
AP-1 = activating protein-1; bp = base pairs; CDDO = 2-cyano-3,12-dioxoolean-1,9,dien-28-oic acid; ERK = extracellular signal-regulated kinase;
Ets = erythroblastosis twenty-six; GR = glucocorticoid receptor; IκB = inhibitor of κB; IKK = inhibitor of κB kinase; IL = interleukin; JNK = c-Jun N-
terminal kinase; MAPK = mitogen-activated protein kinase; MAPKK = MAPK kinase; MAPKKK = MAPKK kinase; MMP = matrix metalloproteinase;
NF-κB = nuclear factor κB; NIK = NF-κB-inducing kinase; OA = osteoarthritis; PPAR-γ = peroxisome proliferator-activated receptor-γ; RA =
rheumatoid arthritis; Runx-2 = Runt domain factor-2; TNF-α = tumor necrosis factor-α.
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Introduction
The matrix metalloproteinase (MMP) family members are
the major enzymes that degrade the components of the
extracellular matrix [1,2]. At the time of writing this article,
20 members of this family have been identified [3]. All are
active at neutral pH, require Ca2+ for activity and contain a
central zinc atom as part of their structure. Most MMPs
are secreted into the extracellular space in a latent pro-
form, and require proteolytic cleavage for enzymatic activ-
ity. A few MMPs, however, are activated intracellularly by a
furin-like mechanism and therefore, these enzymes are
fully active when they reach the extracellular space [2].

Most cells in the body express MMPs, even though some
enzymes are often associated with a particular cell type.
For example, the principle substrate of MMP-2 (also
known as gelatinase A) and MMP-9 (also known as gelati-
nase B) is the type IV collagen in basement membrane
and thus, these enzymes are usually expressed by
endothelial cells, although other cells (e.g. stromal fibrob-
lasts, macrophages, tumor cells) also express them [1,4].

MMP-3 (also known as stromelysin) activates MMP-1
(also known as collagenase-1) and cleaves a broad range
of matrix proteins [5]; MMP-1, which is an interstitial colla-
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genase, and MMP-3 are among the most ubiquitously
expressed MMPs. In contrast, MMP-13 (also known as
collagenase-3) has a more restricted pattern of expression
within connective tissue, and is usually produced only by
cartilage and bone during development, and by chondro-
cytes in osteoarthritis (OA) [6–8].

Expression of MMPs is low in normal cells, and these low
levels allow for healthy connective tissue remodeling. In
pathologic conditions, however, the level of MMP expres-
sion increases considerably, resulting in aberrant connec-
tive tissue destruction. Excess MMP production is
associated with the pathology of many diseases, including
periodontitis, atherosclerosis, tumor invasion/metastasis
and arthritic disease [1,4,9]. In rheumatoid arthritis (RA)
and OA, connective tissue destruction is mediated primar-
ily by chondrocytes, by synovial fibroblasts and on occa-
sion, by osteoclasts [7,10–12].

The interstitial collagens (types I, II and III), are the princi-
ple targets of destruction, and the secreted collagenases
(MMP-1 and MMP-13) have the major role in this process.
These MMPs are induced in response to the cytokines
and growth factors usually found in arthritic joints. MMP-9
is also an inducible MMP, but its role in connective tissue
destruction in arthritis appears to be secondary, since it
contributes to the degradation of collagen only after the
chains of the triple helix have been cleaved by the intersti-
tial collagenases [2]. In contrast, MMP-2 and MMP-14
(membrane type 1-MMP), are constitutively expressed,
with minimal regulation, and they may have a relatively
minor role in the pathophysiology of arthritis. Thus, the col-
lagenases (MMP-1, MMP-8 [also known as neutrophil col-
lagenase] and MMP-13) have the unique ability to cleave
the triple helix of collagen, thereby allowing the chains to
unwind; the chains then become susceptible to further
degradation by other MMPs. Recently, MMP-8 (tradition-
ally termed neutrophil collagenase) has been found in
arthritic lesions, even in the absence of neutrophils, indi-
cating that chondrocytes, and perhaps synovial cells, can
produce this enzyme [13,14]. MMP-13 may have a partic-
ular role in cartilage degradation because it is expressed
by chondrocytes, and because it hydrolyzes type-II collagen
more efficiently than the other collagenases [15]. However,
MMP-1 is more abundant and it also degrades interstitial
collagens effectively [1,2]. We will, therefore, focus this dis-
cussion on the mechanisms controlling transcription of
MMP-1 and MMP-13 in arthritic disease, although the con-
cepts may be applicable to other members of this gene
family and to other pathologic conditions.

Signal transduction of transcription factor
activation
The etiologies of RA and OA are quite different, in that RA
is caused by immune dysfunction and chronic inflamma-
tion, while OA is the consequence of years of mechanical

stress on the articular cartilage. A common feature,
however, of these two diseases is the proteolytic degrada-
tion and ultimate destruction of articular cartilage, which
results in loss of joint function. In RA, inflammatory
cytokines such as IL-1 and tumor necrosis factor-α (TNF-
α) are produced by activated macrophages in the syn-
ovium. These cytokines stimulate connective tissue cells
such as synovial fibroblasts and articular chondrocytes to
produce MMP-1 and MMP-13 [15–18]. In OA, the
mechanical insult causes cytokine expression by articular
chondrocytes, with subsequent autocrine MMP expres-
sion [14]. Upon ligand binding, IL-1 and TNF-α receptors
each recruit a unique set of receptor-associated proteins
that transduce the stimulus into the cell. Beyond the par-
ticularities of their receptors, however, IL-1 and TNF-α
elicit a series of shared phosphorylation events within the
cells that facilitate transcriptional induction of MMPs.

One group of proteins that mediate some of these phos-
phorylation events is the mitogen-activated protein kinase
(MAPK) group [19]. The MAPK family of serine/threonine
kinases consists of the c-Jun N-terminal kinases (JNKs),
the extracellular signal-regulated kinases (ERKs) and the
p38 kinases. The JNKs and p38 kinases are activated in
response to inflammatory cytokines, osmotic stress and
apoptotic signals [20], while the ERKs respond to
cytokines, growth factors and phorbol esters [19,21]
(Fig. 1). These stimuli first activate a group of protein
kinases (MAPK kinase kinases [MAPKKKs]) that phospho-
rylate other kinases (MAPK kinases [MAPKKs]), which in
turn are responsible for phosphorylation and activation of
MAPK. Upon activation by MAPKKs, MAPKs translocate
to the nucleus to phosphorylate and activate various tran-
scription factors. Of particular relevance to MMP tran-
scription, JNKs and ERKs phosphorylate and activate the
activating protein-1 (AP-1) family member c-Jun [22,23],
which dimerizes with c-Fos to drive transcription of multi-
ple MMP genes. In addition to c-jun, the ERK pathway
regulates the activity of erythroblastosis twenty-six (Ets)
transcription factors [24,25], which cooperate with AP-1
proteins in multiple MMP promoters. To date, there are no
known targets of p38 that directly regulate MMP promot-
ers. However, p38 phosphorylates activating transcription
factor-2, which then drives both the c-jun promoter and
the ternary complex factor Elk-1, which activates the c-fos
promoter [20]. Thus, by promoting expression of AP-1
genes, p38 may indirectly contribute to MMP transcrip-
tion.

Another major cytokine-induced signaling pathway
involves translocation of nuclear factor-κB (NF-κB) family
members from the cytoplasm to the nucleus (Fig. 2). Upon
binding of IL-1 to its cognate receptor, transforming-
growth-factor-β-activated kinase becomes active, leading
to the activation of the NF-κB-inducing kinase (NIK) [26].
In turn, NIK is responsible for the phosphorylation and acti-



vation of the inhibitor of κB (IκB) kinases (IKKs), which
then phosphorylate IκB [27]. In resting cells, IκB binds to,
and sequesters, dimers of the NF-κB1/p50 and c-rel-
related factor A (RelA)/p65 NF-κB subunits in the cyto-
plasm. Upon phosphorylation, however, IκB becomes
ubiquitinated and is targeted for proteosome-mediated
degradation. Loss of IκB leaves the p50/p65 dimers free
to translocate to the nucleus and transactivate several
genes including those for some MMPs. Indeed, when NF-
κB is maintained in the cytoplasm by constitutive levels of
IκB, reduced expression of MMP-1, MMP-3 and MMP-13
is observed in cytokine-stimulated cells [7,28–30].

In their latent forms, some NF-κB family members function
as IκB proteins. NF-κB1 is a 105 kDa protein that has its
carboxyl terminus cleaved to yield the 50 kDa NF-κB
subunit (p50). NF-κB2 is a 100 kDa protein that is cleaved
similarly to yield the 52 kDa NF-κB subunit (p52) [27]. In
their latent states, both NF-κB1/p105 and NF-κB2/p100
can sequester p50 and p52 in the cytoplasm. Recent evi-
dence suggests that the NIK and IKK activation leads to
phosphorylation, ubiquitination and degradation of NF-κB1
and NF-κB2 [31–33]. This process results in the release of
p50 and p52, so that they can translocate to the nucleus.

Heissmeyer et al. reported, however, that IKK-dependent
degradation of NF-κB1 is independent of NF-κB1 process-
ing [32], so that changes in the total amount of p50 and
p52 may be controlled by a different mechanism. The func-
tional consequence of this alternative pathway is not com-
pletely understood, since liberation of p50 from p105 leads
to the association of p50 homodimers in the nucleus [34],
and p50 homodimers can repress NF-κB-dependent tran-
scription by p50/p65 heterodimers [35].

Transcriptional regulation by dimers of NF-κB containing
p50 and/or p52 appears to require an IκB-related protein,
Bcl-3. Following degradation of p105, Bcl-3 promotes
p50 homodimer formation by creating a stable p50/p50/
Bcl-3 trimeric complex [34]. Bcl-3 can then act as a coac-
tivator molecule for p50 and directly contribute to tran-
scriptional activation by p50 homodimers. Alternatively,
Bcl-3 can inhibit the binding of p50 homodimers to certain
promoter elements, and this frees these sites for transacti-
vation by p50/p65 heterodimers [36].

The MAPK and NF-κB pathways are coordinately acti-
vated by IL-1 and TNF-α, and are central pathways in RA
and OA pathogenesis. While these kinase cascades lead
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Figure 1

Activation of mitogen-activated protein kinase (MAPK; shown in yellow) pathways by IL-1. Stimulation by IL-1 activates the MAPK kinase kinases
(MAPKKKs; shown in blue), transforming-growth-factor-β-activated kinase-1 (TAK 1) and Raf, which then phosphorylate and activate several MAPK
kinases (MAPKKs; shown in green): MKK6, MKK4, MKK7, MEK. These MAPKKs in turn phosphorylate and activate the MAPKs, p38, c-Jun N-
terminal kinase (JNK) and extracellular signal-regulated kinase (ERK), which translocate to the nucleus. There, these MAPKs phosphorylate and
activate the transcription factors (activating transcription factor 2 [ATF2], c-Jun, Elk-1 and erythroblastosis twenty-six [Ets]-1; shown in red) that
contribute to matrix metalloproteinase (MMP) transcription. IL-1R, IL-1 receptor; IL-1RAcP, IL-1 receptor-associated protein; IRAK, IL-1 receptor
activated kinase; SRF, serum response factor; TAB, Tak-binding protein; TRAF, TNF receptor-associated factor.



to the transcription of an array of inflammatory genes, their
direct regulation of MMP transcription is just beginning to
be elucidated. In the remainder of this review, we address
how these pathway-specific signals lead to the recruit-
ment of a cohort of transcription factors that cooperate to
initiate MMP-1 and MMP-13 transcription.

Regulation of transcription
The promoters of MMP-1 and MMP-13 (and most other
MMPs) contain a TATA box, the core transcriptional unit,
at approximately –30 bp, and an AP-1 site at approxi-
mately –70 bp [37]. The AP-1 site (5′-TGAG/CTCA-3′)
binds dimers of the Fos and Jun families. Several addi-
tional AP-1 sites are present throughout the MMP promot-
ers, and may contribute to gene expression. One site
(5′-TTAATCA-3′) is found at –186 bp in the rabbit and
human MMP-1 promoters [38]. In contrast to the proximal
AP-1 site at –70 bp, this upstream site has only a modest
role in basal transcription, but it increases transcription in
response to phorbol esters [38]. A third AP-1 site has
been identified in the human MMP-1 promoter that coop-
erates with an adjacent Ets site. Thus, there may be dis-

tinct roles for various AP-1 elements, and these functions
may depend, at least in part, on the particular AP-1 family
members that bind to each site [38,39].

Although initial studies demonstrated the pivotal role of
the AP-1 site in MMP transcription in many cells, later
studies have clearly shown that it must cooperate with a
variety of cis-acting sequences found in the upstream
regions of the MMP promoters. For example, induction of
MMP-1 by IL-1 in rabbit fibroblasts requires interaction
between the AP-1 site at –77 bp and a NF-κB-like
element located upstream at –3030 bp [29,30]. Interest-
ingly, while both IL-1 and TNF-α activate NF-κB in primary
rabbit synovial fibroblasts, only IL-1 is capable of inducing
MMP-1 transcription [29]. This is due, in part, to the inabil-
ity of TNF to activate the ERK pathways in these cells,
both of which contribute to IL-1 induction. Recently,
Firestein and colleagues have demonstrated that the JNK
pathway, but not the p38 pathway is required for cytokine
induction of MMP-1 in human rheumatoid synovial fibrob-
lasts [40], and for MMP-13 induction in murine inflamma-
tory arthritis [11]. In contrast to synovial fibroblasts,
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Figure 2

Activation of the NF-κB pathway by IL-1. IL-1 binds to its receptor (IL-1R1) and receptor-associated protein (IL-1RAcP), causing conformational
changes in multiple receptor-bound proteins (MyD88, IRAK, TRAF6, TAB2; see Figure 1 for definition). This results in recruitment and activation of
transforming-growth-factor-κ-activated kinase-1 (TAK 1), which phosphorylates and activates NF-κB-inducing kinase (NIK). In turn, NIK activates
the inhibitor of κB kinase (IKK) complex, which is responsible for phosphorylation of inhibitor of κB (IκB) and NF-κB1 (a 105 kDa protein, p105).
Upon phosphorylation, IκB and p105 become polyubiquitinated (U), which targets these proteins for degradation by the proteosome. Degradation
of these cellular inhibitors allows translocation of NF-κB subunits to translocate to the nucleus and transactivate matrix metalloproteinase (MMP)
promoters. The IκB-like protein, Bcl-3, promotes dimerization of the 50 kDa NF-κB subunit (p50) and regulates the transcriptional activity of p50.



chondrocytes rely on the p38, JNK and NF-κB pathways
to activate MMP-13 [7]. A working model [7,29] that
explains these observations is that MAPKs, either directly
or indirectly, activate AP-1 family members, which cooper-
ate with NF-κB to activate MMP-1 and MMP-13 transcrip-
tion. Additional transcription factors, however, such as Ets
family members, may also be nuclear targets of MAPKs in
this complex transcriptional program.

The AP-1 site at –1602 bp is of interest because it cooper-
ates with an Ets site created by a single nucleotide polymor-
phism at –1607 bp. This single nucleotide polymorphism is
represented by the insertion of an extra guanine base (G),
which creates a core binding site for the Ets family of tran-
scription factors (5′-GGA-3′). At least one copy of this ‘2G
allele’ is present in about 75% of the human population,
where it has the potential to enhance MMP-1 transcription
in both normal fibroblasts and some tumor cells [41–43].
Thus, this Ets site may contribute substantially to MMP-1
gene expression, at least under certain conditions. Ets sites
have critical roles in MMP transcription and they often inter-
act with AP-1 sites. In addition, multiple Ets sites are
present in all the MMP promoters, except MMP-2. The
number of these sites and their location within a given pro-
moter vary among the MMP family members, and these vari-
ations influence the regulation of these genes [37].

The interaction of AP-1 with other transcription factors
may also regulate tissue-specific expression of MMPs. The
transcription factor Runt domain factor-2 (Runx-2)
appears to be expressed almost exclusively in developing
cartilage and bone [44–47], and these are precisely the
cells that normally express MMP-13. Among the MMPs, a
Runx-2 binding site is unique to the MMP-13 promoter,
and it cooperates with the AP-1 site to mediate MMP-13
transcription [48–50]. Important future studies will define
the role of MAPK in Runx-2 activation, and how NF-κB
interacts with the AP-1/Runx-2 complex.

Repression of MMP transcription
Since joint destruction in arthritic diseases is not
reversible, the inhibition of the proteases responsible for
cartilage degradation is an important part of therapy.
While potent inhibitors of MMP enzymatic activity have
been developed, their use has been limited due to safety
issues [51]. Inhibition of MMP gene expression at the tran-
scriptional level may be a viable alternative option. With
the exception of the glucocorticoid hormones, however,
none of the several compounds now available to reduce
MMP transcription are in clinical use, although some have
been used successfully in animal models of arthritis.

The glucocorticoids bind to their receptors (GRs), which
then usually interact with glucocorticoid response ele-
ments present in the promoters of many genes [52].
Because the MMP promoters do not contain glucocorti-

coid response elements, inhibition of transcription occurs
through an indirect mechanism. This ‘transrepression’
involves binding of the activated receptor to Fos and Jun
proteins present at the proximal AP-1 site, with a subse-
quent change in their conformation and a reduction in
transcription [53]. Activated GRs can also potently
repress NF-κB-dependent transcription by two separate
mechanisms. First, GRs physically interact with RelA/p65,
resulting in inhibition of NF-κB-dependent transcription
[54,55]. This interaction is specific for p65, and is distinct
from the domain involved in AP-1 transrepression [56].
Second, glucocorticoids enhance IκBα synthesis, result-
ing in sequestration of NF-κB in the cytoplasm.

The vitamin A analogues, retinoids, also block MMP tran-
scription through the AP-1 site [57–60]. Ligand activated
receptors (e.g. the retinoic acid receptors α, β and γ, and
the retinoid x receptors α, β and γ) reduce MMP transcrip-
tion by binding to Fos and Jun proteins at the AP-1 site,
sequestering these proteins away from the promoter
and/or reducing the level of Fos and Jun mRNAs [61].
Although retinoids have reduced joint destruction in
animal models of arthritis [62], they have not been used in
patients. In addition, both glucocorticoids and retinoids
affect a broad number of genes, and this lack of specificity
may contribute to the side effects associated with these
compounds.

There is one novel compound that may block the expres-
sion of specific MMPs in arthritis. This is a synthetic triter-
penoid, 2-cyano-3,12-dioxoolean-1,9,dien-28-oic acid
(CDDO) [63,64]. At nanomolar concentrations, CDDO
selectively inhibits the induction of MMP-1 and MMP-13
by inflammatory cytokines in IL-1-stimulated chondrosar-
coma cells, without affecting basal expression [63]. In
addition, the expression of other MMPs is not affected,
and thus the low constitutive levels of MMPs required for
normal physiology may remain untouched. CDDO inhibits
MMP-1 and MMP-13 gene expression, at least in part, by
reducing IL-1-induced transcription [63]. While this mech-
anism is not fully understood, this drug is known to be a
ligand for peroxisome proliferator-activated receptor-γ
(PPAR-γ) [65]; other PPAR-γ agonists such as 15-deoxy-
prostaglandin J2 can also inhibit MMP-13 synthesis [66].
Since PPAR-γ can physically interact with c-Jun, it is
tempting to speculate that CDDO treatment induces an
AP-1/PPAR-γ association that is transcriptionally repres-
sive. Additional work is required to determine if CDDO
represses in an AP-1-dependent manner, or if it works
through a novel mechanism to repress MMPs.

Finally, increased knowledge of the specific signal/trans-
duction pathways driving MMP-1 and MMP-13 expression
in arthritic chondrocytes and synovial cells has led to the
search for agents that can inhibit these pathways. Block-
ing MAPK pathways inhibits gene expression of MMPs in
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tissue culture experiments, and prevents progression of
arthritis in animal models. For example, the p38 MAPK
inhibitor, SB203580, blocked MMP-13 gene expression in
cultured chondrocytes [7] and inhibited IL-1 mediated col-
lagen degradation in cartilage explants [67]. In the colla-
gen-induced arthritis model of rheumatoid arthritis,
SB203580 significantly inhibited TNF-α and IL-6 produc-
tion, reduced paw inflammation, and inhibited the formation
of joint lesions [68]. In addition, orally active p38 inhibitors
were also effective in animal models of inflammatory arthri-
tis [69,70] presumably by blocking MMP synthesis. Inhibi-
tion of JNK by the novel inhibitor SP600125 inhibited bone
destruction in adjuvant-induced arthritis, suggesting a role
for this MAPK in disease pathogenesis [11].

Since NF-κB activation is required for the expression of
MMP-1 and MMP-13, as well as inflammatory stimuli such
as IL-1, IL-6 and TNF-α [7,29,71,72], this pathway is
another potential therapeutic target. This is supported by
the work of Bondeson et al. [73], in which over-expression
of IκBα reduced expression of inflammatory cytokines and
MMPs, but did not reduce anti-inflammatory cytokines or
tissue inhibitor of metalloproteinases. Furthermore, mice
deficient in the p50 subunit are refractory to collagen-
induced arthritis [74], indicating that this factor has a
prominent role in arthritic disease. Indeed, p50 was the
only subunit found to bind to an IL-1-responsive element
of the MMP-1 promoter [30]. Thus, direct blockade of the
NF-κB pathway, at least in joint cells, may be a viable
therapy to reduce MMP transcription in arthritis.

Conclusion
MMP-1 and MMP-13 play dominant roles in the progression
of RA and OA, making them prime targets for arthritis thera-
pies. Since the genes for both of these enzymes are tran-
scriptionally activated by inflammatory cytokines, an
understanding of the molecular pathways involved is crucial.
As our knowledge of these molecular mechanisms
increases, our ability to use this knowledge to develop novel
and effective therapies will also increase. In the twenty-first
century, the era of molecular medicine will surely include
strategies targeted at the control MMP gene transcription.
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