research group, using the same cohort of
78 patients (and 64 patients from both the TCGA and Rembrandt databases [11] as validation set),
developed a non-invasive GBM classification method [12] based on lesion volume, age, and Karnofsky
performance status (KPS). Using these variables, a 3-point scoring system was used to separate the
patients into two VAK (volume, age, and KPS) groups: VAK-A and VAK-B. The methylation status of
the O6-methylguanine-DNA-methyltransferase (MGMT) promoter was included in the VAK score to
get the VAKM scores. VAKM patients were classified into methylated (VAK + M) and non-methylated
(VAK −M). Furthermore, a total of 13,628 genes and 555 microRNAs were analyzed for significance
and differential fold regulation in VAK-A and VAK-B groups. A survival benefit for VAK-A was
correlated with p53 activation and with a positive MGMT promoter methylation status. Additionally,
a total of 17 genes and eight microRNAs were significantly associated with the groups and predicted
survival in an independent validation set. The findings of this study suggested that VAK classification
and their molecular associations could be a robust prognostic tool and clinical trial selection criteria.
However, a prospective validation was needed to confirm these results. The variance of the radial
distance signal of the enhancement region of interest (ROI) was the feature most highly anti-correlated
with overall survival investigated by Gevaert et al. [13] in a study performed on 55 patients. Also, 77
significant correlations between quantitative features and the VASARI (Visually AcceSAble Rembrandt
Images) feature set was found. On the molecular side, four quantitative image features were correlated
with molecular subtypes defined by TCGA on the basis of gene expression analysis [14]. In detail, the
“mesenchymal subtype” was correlated with the minimum intensity, whereas the “classic subtype” was
correlated with one necrosis and two edema image features. Another important aspect of this study
was the building of a radiogenomic map based on co-expressed gene expression modules of 426 TCGA
patients. The expression of a specific module—whose regulators were GAP43 and WWTR1 genes—had
been reported to correlate with the necrotic process and with the presence of blurry edge necrotic portion
of the tumor. The study demonstrated that building radiogenomic maps with quantitative imaging
features and the Amaretto tool could be a promising complementary strategy toward noninvasive
management of GBM. The most important limitation of this study was the manually annotated ROIs
that could introduce potential observer variability. Colen et al. [15] tried to identify genomic features
associated with a highly aggressive and invasive GBM imaging-phenotype using 92 patients of TCGA.
The results showed that patients with deep white matter tracts and ependymal invasion on imaging
(defined Class A) had a significant decrease in overall survival, whereas, in patients with the absence
of such invasive imaging features (defined Class B), happened otherwise. In this context, the oncogene
MYC was predicted to be the highest activation regulator in Class A. Despite some limitations, such as
the unknown location of biopsy (given tumor heterogeneity in GBM, tissue origin is needed to obtain
more accurate samples), this study demonstrated, for the first time, imaging features that predicted
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metabolic and mitochondrial dysfunction in GBM and identified the latter as possible driver for very
aggressive GBM phenotypes and resistance to therapy. Mazurowski et al. [16], following the proof of
concept that tumor shape likely reflects tumor growth and the genetic status of tumor cells, assumed
the associations between five specific imaging features (BEVR, BEDR1, BEDR2, MF, ASD) and six
genomic subtypes. For each combination of imaging features and genomic subtype, a Fisher’s exact
test on 110 patients was conducted. The results showed an association between the angular standard
deviation (ASD) and the genomic subtypes. In more detail, these imaging features were associated
with the IDH-1p/19q subtype, RNASeq cluster, copy number cluster, and the cluster of clusters subtype
(for details on these clusters, see Brat et al. [17]).

2.1.2. Relations between Imaging Features and Gene Expression Data

Jain et al. [18] identified several correlations between the expression of some genes and two
perfusion imaging parameters (permeability surface area product — PS and CBV). Involved genes
were both pro-angiogenic (such as TNFRSF1A, HIF1A, KDR, TIE1, TIE2/TEK — positive correlations)
and antiangiogenic (such as VASH2, C3, AMOT, and NF1 — inverse correlations), and their expression
was evaluated by gene expression microarray analysis. This study, however, was limited by small
sample size (18 patients with WHO grade IV gliomas). The identified correlation could help establish
a molecular basis for PS and CBV imaging biomarkers. However, as stated by authors, this study
had a very low number of patients and a lack of clearly defined pathways for angiogenesis. The
following study of Jain et al. [19], focused on data of 57 patients, associated with dynamic susceptibility
contrast-enhanced T2-weighted MRI perfusion and gene expression data available from TCGA. This
study pointed out that molecular markers underlying the Verhaak molecular GBM classification [14]
could be used in combination with hemodynamic imaging biomarkers to predict patient overall survival.
Another result of this study was the association between rCBVmax and patient survival rate. Using this
information, Rao et al. [20] examined the molecular correlates of rCBVmax via differential expression
analysis. Median rCBVmax across the entire dataset of 50 patients was used to divide the population
into two groups. The differential expression analysis on the mRNA, protein, and miRNA had identified
326 genes, 76 miRNAs, and eight proteins that were differentially expressed between these two
phenotype classes. Involved miRNA (miR-29b-3p, miR495–3p, miR30c/30d, miR-26a-5p, miR296-5p,
miR128-3p, miR144-3p, and miR214-3p) and genes (PTEN, COL15A1, SPARC, ANPEP, CBFB, STRN,
and TMED10) unveiled several networks of tumorogenesis interest, such as tight junction signaling and
p53 signaling. Moreover, an integrated analysis revealed that the indicated miRNA/mRNA was part of
a network in which miRNA directly targeted mRNAs. The results of this study indicated rCBVmax as a
useful prognostic imaging biomarker. However, there were several limitations to address, such as data
acquired with varying protocols from different MRI systems and the lower sample that makes essential
a validation study. Molecular background of cerebral blood volume (CBV) and vessel size (VS) of
capillaries in GBM was instead studied by Heiland et al. [21] on 21 patients from a private collection (484
samples from the GBM cohort were used as validation cohort). For this purpose, transcriptional data
was analyzed by weighted gene co-expression network analysis (WGCNA). Ten modules were highly
correlated to CBV and VS. ARAF/TRAF was identified as hub-genes of the highest CBV correlating
module. One module was exclusively associated with CBV, showing enrichments in the epithelial
growth factor (EGF). Moreover, patients with increased CBV and VS mainly showed a mesenchymal
gene expression. Also, in this case, the main limitation was the small number of cases in the discovery
set. Moreover, replication of the analyses on the TCGA data corroborated the results. Verhaak
gene expression classification was also used by Gutman et al. [22], but, in this case, using 75 cases,
associations were found with contrast-enhanced tumor characteristics. Up-regulation of oncogene
MYC was also identified, in a later study on 99 patients of the same group [23], as the upstream
regulator of female GBM cell death phenotypes. Instead, TP53 played a different role in male-female,
it was significantly up-regulated in the high cell death of male patients, and down-regulated in
female patients. The novelty of this study was the identification of sex-specific molecular mechanisms
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for cell death in patients with GBM. A clustering analysis, executed on 92 cases by Rao et al. [24],
revealed that a combination of three features (volume-class, hemorrhage, and T1/FLAIR-envelope
ratio) significantly stratified survival in two phenotypes. In more detail, a low value for any of these
three features showed favorable survival. Moreover, differential expression analysis suggested that
some immune-associated and metabolism-associated pathways affected the transition between the
two phenotypes. Integrating molecular data suggested the roles of several genes/miRNA regulating
proliferation (PGC1alpha/miR-199a, miR-125, and miR-129) and invasion (PAR1, HOXC6 / miR-499,
miR-146b). The authors of this study suggested that combinatorial radiophenotype could be used as a
screening tool for assessing response to drugs that target invasion features and glioma cell proliferation.
A pathway recognition algorithm using data integration on genomic models (PARADIGM) [25]
was used by Itakura et al. [26] to integrate gene expression and copy number variation data of 144
patients in order to associate these features with three different image clusters. Up-regulation of
the c-Kit stem cell factor receptor pathway was found to be correlated with pre-multifocal cluster 1,
while down-regulation of 21 pathways, including c-Kit, VEGFR signaling, PDGFR-α signaling, FOXA
transcriptional networks, and angiopoietin (Ang)/Tie2, was found to be correlated with spherical cluster
2. Finally, the up-regulation of 31 pathways, including canonical WNT and PDGFR-β signaling, and
the down-regulation of many of the vascular pathways in cluster 2, such as VEGFR and Ang/Tie2, were
found to be correlated with the rim-enhancing cluster 3. In summary, the author proposed possibilities
for target identification and unique therapeutic strategies for each subtype discovered. Qian et al. [27]
used a multi-task longitudinal sparse regression method to show the associations between 119 genes
and 225 morphological features extracted from the longitudinal MRI of 38 patients (of them, 21 were
from TCGA/TCIA database and were used as validation set). The analysis indicated a significantly
higher expression level of IRF9 and XRCC1 in PsP (diagnosis for pseudoprogression) cases than those
for the true tumor progression (TTP) patients in both private and TCGA/TCIA data. The novelty of this
study was based on the introduction of a new longitudinal sparse regression model to construct the
relationship between imaging features and gene expressions. TCGA-TCIA validation cohort confirmed
the authors’ findings; however, the main limitation was the low sample size of the discovery cohort.
Liu et al. [28] used a gene set enrichment analysis (GSEA) to identify up-regulated gene sets and
pathways that were different between two PWI (Perfusion weighted)-based clusters. The cluster II,
which was defined by elevated PWI features, was characterized by enrichment of angiogenesis and
hypoxia pathways. The genes involved in both the hypoxia signaling and the angiogenesis pathways
consisted of angiogenin (ANG), VEGF-A, and transforming growth factor-beta 2 (TGFB2). The study
involved 48 patients from TCGA (69 patients from Stanford University Medical Center were used as
validation set) and provided the first approach leveraging PWI features as potential imaging biomarkers
to classify patients for personalized antiangiogenic treatment. However, several limitations were
present: a small number of patients with complete treatment information and “batch effects” between
the two cohorts due to variability in perfusion imaging technique and variability in antiangiogenic
treatments administered. Using 84 patients’ TCGA data as validation cohort (and Chinese Glioma
Genome Atlas—CGGA as training set), the same group [29] have performed a radiogenomic analysis
showing the ability of radiomic features to predict progression-free survival and their association with
the immune response, programmed cell death, cell proliferation, and vasculature development, as
reported by transcriptomic data. Liao et al. [30], using a machine learning approach on data from 46
patients, showed high or moderate correlations between differential expression of three patterns of
gene expression—also defined metagenes (TIMP1, ROS1, EREG) and image features. In particular,
EREG was found positively associated with dependence non-uniformity, difference average, contrast,
and cluster prominence. Inverse difference zone variance, large area emphasis, and root mean squared
were found to be negatively associated. ROS1 was found to be negatively associated with inverse
difference moment and, finally, TIMP1 was found to be positively associated with contrast and cluster
prominence and negatively associated with inverse difference, zone variance, and large area emphasis.
Overall findings indicated that association of genes or microRNAs with the imaging features (listed
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above) might enable researchers to screen for molecular cancer subtypes and biological mechanisms
(angiogenesis and cellular invasion) involved in tumor aggressiveness. However, for future analysis,
the larger patient sample size is needed to better assess the predictive model found and validate
experimentally the candidate genes/miRNAs. In concerns with FLAIR data, additional sequences and
imaging modalities can be combined for multi-modal analysis, which can provide comparison results
about different methods. Furthermore, for imaging feature selection, an advanced dimensionality
reduction method could improve dimensionality reduction and classification performances.

2.1.3. Relations between Imaging Features and Mutation Data

The aforementioned study of Gutman et al. [22] also showed that there were weak correlations
between imaging features and copy number variation, in particular, a weak association between
CDKN2A deletion and necrosis, amplification of EGFR, and an increased percentage of contrast
enhancement. Correlations between 11 MRI-derived volumetric features and mutation status have
been also studied by Gutman et al. [31] in a data set of 76 patients. Some significative mutations
were related to volumetric features: EGFR mutations displayed a significantly higher necrosis/contrast
enhancing ratio and a significantly lower contrast-enhancing/tumor bulk ratio. Furthermore, RB1
mutations tumors showed significantly smaller T2-FLAIR hyperintensity, and TP53 significantly
predicted necrosis and tumor volumes by contrast-enhancing. Additionally, NF1 mutation status was
significantly predicted by contrast-enhancing volume and tumor bulk volume, whereas PDGFR-α was
significantly predicted by T2-FLAIR hyperintensity/total tumor volume and tumor bulk/total tumor
volume ratios. These results could impact personalized medicine and propose imaging features as a
predictor of genetic variants useful as a noninvasive technique in clinical practice and the choice of the
treatment. The main limitation of the study, as in the other cases, was the unknown exact location
of the biopsy. Nicolasjilwan et al. [32], through multivariate Cox’s models, analyzed associations
between combined biomarkers (clinical data, VASARI imaging features, and genomic variations)
and overall survival. AUC (area under the curve) analysis of different combinations of biomarkers
led to the conclusion that the model, including all three types of data, was the best predictor for
survival. The features that were significantly associated with survival were the proportion of tumor
contrast enhancement on MRI and HRAS copy number variation. Jain et al. [18] tried to correlate
only KPS with four Verhaak molecular subclasses of GBM and survival, but no association was found.
In the same study, which included 45 patients, combining epidermal growth factor receptor (EGFR)
alteration (mutation or amplification) with a relative cerebral blood volume of the non-enhancing
region (rCBVNER), a significant association with OS (overall survival) was found, with worst survival
in the high-rCBVNER wild-type EGFR group. In summary, perfusion parameter rCBVNER provided
important prognostic information that could be complementary to clinical and genomic features, and
this association could help to refine the prognostic models in patients with GBM. The prognostic
value of these findings, however, limited by some not well-represented features and by the limited
population used.

2.1.4. Relations between Imaging Features and Proteomic Data

To search for a relationship between tumor MRI features and proteomics data, Lehrer et al. [33]
conducted a “radio-proteomic” analysis of LGG on 57 patients. The combination of imaging and
protein abundance data showed VASARI imaging features significantly associated with several changes
in protein level. The strongest associations found were: T1/FLAIR ratio with down-regulation of
AMPK and acute myeloid leukemia signaling; MRI necrosis with up-regulation of PI3K/AKT/mTOR
signaling and apoptosis, although correlated with down-regulation of AMPK and protein kinase A
signaling; edema with increased NGF signaling and G1/S checkpoint regulation; the presence of cysts
with decreased PI3K/AKT and phospholipase C signaling; localization of tumor to the parietal lobe with
up-regulated p53 signaling activity and with down-regulated IL-8 signaling. The authors hypothesized
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that imaging and protein abundance data might reveal imaging biomarkers tying radiological features
to the proteomics of LGG.

2.2. Breast Cancer (BRCA)

The majority of radiogenomic literature on breast cancer [34] relies almost exclusively on
DCE-MRI (dynamic contrast-enhanced MRI) imaging features and, in some cases, on positron emission
tomography/magnetic resonance (PET/MR) imaging [35,36]. Ten TCGA-TCIA-based studies were
included in our review, and most of them aimed to capture associations between imaging features
and breast cancer intrinsic molecular subtypes. The more detailed relations by the original articles are
graphically represented in Figure 2.

Int. J. Mol. Sci. 2019, 20, 6033 8 of 24 

 

The majority of radiogenomic literature on breast cancer [34] relies almost exclusively on DCE-
MRI (dynamic contrast-enhanced MRI) imaging features and, in some cases, on positron emission 
tomography/magnetic resonance (PET/MR) imaging [35,36]. Ten TCGA-TCIA-based studies were 
included in our review, and most of them aimed to capture associations between imaging features 
and breast cancer intrinsic molecular subtypes. The more detailed relations by the original articles 
are graphically represented in Figure 2. 

 

Figure 2. Radiogenomic associations in TCGA-TCIA BRCA (Breast Cancer). Molecular omic features 
are represented on the top of the image, while imaging features are represented on the bottom. The 
arcs represent relations, and (+) indicates a positive relation. 

2.2.1. Relations between Imaging Features and Cancer Subtypes 
The first study [37] investigated relations between the intrinsic subtypes and semi-automatically 

extracted MRI features in 48 patients from four different institutions. Only one relation was identified 
between the imaging feature F1, linked to tumor enhancement dynamics, and the luminal B subtype. 
A common limitation characterized this study: the limited sample size representative for each 
subtype, i.e., only eight patients in the luminal B subtype. However, the ability to identify breast 
cancer molecular subtype without an invasive genetic analysis has prominent clinical benefits. Wu et 
al. [38], using 84 patients from private institution and 126 patients from TCGA as a validation test, 

Figure 2. Radiogenomic associations in TCGA-TCIA BRCA (Breast Cancer). Molecular omic features
are represented on the top of the image, while imaging features are represented on the bottom. The
arcs represent relations, and (+) indicates a positive relation.



Int. J. Mol. Sci. 2019, 20, 6033 9 of 22

2.2.1. Relations between Imaging Features and Cancer Subtypes

The first study [37] investigated relations between the intrinsic subtypes and semi-automatically
extracted MRI features in 48 patients from four different institutions. Only one relation was identified
between the imaging feature F1, linked to tumor enhancement dynamics, and the luminal B subtype.
A common limitation characterized this study: the limited sample size representative for each subtype,
i.e., only eight patients in the luminal B subtype. However, the ability to identify breast cancer
molecular subtype without an invasive genetic analysis has prominent clinical benefits. Wu et al. [38],
using 84 patients from private institution and 126 patients from TCGA as a validation test, extracted 35
DCE-MRI quantitative image features (including morphology, texture, and volumetric features) and
built sparse logistic regression models to identify three intrinsic subtypes (luminal A, luminal B, and
basal). Six features enabled distinction across intrinsic subtypes. In particular, surface area, functional
tumor volume, and absolute volume of BPE (breast parenchymal enhancement) distinguished luminal
A and non-luminal A patients, whereas GLCM (gray-level-co-occurrence matrix) uniformity of early
enhancement map and GLCM uniformity of SER (signal enhancement ratio) map distinguished luminal
B and non-luminal B patients. Function tumor volume and tumor surrounding BPE fraction were able
to distinguish basal-like and non-basal-like patients. The ability to accurately identify breast cancer
molecular subtypes has important therapeutic implications, but the results of this study needed to be
further validated in larger prospective cohorts. Prediction analysis of the molecular classification of
breast cancer was instead performed by Li et al. [39] on a dataset of 91 patients. The Li et al. [40] group
also investigated the relationship between MRI features and multigene assays of MammaPrint [41],
Oncotype DX [42], and PAM50 [43]. The study showed significant associations between radiomics
features, such as tumor size and enhancement texture (indicators of tumor heterogeneity), and
multigene assay recurrence scores. New breast cancer imaging subtypes were instead identified by
Wu et al. [44] through unsupervised consensus clustering of quantitative image phenotypes of the
tumor and background parenchymas. The three distinct imaging subtypes identified (homogeneous
intratumoral enhancing, minimal parenchymal enhancing, and prominent parenchymal enhancing)
were subsequently related to the expression of 692 genes through a gene expression-based classifier.

2.2.2. Relations between Imaging Features and Gene Expression Data

Unsupervised hierarchical cluster analysis was used by Kim et al. [45] to group 70 patients
in two major subgroups based on different microarray gene expressions. According to the breast
imaging reporting and data system (BI-RADS) MRI lexicons of mass [46], a data system to standardize
disease risk stratification criteria for non-radiologist, internal enhancement was found significantly
different between two groups. In particular, heterogeneous enhancement was found most frequently
in group 1, while rim enhancement was found dominantly in group 2. Moreover, the authors found
1303 genes significantly associated with each group. In particular, group 1 showed a significantly
higher expression of AR and ESR1. The study had some limitations, such as small sample size and
unavailable information on the long-term outcome to relate prognosis and MRI features or specific
genes enriched in each group. Using data from 87 patients, Fan et al. [47] identified a link between
prognostic imaging features (skewness, correlation, and maximum probability in S-0, and kurtosis,
skewness, median value, and maximum probability) from DCE-MRI data and gene expression modules.
Wu et al. [48], using data of the 126 samples with dynamic contrast-enhanced MR imaging, found an
association of heterogeneous enhancement patterns of tumor-adjacent parenchyma and the tumor
necrosis signaling pathway with tumor gene expression data. In particular, some of the involved
genes were IL6, SERPINE1, and DDIT4. These results confirmed the enhancement pattern of breast
parenchyma as a promising imaging marker for the risk of developing breast cancer. Moreover, the
importance of the enhancement pattern study was also due to its role in breast cancer treatment
response, local recurrence, and survival.
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2.2.3. Relations between Imaging Features and Multiple Molecular ‘Omic Features

Guo et al. [49] used radiogenomic features to predict clinical outcomes of the same 91 patients
used by Li et al. with a study design based on DCE-MRI, clinical, and genomic (copy number, gene
expression, and DNA methylation) data. All tumor size features were found significantly positively
associated with tumor stage, while irregularity feature was found to be significantly positively related to
tumor stage. One tumor margin feature (variance of radial gradient histogram) and two enhancement
texture features (inverse difference moment and sum average) were also predictive of tumor stage.
They found PR (Progesteron Receptor) status in association with the angular second moment—energy
enhancement texture. Interestingly, some clinical-pathological characteristics were mainly associated
with radiomic features (tumor stage), and others (such as copy number alteration of CDK4 and
PTEN2 and gene expression of BCL2 for ER —Estrogen receptor) performed better than radiomic
features in predicting hormone receptor status (ER/PR). Another interesting result of this study was
the non-improvement of the prediction of clinical outcomes performance by combining genomics
and radiomic features. Despite this study to date the largest study that combines multiple types
of genomic data with the radiomic one in predicting breast cancer prognosis, the authors stated as
major radiogenomic limitation the small sample size of 91 cancer cases with 38 radiomic features and
144 genomic features. On the same dataset of 91 patients, Zhu et al. [50] found several quantitative
MRI features (such as tumor size, shape, margin, and blood flow kinetics) associated with different
molecular profiles, such as DNA mutation, miRNA expression, protein expression, pathway gene
expression, and copy number variation. In particular, a total of 1103 statistically significant pathways
and radiomic phenotypes relationships were reported. Statistically significant associations were also
found between miRNA expressions (mir-128-1, mir-18a, mir-19a, mir-17-92, mir10b) and two radiomic
features: tumor size and enhancement texture. Moreover, interesting associations between protein
levels (P-cadherin and JNK2)/radiomic phenotypes (effective diameter, surface area, and lesion volume
for P-cadherin and tumor size and margin sharpness for JNK2) and somatic gene mutations/radiomic
phenotypes were also found.

2.3. Clear Cell Renal Cell Carcinoma (KIRC)

Renal cell cancer is the most frequent kidney cancer disease, classified into clear cell renal cell
carcinoma (ccRCC) and papillary renal cell carcinoma (pRCC), with corresponding datasets available
in TCGA/TCIA. ccRCC is the most common subtype of renal cell carcinoma (RCC), and it is distinctly
caused by a somatic mutation in the Von Hippel-Lindau (VHL) tumor suppressor gene, even if
several other genes have been associated with the advanced form of the disease using whole-genome
sequencing. Only four studies based on TCGA-TCIA data were included in our review, and two of
these could not be described as real radiogenomics study (for a complete review on radiogenomics in
RCC, see Alessandrino et al. [51]). The first study [52], conducted on MRI and computed tomography
(CT) data of 103 patients, investigated associations between imaging features and the mutational
status of ccRCC. In detail, mutations in two distinct genes were associated with radiomic features:
in the BAP1 gene, associated with ill-defined tumor margins and with the presence of calcification,
and in the MUC4 gene, associated with exophytic growth. BAP1 mutation status was also predicted
by Ghosh et al. [53], who developed an imaging-genomic pipeline able to obtain 3D intra-tumor
heterogeneity features (textural, volumetric, and ratio features) from contrast-enhanced CT images
and associated them with gene mutation status. Seventy-eight patients with diagnostic pretreatment
CT scan from TCIA were used as a dataset, but, since the pipeline was able to detect a single mutation
status, the study was not classifiable as radiogenomic. Moreover, there was an important limitation:
none of the associations were significant after adjusting for multiple testing. The authors explained this
result due to the small number of patients available for each gene mutation. Also, Kocac and colleagues
reported a study based on one-gene prediction [54]. Their aim was to evaluate machine learning
(ML)-based high-dimensional quantitative CT texture analysis in predicting the mutation status of the
gene Polybromo 1 (PBRM1). Using 10 selected features, the artificial neural network (ANN) algorithm
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accurately classified 88.2% (142 of 161 patients used as dataset - AUC value, 0.987). Using five selected
features, the random forest (RF) algorithm correctly classified 95% (153 of 161 patients—AUC value,
0.987). Gene expression profiling was another way used to investigate radiogenomic associations in
ccRCC. In particular, Bowen et al. [55], analyzing 177 patient data, showed associations between CT
imaging features and ccRCC subtypes (m1–m4) defined by different mRNA expression profiles [56].
m1 tumors (defined by genes related to chromatin remodeling processes and a higher frequency
of PBRM1 gene mutations) were found positively correlated with a well-defined margin. On the
other hand, m3 tumors (defined by frequently deletion of CDKN2A and mutations in PTEN) were
found negatively correlated with CT features that are considered indicators of the infiltrative/invasive
phenotype (well-defined margin, renal vein invasion, and urinary collecting system invasion). Also, in
this study, there were several limitations: image data sets were extremely heterogeneous (different
scanner modalities, manufacturers, and acquisition protocols were used), and, in most cases, the
images were not acquired as part of a controlled research study or clinical trial. Moreover, several
tumor features were more often represented in certain subgroups.

2.4. Other Tumors

Among radiogenomics studies using TCGA/TCIA data, two papers did not fit into any three tumors
described above. One of these reported high-grade serous ovarian cancer. In this work, Vargas et al. [57],
using 92 patients, found an association of CT imaging features with both time-to-disease progression
(TTP) and the transcriptomic profile defined CLOVAR (classification of ovarian cancer), which included
four subtypes: differentiated, immunoreactive, mesenchymal, and proliferative [58]. Two CT features,
presence of peritoneal disease in the pouch of Douglas and higher number peritoneal disease sites,
were found to be associated with mesenchymal subtype. The second paper discussed the study of the
chromosomal instability (CIN) of gastric cancer. About half of all gastric cancers are CIN subtypes
characterized by the high rate of gain or loss of whole chromosomes. In this work, Lai et al. [59],
using 40 patients, investigated the role of computed tomography (CT) imaging features in predicting
the CIN status of gastric cancer. From the training set, two CT imaging features enabled prediction
of contrast-induced nephropathy (CIN) status of gastric cancer: smaller tumor diameter and acute
tumor transition angle. The CIN status of tumors could be detected by cytogenetic techniques, such as
comparative genomic hybridization or single nucleotide polymorphism array-based methods. These
techniques might not provide information for decision-making in cancer treatment. Moreover, the
tumor sample is not always available, and then the clinical impact of using imaging data for an earlier
and more precise diagnosis of CIN subtype might provide complementary information in the absence
of genomic profiles.

3. Discussion

Overall papers described here, carried out a radiogenomics study based on the evaluation of
possible associations or correlations between imaging and genomic features that could reflect a disease
phenotype-genotype relationship (Table 2 summarizes the most important relations) for more precise
diagnosis, classification of intra-tumor heterogeneity, and prediction of clinical outcomes. So far,
glioblastoma and breast cancer are the most represented tumor in radiogenomics works based on
TCGA-TCIA (Table 1). From the radiomics point of view, imaging biomarker candidates need to
own some features like independence and reproducibility to be a robust biomarker. Indeed, radiomic
features are often influenced by relevant parameters, among which the most important is image
pre-processing and data acquisition. In this scenario, operations, such as reproducibility and initiatives,
that promote technical standardization of patient’s scanned images, are becoming fundamental to
provide guidelines and standardized procedures. From the selected literature, it seems clear that there
are several common limitations in the selected radiogenomic studies. The most frequent are:
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1. lack of image-sample registration (gene expression profiles cannot be matched to a specific
location on MRI),

2. manually annotated ROIs that could introduce potential interobserver variability,
3. unknown location of biopsy (given tumor heterogeneity, tissue origin is needed to obtain more

accurate samples),
4. data acquired with varying protocols from different MRI systems. Image data can be extremely

heterogeneous due to different scanner modalities, manufacturers, and acquisition protocols,
5. in most cases, data were not acquired as part of a research protocol or clinical trial.

Moreover, the identification of radiogenomic biomarkers requires a large amount of different
data, especially with the recent adoption of machine learning and deep learning techniques in the
data analysis field. Indeed, published radiogenomic papers, summarized in several radiogenomic
reviews [3,60,61], are often based on a limited sample size, especially when the study is performed on
a private collection. In addition, a common scenario consists of the availability of imaging data to be
associated with a large amount of genomic data. This creates a problem that is often addressed through
the creation of gene modules, even though this might weaken the potential of outcome predictions.
Another limitation arising from radiogenomic data is that the number of imaging or molecular ‘omics
features can be significantly larger than the number of available patients for the study. This issue,
defined as “curse of dimensionality”, leads to non-generalizable results and overfitting. To reduce this,
advanced algorithms able to order features by their significance for a given outcome are often crucial.
Moreover, the genomic analyses are usually performed on a sample that hardly reflects the tumor
heterogeneity, which is well represented by imaging data. This can create an inconsistency between
the two types of data. In addition, the radiogenomic relations may be also dependent on the patient,
clinical, and environmental data, which are not always available. Most of these issues and limitations
can be overcome through interdisciplinary collaboration, standardization of data and methods, use
of standard data structures [62], and the availability of public multidimensional datasets. Indeed,
since a large amount of data cannot be found within a single research group or institution, currently,
retrospective datasets assembled from different institutions have become a necessity. In this scenario, a
leading role is played by TCGA and TCIA, which contains molecular omic data of 67 different tumor
primary sites and, in some cases, corresponding public imaging datasets available through TCIA
archive. However, in most cases, available data on TCIA are only raw images and metadata, while,
only for some projects, also extracted features are available in the “Analysis results directory” section
of the TCIA website. This creates a discrepancy compared with ‘omic data of TCGA, where most of the
projects contain raw data and several processed data. This issue added to the well-known of inter-
and intra-institutional data heterogeneity is the main reason for the small patient population found
in several studies, upon inclusion criteria of radiogenomics workflow. In this scenario, a direct link
between TCGA and TCIA data type availability, that allows knowing in advance if a radiogenomics
study is feasible using available data, becomes essential. Even if there is a need of advanced tools to
better link imaging and molecular omic data, the combination of TCGA-TCIA data is a unique and
extensive publicly available collection of cancer data, providing researchers with a great opportunity
to increase tumor understanding and to better set up a study using available data as validation set of
a hypothesis.
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Table 2. Imaging—molecular omic feature associations. (–) indicates a negative relation, (+) a positive relation, (m) mutation of the corresponding gene, (l) a low value
of the corresponding feature, and (h) a high value.

Paper Imaging Features Molecular Omic Features TCGA/TCIA Number of
Patients Internal Cohort/ n◦ Patients Statistical Analysis

Glioblastoma Multiforme (GBM) and Low Grade Glioma (LGG)

[10] FLAIR signal volume POSTN (+), miR-219 (–) 78 (39 of which as
validation set) No Comparative marker selection (CMS)

[12] Lesion Volume (+ age and KPS) P53 activation, MGMT methylation 78 (+ 64 from TCGA and
Rembrandt) No Cox proportional hazards likelihood ratio

[18] rCBVner (h) Wild-type EGFR 45 No Analysis of variance

[19] PS, CBV TNFRSF1A, HIF1A, KDR, TIE1, TIE2/TEK
(+), VASH2, C3, AMOT, and NF1 (–) 18 No Pearson correlation coefficient

[20] rCBVmax

miR-29b-3p, miR495-3p, miR30c/30d,
miR-26a-5p, miR296-5p, miR128-3p,

miR144-3p and miR214-3p, PTEN, COL15A1,
SPARC, ANPEP, CBFB, STRN, TMED10

50 No Two-sided t-test

[21] CBV EGF pathway (ARAF/TRAF) 484 (validation set) Yes/ 21 (discovery cohort) Cox-regression tests
VS HIF1A, BNIP3L

[13] Blurry edge necrotic portion GAP43 (–), WWTR1 (–) 426 No Amaretto modules

[15] Deep white matter tracts, ependymal invasion myc (+) 92 No Comparative marker selection (CMS)

[23] Volumes of necrosis myc (+ in female), TP53 (– in male) 99 Yes/ 369 (validation set) Comparative marker selection (CMS)

[24] Volume-class, hemorrhage,
T1/FLAIR-envelope ratio

PGC1alpha, PAR1, HOXC6, miR-199a,
miR-125 and miR-129, miR-499, miR-146b

92 (48 of which as
validation set) No Comparative marker selection (CMS)

[31]

Necrosis/contrast enhancing ratio (h),
Contrast-enhancing/tumor bulk ratio (l) EGFR (m)

76 No Two-sided student’s t test
T2-FLAIR hyperintensity RB1 (m)

Necrosis/contrast enhancing volume TP53 (m)

Contrast enhancing volume, Tumor bulk
volume NF1 (m)

T2-FLAIR hyperintensity, Total tumor volume,
Tumor bulk/total tumor volume ratio PDGFRA (m)

[26]
Pre-multifocal cluster c-Kit (+)

144 (validation set) Yes/121 (discovery cohort) SAM (FDR < 15% for imaging features and
FDR < 5% for signaling pathways)Spherical cluster VEGFR (–), PDGFR (–), FOXA (–), Ang/Tie2

(–)

Rim-enhancing cluster WNT, PDGFR-β, VEGFR, Ang/Tie2

[27] PsP IRF9 (+), XRCC1 (+) 21 (validation set) Yes/17 (discovery cohort) Multi-task longitudinal sparse regression
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Table 2. Cont.

Paper Imaging Features Molecular Omic Features TCGA/TCIA Number of
Patients Internal Cohort/ n◦ Patients Statistical Analysis

Glioblastoma Multiforme (GBM) and Low Grade Glioma (LGG)

[28] PWI features (h) ANG, VEGF-A, TGFB2 48 Yes/79 (validation set) Random forest model

[16] ASD IDH-1p/19q (m) 110

[33]
T1/FLAIR ratio AMPK (–)

57 No
Agglomerative unsupervised hierarchical

clustering (FDR < 0.25)Necrosis PI3K/AKT/mTOR (+), AMPK (–), PKA (–)

Edema NGF (+), GS1 signalling (+)

[30]

Dependence non-uniformity, Difference
average, Contrast and cluster prominence EREG (+)

46 No Pearson correlation analysisInverse difference zone variance, Large area
emphasis, Root mean squared EREG (–)

Inverse difference moment ROS1 (–)

Contrast, Cluster prominence TIMP1 (+)

Inverse difference moment, Zone variance,
Large area emphasis TIMP1 (–)

Breast Cancer (BRCA)

[37] Tumor enhancement dynamics Luminal B subtype 48 No Multivariate logistic regression models
(associations FDR < 0.0022)

[38]

Surface area, Functional tumor volume,
Absolute volume of BPE Luminal A subtype

126 (validation set) Yes/ 84 (discovery cohort) Multivariate logistic regression models
(associations FDR < 0.25)GLCM uniformity of SER map, GLCM

uniformity of early enhancement map Luminal B subtype

Function tumor volume, Tumor surrounding
BPE Basal-Like

[49] Angular second moment, Energy
enhancement texture PR status 91 No Logistic regression and t-test

(associations FDR < 0.1)

[50]
Tumor size, Enhancement texture MiR-128-1, MiR-18a, miR-19a, miR-17-92,

miR-10b
91 No

Regression analysis and clustering analysis
(FDR ≤ 0.05)Effective diameter, Surface area, Lesion

volume P-cadherin

Tumor size, Margin sharpness JNK2

[45] Heterogeneus enhancement AR (+), ESR1 (+) 70 No
Unsupervised hierarchical cluster and

t-test
(no multiple hypothesis testing)

[48] Heterogeneus enhancement IL6, SERPINE1, DDIT4 126
No/ 879 (Independent cohort) +

159 (Independent cohort, GEO data
set)

Univariate analysis
(associations FDR < 0.1)
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Table 2. Cont.

Clear Cell Renal Cell Carcinoma (ccRCC)

[52]
Ill-defined

tumor margins BAP1
103 No

Pearson’s χ2 test and the Mann–Whitney
U test (no significant associations after

adjusting for multiple hypothesis testing)Exophytic growth MUC4

[55] Well-defined margin PBRM1 (m) (+)
177 No Multivariate logistic regression analysis

Well-defined margin, Renal vein invasion,
Urinary collecting system invasion CDKN2A (m), PTEN (m)

Others

[57]
Presence of peritoneal disease in the pouch of
Douglas, Higher number peritoneal disease

sites

The mesenchymal subtype of high-grade
serous ovarian cancer 92 No Multivariate logistic regression analysis

(associations FDR < 0.1)

[59] Smaller tumor diameter and acute tumor
transition angle Contrast-induced nephropathy (CIN) status 40 Not specified/18 validation cohort Multivariate logistic regression analysis

(no multiple hypothesis testing)

FLAIR: Fluid Attenuated Inversion Recovery, POSTN: Periostin, MGMT: O6-methylguanine-DNA methyltransferase, TCGA: The Cancer Genome Atlas, rCBVner: Relative Cerebral Blood
Volume of NER, EGFR: Epidermal growth factor receptor, PS: Permeability Surface, CBV, Cerebral Blood Volume, TNFRSF1A: TNF receptor superfamily member 1A, HIF1A: Hypoxia
Inducible Factor 1 Subunit Alpha, KDR: Kinase Insert Domain Receptor, TIE1: Tyrosine Kinase With Immunoglobulin Like And EGF Like Domains 1, TEK: TEK Receptor Tyrosine Kinase,
VASH2: Vasohibin 2, C3: Complement 3, AMOT: Angiomotin, NF1: Neurofibromin 1, TEN: Phosphatase and tensin homolog, COL15A1: Collagen alpha-1(XV) chain, SPARC: Secreted
protein acidic and rich in cysteine, ANPEP: Alanyl aminopeptidase, CBFB: Core-binding factor subunit beta, STRN: Striatin, TMED10: Transmembrane P24 trafficking protein 10, EGF:
Epithelial growth factor, VS: Vessel Size, BCL2: Interacting Protein 3 Like, GAP43: Growth associated protein 43, WWTR1: WW domain-containing transcription regulator 1, TP53: Tumor
protein P53, PGC1alpha: Peroxisome proliferator-activated receptor gamma coactivator 1-alpha, PAR1: Prader Willi/Angelman region RNA 1,HOXC6: Homeobox C6, RB1: Retinoblastoma
protein, PDGFRA: Platelet-derived growth factor receptor A, VEGFR: Vascular endothelial growth factor receptor, Ang: Angiopoietin, Tie2: Tyrosine-protein kinase receptor Tie-2,
WNT: Wnt family member 1, FOXA: Forkhead Box A1, IRF9: Interferon regulatory factor 9, XRCC1: X-ray cross-complementing, PsP: Pseudoprogression, PWI: Perfusion weighted
imaging, ANG: Angiogenin, TGFB2: Transforming growth factor-beta 2, ASD: Angular standard deviation, AMKP: AMP-activated protein kinase, PI3k: Phosphoinositide 3-kinase, AKT:
Serine/threonine kinase 1, mTOR: Mechanistic target of rapamycin kinase, NGF: Nerve growth factor; IDH: Isocitrate Dehydrogenase (NADP(+)) 1, ROS1: ROS proto-oncogene 1, EREG:
Epiregulin, TIMP1: TIMP metallopeptidase inhibitor 1, AR: Androgen receptor, ESR1: Estrogen Receptor 1, IL6: Interleukin 6, DDIT4: DNA damage-inducible transcript 4, BAP1: BRCA1
associated protein 1, MUC4: Mucin 4 Cell surface associated, PBRM: Polybromo-1, CDKN2A: Cyclin Dependent Kinase Inhibitor 2A, PTEN: Phosphatase and tensin homolog.
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4. Methods

4.1. Search Strategy and Articles Selection

We systematically searched the biomedical literature through PubMed and the ISI Web of
Knowledge for papers published until 30-10-2019 on the radiogenomics field. The search was based on
the following words: “The Cancer Genome Atlas and radiogenomics”, “The Cancer Imaging Archive
and radiogenomics”, “TCGA TCIA radiogenomics”. In addition, we checked existent publications and
reviews on radiogenomics on the TCGA-TCIA website section for other available studies. The articles
were classified according to the tumor site, and, for each of them, we described the size of the used
dataset and the main results of the radiogenomic aspect of the study. As mentioned, many studies
referred to “radiogenomic”, often were not conceived into an overall omic framework, which is a proper
radiogenomics. Unequivocal radiogenomic studies included in this review were manually-assessed
by two people in order to select publications that fulfill the following inclusion criteria: (1) full-text
available in English; (2) the article comprised statistically assessed associations between imaging
features and molecular omic data; (3) both TCGA and TCIA data were used for each study. These
papers are summarized in Table S1, according to the tumor type, and their main findings are discussed
in the corresponding result subsection.

4.2. Graphic Representation of Feature Associations

All figures were built through the Circlize R package [63]. The images represented the association
between imaging features (radiomic and/or radiological) and molecular ‘omic signature, which could
be gene expressions, mutations, clusters, or cancer subtypes. Only the more detailed associations,
reported in the original articles, are graphically represented. The associations not represented in the
images are shown in Table 2.

5. Conclusions

TCGA-TCIA represents the largest data repository that offers clinical, imaging, and molecular
omic data for the same set of patients, making them an extremely important resource to perform
radiogenomic analysis. The selected literature showed that these data were used as testing data
and/or validation set [14,25,39] (in some cases, the validation data is a subset of the testing set) or
also as a set to test a pipeline [42]. Of the total number of 35 selected articles, 21 analyzed GBM data,
10 analyzed BRCA data, and two analyzed ccRCC data. Radiogenomic frameworks of the selected
studies were based on hierarchical clustering or multiple hypotheses testing (explorative approach),
where a lot of imaging features were tested against several molecular omic features. Other studies
described here, on the contrary, were hypothesis-driven-based. In this case, a specific relationship
was tested. Our systematic review highlighted that, to date, the main advances in radiogenomics
cover mainly brain tumors, such as glioblastoma and breast cancer. Major imaging biomarkers that
emerged for brain tumors, especially due to more validated segmentation methods, allow better
discrimination of lesions with respect to the other oncological studies. Among the imaging techniques,
we found that functional diffusion-weighted imaging (DWI) magnetic resonance and positron emission
tomography (PET) statistical features of first and higher-order enabled better characterization of tumor
phenotypes. Collectively, the radiogenomics study described the sufferings of small size populations
and lack of standardization, especially for radiomic workflow (imaging acquisition instrumentation,
segmentation, feature extraction, and data analysis). Radiogenomic studies aimed to find imaging
biomarkers correlating to tumor phenotype and genotype of the disease. Based on the described
studies, we could conclude that great attention and precautions are needed for radiogenomics study
design. First of all, to evaluate the statistical significance of the imaging descriptors and genomic
signature, multiple hypothesis testing, such as the Benjamini-Hochberg method should always be taken
into account. Another crucial point is the validation of the predictive model on an external dataset with
appropriate sample size. In this concern, we found that public databases, such as TCGA-TCIA data,
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are an unprecedented resource of independent cohorts. Once a relationship between imaging features
and molecular omic signatures is established, a major challenge in radiogenomics remains a deep
insight into the biology underlying tumor phenotype. This is especially due to the lack of protocol
standardization technique across multicenter studies, for both omic data generation and processing,
making it difficult to replicate the experimental conditions and associations found in different studies.
Moreover, another limitation using TCGA/TCIA data as a discovery/validation cohort for radiogenomic
study is the lack of links between imaging and molecular ‘omics data. In recent years, many advances
in radiomics and genomics have been made. For instance, deep learning methods are leading to higher
accuracy of volume lesion segmentation and would have a profound impact on many applications to
pursue precision medicine in the near future. For TCGA-TCIA data, handling several tools, portal,
and data structures are emerging to facilitate radiogenomic studies and reduce the discrepancy of
processed available data between TCGA and TCIA [62]. Ideally, quantitative descriptors of medical
images might replace the ex vivo biopsy profile of the tumor. It is more likely that radiogenomics
would achieve the characterization of disease phenotype through a large number of features from
medical images correlating with molecular and clinical tumor characteristics. In this way, the clinical
potential application of radiogenomic might be non-invasive in vivo tumor characterization to extract
prognostic and predictive data, for more precise diagnosis and monitor patients’ treatment response.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/20/23/
6033/s1. Table S1. Radiogenomic studies with TCGA/TCIA data.
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Abbreviations

NIMH National Institute of Mental Health
NDA National Institute of Mental Health Data Archive
TCGA The Cancer Genome Atlas
TCIA The Cancer Imaging Archiv
GBM Glioblastoma multiforme
LGG Low-grade glioma
MRI Magnetic resonance imaging
mRNA Messenger ribonucleic acid
microRNA Micro ribonucleic acid
IPA Ingenuity pathway analysis
POSTN Periostin
KPS Karnofsky performance status
VAK Volume, Age, and KPS
MGMT O6-methylguanine-DNA-methyltransferase
EGFR Epidermal growth factor receptor
rCBVner Relative cerebral blood volume of non-enhancing region
OS Overall survival
PS Permeability surface
CBV Cerebral blood volume
VEGF Vascular endothelial growth factor
HIF1A Hypoxia-inducible factor 1-alpha
VASH2 Vasohibin-2
C3 Complement component 3
AMOT Angiomotin
NF1 Neurofibromin 1
WHO World health organization
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rCBV Relative cerebral blood volume
PTEN Phosphatase and tensin homolog
COL15A1 Collagen alpha-1(XV) chain
SPARC Secreted protein acidic and rich in cysteine
ANPEP Alanyl aminopeptidase
CBFB Core-binding factor subunit beta
STRN Striatin
TMED10 Transmembrane P24 trafficking protein 10
EGF Epithelial growth factor
ARAF A-Raf proto-oncogene
TRAF TNF receptor-associated factor 1
ROI Region of interest
GAP43 Growth associated protein 43
WWTR1 WW domain-containing transcription regulator 1
TP53 Tumor protein P53
PGC1alpha Peroxisome proliferator-activated receptor gamma coactivator 1-alpha
PAR1 Prader Willi/Angelman region RNA 1
HOXC6 Homeobox C6
RB1 Retinoblastoma protein
PDGFRA Platelet-derived growth factor receptor A
AUC Area under the curve
HRAS Harvey rat sarcoma viral oncogene homolog
PARADIGM Pathway recognition algorithm using data integration on genomic models
VEGFR Vascular endothelial growth factor receptor
Ang Angiopoietin
Tie2 Tyrosine-protein kinase receptor Tie-2
WNT Wnt family member 1
IRF9 Interferon regulatory factor 9
XRCC1 X-ray cross-complementing
PsP Pseudoprogression
TTP True tumor progression
GSEA Gene set enrichment analysis
PWI Perfusion weighted imaging
ANG Angiogenin
TGFB2 Transforming growth factor-beta 2
BEVR Bounding ellipsoid volume ratio
BEDR1 Bounding ellipsoid diameter ratio 1
BEDR2 Bounding ellipsoid diameter ratio 2
MF Margin fluctuation
ASD Angular standard deviation
AMKP AMP-activated protein kinase
PI3k Phosphoinositide 3-kinase
AKT Serine/threonine kinase 1
mTOR Mechanistic target of rapamycin kinase
NGF Nerve growth factor; Phosphatidylinositol-4,5-bisphosphate 3-kinase
AKT RAC-alpha serine/threonine-protein kinase
IL-8 Interleukin 8
CGGA Chinese glioma genome atlas
TIMP1 TIMP metallopeptidase inhibitor 1
ROS1 ROS proto-oncogene 1
EREG Epiregulin
DCE Dynamic contrast-enhanced
PET Positron emission tomography
BPE Breast parenchymal enhancement
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GLCM Gray-level-co-occurrence matrix
PR Progesterone receptor
CDK4 Cyclin-dependent kinase 4
BCL2 B-cell lymphoma 2
ER Estrogen receptor
BI-RADS Breast imaging reporting and data system
AR Androgen receptor
ESR1 Estrogen receptor 1
IL6- Interleukin 6
DDIT4 DNA damage-inducible transcript 4
ccRCC Clear cell renal cell carcinoma
pRCC Papillary renal cell carcinoma
RCC Renal cell carcinoma
VHL Von Hippel–Lindau
CT Computed tomography
BAP1 BRCA1 associated protein 1
MUC4 Mucin 4, Cell surface associated
ANN Artificial neural network
RF Random forest
PBRM Polybromo-1
CLOVAR Classification of ovarian cancer
CIN Contrast-induced nephropathy
CER Contrast-enhancing ratio
CEV Contrast-enhancing volume
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