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Abstract Elucidating the conformational heterogeneity of proteins is essential for understanding

protein function and developing exogenous ligands. With the rapid development of experimental

and computational methods, it is of great interest to integrate these approaches to illuminate the

conformational landscapes of target proteins. SETD8 is a protein lysine methyltransferase (PKMT),

which functions in vivo via the methylation of histone and nonhistone targets. Utilizing covalent

inhibitors and depleting native ligands to trap hidden conformational states, we obtained diverse

X-ray structures of SETD8. These structures were used to seed distributed atomistic molecular

dynamics simulations that generated a total of six milliseconds of trajectory data. Markov state

models, built via an automated machine learning approach and corroborated experimentally, reveal

how slow conformational motions and conformational states are relevant to catalysis. These

findings provide molecular insight on enzymatic catalysis and allosteric mechanisms of a PKMT via

its detailed conformational landscape.
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Introduction
Proteins are not static, but exist as an ensemble of conformations in dynamic equilibrium (Wei et al.,

2016). Characterization of conformational heterogeneity can be an essential step towards interpret-

ing function, understanding pathogenicity, and exploiting pharmacological perturbation of target

proteins (Ferguson and Gray, 2018; Latorraca et al., 2017; Lu et al., 2016). Biophysical techniques

such as X-ray crystallography (Shi, 2014), nuclear magnetic resonance (NMR) (Huang and Kalodi-

mos, 2017), and cryo-electron microscopy (Fernandez-Leiro and Scheres, 2016) mainly provide

static snapshots of highly-populated conformational states. While complementary techniques such

as relaxation-dispersion NMR can resolve a limited number of low-population states, they are incapa-

ble of providing detailed structural information (van den Bedem and Fraser, 2015). By contrast,

molecular simulations provide atomistic detail—a prerequisite to structure-guided rational ligand

design—and insight into relevant conformational transitions (Wei et al., 2016). The emergence of

Markov state models (MSMs) has shown the power of distributed molecular simulations in resolving

complex kinetic landscapes of proteins (Husic and Pande, 2018; Plattner et al., 2017). By integrat-

ing simulation datasets with MSMs, functionally relevant conformational dynamics as well as atomis-

tic details can be extracted (Plattner et al., 2017). Recently, MSMs have been used to identify key

intermediates for enzyme activation (Shukla et al., 2014; Sultan et al., 2017) and allosteric modula-

tion (Bowman et al., 2015). However, these approaches are limited by the number of seed struc-

tures and timescales accessible by molecular simulations (generally microseconds for one structure)

relative to the reality of complicated conformational transitions (up to milliseconds for multiple struc-

tures) (Klepeis et al., 2009). To overcome the limitations of individual techniques, efforts have been

made to combine simulation with experiment to characterize and experimentally validate conforma-

tional landscape models of proteins that provide insight into functions (Hart et al., 2016;

Knoverek et al., 2019; Latallo et al., 2017; Zimmerman et al., 2017).

eLife digest Our cells contain thousands of proteins that perform many different tasks. Such

tasks often involve significant changes in the shape of a protein that allow it to interact with other

proteins or ligands. Understanding these shape changes can be an essential step for predicting and

manipulating how proteins work or designing new drugs. Some changes in protein shape happen

quickly, whereas others take longer. Existing experimental approaches generally only capture some,

but not all, of the different shapes an individual protein adopts.

A family of proteins known as protein lysine methyltransferases (PKMTs) help to regulate the

activities of other proteins by adding small tags called methyl groups to specific positions on their

target proteins. PKMTs play important roles in many life processes including in activating genes,

maintaining stem cells and controlling how organs develop.

It is important for cells to properly control the activity of PKMTs because too much, or too little,

activity can promote cancers and neurological diseases. For example, genetic mutations that

increase the levels of a PKMT known as SETD8 appear to promote the progression of some breast

cancers and childhood leukemia. There is a pressing need to develop new drugs that can inhibit

SETD8 and other PKMTs in human patients. However, these efforts are hindered by the lack of

understanding of exactly how the shape of PKMT proteins change as they operate in cells.

Chen, Wiewiora et al. used a technique called X-ray crystallography to generate structural models

of the human SETD8 protein in the presence or absence of native or foreign ligands. These models

were used to develop computer simulations of how the shape of SETD8 changes as it operates.

Further computational analysis and laboratory experiments revealed how slow changes in the shape

of SETD8 contribute to the ability of the protein to attach methyl groups to other proteins.

This work is a significant stepping-stone to developing a complete model of how the SETD8

protein works, as well as understanding how genetic mutations may affect the protein’s role in the

body. The next step is to refine the model by integrating data from other approaches including

biophysical models and mathematical calculations of the energy associated with the shape changes,

with a long-term goal to better understand and then manipulate the function of SETD8.
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Protein lysine methyltransferases (PKMTs) comprise a subfamily of posttranslational modifying

enzymes that transfer a methyl group from the cofactor S-adenosyl-L-methionine (SAM) (Luo, 2018).

PKMTs play epigenetic roles in gene transcription, cellular pluripotency, and organ development

(Allis and Jenuwein, 2016; Murn and Shi, 2017). Their dysregulation has been implicated in neuro-

logical disorders and cancers (Dawson, 2017; Flavahan et al., 2017). SETD8 (SET8/Pr-SET7/

KMT5A) is the sole PKMT annotated for monomethylation of histone H4 lysine 20 (H4K20me)

(Fang et al., 2002; Nishioka et al., 2002) and many nonhistone targets such as the tumor suppres-

sor p53 and the p53-stabilizing factor Numb (Dhami et al., 2013; Shi et al., 2007). Disruption of

endogenous SETD8 leads to cell cycle arrest and chromatin decondensation, consistent with essen-

tial roles for SETD8 in transcriptional regulation and DNA damage response (Beck et al., 2012;

Liu et al., 2010; Veschi et al., 2017). SETD8 has also been implicated in cancer invasiveness and

metastasis (Yang et al., 2012). High expression of SETD8 is associated with pediatric leukemia and

its overall low survival rate (Hashemi et al., 2014). While there is enormous interest in elucidating

functional roles of SETD8 in disease, it has been challenging to develop potent, selective, and cellu-

larly active SETD8 inhibitors (Blum et al., 2014; Milite et al., 2016a; Milite et al., 2016b).

Given the essential roles of conformational dynamics in enzymatic catalysis (Schramm, 2011;

Wei et al., 2016) and our current limited knowledge of conformational landscapes of PKMTs, we

envisioned characterizing the dynamic conformational landscapes of SETD8 and its cancer-associ-

ated mutants with atomic resolution. To access previously-unseen, less-populated conformational

states of SETD8 to seed parallel distributed molecular dynamics (MD) simulations, we envisioned

trapping these conformations with small-molecule ligands. Here we solved four distinct crystal struc-

tures of SETD8 in alternative ligand-binding states with covalent SETD8 inhibitors and native ligands.

With the aid of these new structures, we generated an aggregate of six milliseconds of unbiased

explicit solvent MD simulation data for apo- and SAM-bound SETD8. Using a machine learning

approach to select features and hyperparameters for MSMs via extensive cross-validation, we clus-

tered apo-SETD8 conformers into 24 kinetically distinct, likely functionally relevant metastable con-

formational states and annotated how the conformational landscape is remodeled upon SAM

binding. We then explored these conformational landscape models experimentally with stopped-

flow kinetics and isothermal titration calorimetry by examining SAM binding, characterizing ratio-

nally-designed SETD8 variants with increased catalytic efficiency, and resolving multiple timescales

associated with transitions among these conformers. The resulting model furnishes key insights into

how these dynamic conformations play a role in catalysis of SETD8 and how cancer-associated

SETD8 mutants alter this process allosterically through reshaping the conformational landscape

rather than directly affecting the catalytic site. These findings suggest the importance of referencing

conformational landscapes for elucidating enzymatic catalysis and allosteric regulation of SETD8 and

likely other PKMTs.

Results

Crystal structures of SETD8 associated with hidden conformations
To identify hidden high-energy conformational states of SETD8, we envisioned a strategy of trapping

the associated conformers with small-molecule ligands. The development of high-affinity SETD8

inhibitors with canonical target-engagement modes is challenging (Milite et al., 2016b), and led us

to exploit covalent inhibitors (Blum et al., 2014; Butler et al., 2016). These compounds can over-

come the high energy penalties associated with hidden conformers through the irreversible forma-

tion of energetically-favored inhibitor--SETD8 adducts. Our prior efforts led to the development of

covalent inhibitors containing 2,4-diaminoquinazoline arylamide and multi-substituted quinone scaf-

folds by targeting Cys311 (Blum et al., 2014; Butler et al., 2016). Upon further optimization of

these scaffolds, we identified MS4138 (Inh1) and SGSS05NS (Inh2) (Luo et al., 2015), two structur-

ally distinct covalent inhibitors with the desired potency against SETD8 (Figure 1a, Figure 1—figure

supplement 1). X-ray crystal structures of SETD8 were then solved in complex with Inh1 and Inh2,

respectively (Figure 1b,c, Figure 1—figure supplements 2 and 3, Table 1). Notably, despite the

overall structural similarity of the pre-SET, SET, and SET-I motifs, the Inh1- and Inh2-SETD8 binary

complexes (BC-Inh1 and BC-Inh2) differ from the SETD8-SAH-H4 ternary complex (TC)

(Couture et al., 2005; Couture et al., 2008; Xiao et al., 2005) by the distinct conformations of their

Chen et al. eLife 2019;8:e45403. DOI: https://doi.org/10.7554/eLife.45403 3 of 76

Research article Biochemistry and Chemical Biology

https://doi.org/10.7554/eLife.45403


Figure 1. Diverse SETD8 conformations captured in altered ligand-binding states. (a) Structures of SETD8 ligands involved in this work. Two covalent

inhibitors targeting Cys311 (MS4138 as Inh1 and SGSS05NS as Inh2) and the cofactor SAM were used as ligands to trap neo-conformations of SETD8.

(b) Domain topology of SETD8 (Uniprot: Q9NQR1-1). Four functional motifs at SETD8’s catalytic domain are colored: pre-SET (light green), SET (dark

yellow), SET-I (purple), and post-SET (orange). (c) Cartoon representations of four neo-structures of SETD8 (BC-Inh1, BC-Inh2, BC-SAM, and APO) and a

structure of a SETD8-SAH-H4 ternary complex (TC). These structures are shown in two orthogonal views with ligands, pre-SET, SET, SET-I, and post-SET

colored in cyan, light green, dark yellow, purple, and orange, respectively.

DOI: https://doi.org/10.7554/eLife.45403.003

The following figure supplements are available for figure 1:

Figure supplement 1. Synthesis and characterization of two covalent inhibitors targeting SETD8.

DOI: https://doi.org/10.7554/eLife.45403.004

Figure supplement 2. Crystal structure of SETD8 in complex with Inh1 (BC-Inh1).

DOI: https://doi.org/10.7554/eLife.45403.005

Figure supplement 3. Crystal structure of SETD8 in complex with Inh2 (BC-Inh2).

DOI: https://doi.org/10.7554/eLife.45403.006

Figure supplement 4. Crystal structure of SETD8 in complex with the cofactor SAM (BC-SAM).

DOI: https://doi.org/10.7554/eLife.45403.007

Figure supplement 5. Crystal structure of apo SETD8 (APO).

DOI: https://doi.org/10.7554/eLife.45403.008
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post-SET motifs. The post-SET motif of TC was characterized by its U-shaped topology with a dou-

ble-kinked loop-helix-helix architecture, which appears to be optimally oriented for binding both

SAM and a peptide substrate (Figures 1c and 2) (Couture et al., 2005; Couture et al., 2008;

Xiao et al., 2005). In comparison, BC-Inh1 and BC-Inh2 rotate their post-SET motifs by 140˚ and

60˚, respectively (Figure 2). Moreover, the post-SET motifs of BC-Inh1 and BC-Inh2 adopt more

Table 1. Data collection and refinement statistics of crystallography.

BC-Inh1 BC-Inh2 BC-SAM APO

PDB Code 6BOZ 5W1Y 4IJ8 5V2N

Data collection

Wavelength (Å) 0.98 0.98 0.98 0.98

Space group P212121 P212121 P6122 P43212

Cell dimensions

a, b, c (Å) 31.56, 68.06, 125.90 58.35, 39.79, 131.90 101.44, 101.44,140.80 60.6, 60.6, 80.7

a, b, g (˚) 90, 90, 90 90, 90, 90 90, 90, 120 90, 90, 90

Resolution (Å) 62.95–2.40 (2.49–2.40) 43.70–1.70 (1.73–1.70) 47.72–2.00 (2.11–2.00) 50.00–2.00 (2.03–2.00)

Unique reflections 11,209 (1550) 34,422 (1769) 29,619 (4231) 10,736 (918)

Redundancy 3.6 (3.0) 3.8 (3.6) 21.6 (22.0) 14.5

Completeness (%) 99.5 (97.8) 99.4 (96.3) 100.0 (100.0) 99.8 (97.0)

I/s(I) 8.2 (3.4) 15.0 (1.8 19.7 (4.0) 20.0 (1.1)

Rsym
a 0.110 (0.361) 0.064 (0.657) 0.112 (0.942) 0.13 (0.460)

Rpim 0.065 (0.129) 0.036 (0.386) 0.025 (0.205) 0.040 (0.4)

Refinement

No. protein molecules/ASU 2 2 2 1

Resolution (Å) 62.95–2.40 35.00–1.70 43.96–2.00 48.47–2.00

Reflections used or used/free 11,165/1065 32,998/1373 28,045/1516 10,153/513

Rwork 0.179 0.201 0.176 0.183

Rfree 0.242 0.237 0.199 0.249

Average B value (Å2) 38.9 20.9 37.8 41.6

Protein 39.8 20.7 37.9 40.7

Compound 20.0 16.4 24.5 n/a

Other 38.5 20.7 44.7 50.9

Water 30.4 24.3 36.9 49.4

Number of Atoms 2299 2835 2675 1404

Protein 2161 2553 2416 1267

Compound 60 38 54 0

Other 4 36 72 12

Water 74 208 133 125

RMS Bonds (Å) 0.007 0.014 0.015 0.010

RMS Angles (˚) 0.9 1.6 1.5 1.4

Wilson B value (Å2) 30.0 18.7 32.6 35.3

Ramachandran plot

Most favored (%) 94.8 96.9 98.4 92.3

Additional allowed (%) 5.2 3.1 1.6 7.0

Generously allowed (%) 0.0 0.0 0.0 0.7

Outliers (%) 0.0 0.0 0.0 0.0

DOI: https://doi.org/10.7554/eLife.45403.010
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extended configurations with a less structured loop and a singly-kinked helix, respectively

(Figures 1c and 2). Whereas multiple factors may influence the overall conformations, the formation

of Cys311 adducts likely made the key contribution to the discovery of these hidden post-SET motif

conformers.

To reveal additional hidden conformers that are structurally distinct from TC, we also solved crys-

tal structures of SETD8 upon depleting native ligands and obtained structures of the SAM-SETD8

binary complex (BC-SAM) and apo-SETD8 (APO) (Figure 1c, Figure 1—figure supplements 4 and

5, Table 1). Strikingly, BC-SAM and APO differ from TC by their distinct SET-I motifs in the context

of the otherwise similar SET-domain (Figure 2). Furthermore, the post-SET motif of APO structurally

resembles an intermediate state between BC-Inh1 and BC-Inh2 but is distinct from those of BC-

SAM and TC (Figure 2). In contrast to the structurally diverse SET-I (I1-3) and post-SET motifs (P1-4)

in these structures, their pre-SET motifs show only slightly altered configuration (Figure 2). The dif-

ferences between these structures highlight the conformational plasticity of the SET-I and post-SET

motifs. Collectively, these observations provide strong structural rationale for the existence of a

dynamic conformational landscape of SETD8.

Hidden conformations of apo-SETD8 revealed by structural chimeras
The BC-SAM, BC-Inh1, BC-Inh2, APO, and TC structures can be readily classified into three distinct

SET-I configurations (I1-3) and four distinct post-SET configurations (P1-4) (Figure 2). Given the rela-

tive spatial separation between the SET-I and post-SET motifs, we envisioned additional combina-

tions of discrete motifs might be accessible to yet-unobserved conformations of SETD8. We thus

constructed putative ‘structural chimeras’ of apo-SETD8 containing orthogonal I1-3 and P1-4 in a

combinatorial (3 � 4) manner (Figure 3a, Figure 3—figure supplement 1). Among the twelve struc-

tural chimeras as potential seeds for MD simulations, five were crystallographically-determined con-

formers (BC-Inh1, BC-Inh2, BC-SAM, TC with ligands removed, and APO), four were new

structurally-chimeric conformers, and three were excluded because of obvious steric clashes

(Figure 3a, Figure 3—figure supplement 2). The four structurally-chimeric conformers were

Figure 2. Superposition of five crystal structures highlighted with detailed views of post-SET, SET-I, and pre-SET motifs. The five X-ray structures reveal

four distinct conformational states of the post-SET motif (P1-4) and three distinct conformational states of the SET-I motif (I1-3).

DOI: https://doi.org/10.7554/eLife.45403.009
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included to seed MD simulation with the intention to uncover the conformational landscape more

effectively, although this operation proved to be redundant for the discovery of new conformations

in the validation process (see details below).

Figure 3. Construction of conformational landscapes of apo- and SAM-bound SETD8 through diversely seeded,

parallel molecular dynamics simulations and Markov state models. (a) Combinatorial construction of putative

structural domain chimeras using crystallographically-derived post-SET and SET-I conformations. Each conformer

is boxed and color-coded with black for five X-ray-derived structures, blue for four putative structural chimeras

included as seed structures for MD simulations, and gray for three structural chimeras excluded from MD

simulations because of obvious steric clashes. (b) Schematic workflow to construct dynamic conformational

landscapes via MSM. The five X-ray structures and the four structural chimeras were used to seed parallel MD

simulations on Folding@home (see Materials and method). Markov state models were constructed from these MD

simulation results to reveal the conformational landscape.

DOI: https://doi.org/10.7554/eLife.45403.011

The following figure supplements are available for figure 3:

Figure supplement 1. Workflow of MD simulations and MSM analysis.

DOI: https://doi.org/10.7554/eLife.45403.012

Figure supplement 2. Cartoon representations of the four structural chimeras.

DOI: https://doi.org/10.7554/eLife.45403.013
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Dynamic conformational landscape of apo-SETD8 via Markov state
modeling from 5 ms MD simulation dataset
With seed conformations prepared as above, we envisioned illuminating the conformational land-

scape with distributed long-timescale MD simulations and resolving its kinetic features with Markov

state models (MSMs) (Figure 3b, Figure 3—figure supplement 1). Because there is no prior report

of the conformational landscapes of PKMTs that can be used as the reference of SETD8, we lever-

aged extensive computational power for MD simulation with the intention to not only uncover the

conformational landscape of SETD8 in an unbiased manner but also cross-validate the completeness

of the dataset. Here we conducted approximately 500 � 1 ms explicit-solvent MD simulations from

each seed and accumulated 5 milliseconds of aggregate data in 10 million conformational snapshots

for apo-SETD8 (Appendix 1—figure 1, Supplementary file 1a). To identify functionally relevant

conformational states and their transitions, we built MSMs using a pipeline that employs machine

learning and extensive hyperparameter optimization to identify slow degrees of freedom and struc-

tural and kinetic criteria to cluster conformational snapshots into discrete conformational states

(Appendix 1—figures 2–9, Supplementary file 1b, 1c) (Husic et al., 2016). This approach identified

24 kinetically metastable conformations (macrostates) from an optimized, cross-validated set of 100

microstates (Figure 4a, Figure 5—figure supplement 1, Supplementary file 1d, 1e). These macro-

states are remarkably diverse, spanning up to 10.5 Å Ca RMSD from APO. To visualize the kinetic

relationships between functionally important conformations, dimensionality reduction was used to

project the landscape into 2D while preserving log inverse fluxes between states (Figure 4b). The

relative populations of these macrostates were also calculated, resolving rare conformational states

up to 6 kT in free energy (Figures 4b and 5a).

The dynamic conformational landscape of SAM-bound SETD8
Given the success in constructing the dynamic conformational landscape of apo-SETD8, we applied

the same strategy to SAM-bound SETD8. With the two crystal structures of SETD8 in complex with

SAM (BC-SAM and TC) as the seed conformations, we conducted ~500 � 1 ms explicit solvent MD

simulations from each structure and accumulated 1 millisecond of aggregate data (2M snapshots)

(Appendix 1—figure 10). The MSM of the conformational landscape of SAM-bound SETD8 was

constructed using the same degrees of freedom as that of apo-SETD8 to facilitate direct comparison

of the models (Appendix 1—figures 11-13). The resulting MSM for SAM-bound SETD8 contained

10 kinetically metastable macrostates arising from 67 microstates (Figure 5—figure supplement 2,

Supplementary file 1f, 1g). Similar to those of apo-SETD8, the relative macrostate populations of

SAM-bound SETD8 and their flux kinetics were computed and embedded into 3D/2D scatter plots

and a chord diagram (Figures 4a, b and 5b). The smaller number of metastable states identified for

SAM-bound SETD8 is anticipated given that specific conformations are required for optimal interac-

tion between SAM and SETD8’s post-SET motif (Couture et al., 2005; Couture et al., 2008;

Xiao et al., 2005). We also compared the timescale structure of the apo- and SAM-bound SETD8

MSMs, as well as an MSM constructed from the subset of apo-SETD8 trajectories originating from

the same conformations as the SAM-bound trajectories (Appendix 1—figure 14). We found a large

decrease in the number of slow processes seen in the SAM-bound model compared to the other

two (respectively for the apo, SAM-bound, and subset of apo MSMs there are 14, 4, and 9 processes

slower than 1 ms). SAM binding thus restricts overall conformational accessibility of SETD8.

Experimental corroboration of the conformational landscapes of SETD8
Upon uncovering the dynamic conformational landscapes of apo- and SAM-bound SETD8 for the

first time of the PKMT family of enzymes, we were able to extract new structural information and

designed experiments to further examine this model (Figure 6). Comparison of the conformational

ensembles between apo- and SAM-bound SETD8 revealed that SAM binding dramatically alters the

environment of Trp390 (Figure 6a, blue sticks), the sole tryptophan residue in the catalytic domain

of SETD8. This residue is flexible and mainly solvent-exposed in apo-SETD8 conformational ensem-

bles but restricted in a hydrophobic environment through SAM-mediated pi-pi stacking in SAM-

bound SETD8 conformational ensembles (Figure 6a). Such environmental changes upon SAM bind-

ing are expected to quench fluorescence of Trp390 (Royer, 2006). To verify this prediction, we

designed rapid-mixing stopped-flow kinetic experiments with 5 ms dead time and 0.1 ms resolution
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to track the fluorescence change of Trp390 upon SAM binding (Figure 6b). We observed SAM-

dependent biphasic kinetics of the fluorescence decrease within 1 s with >80% of the change occur-

ring in the fast phase (0–0.1 s) (Figure 7a). In the context of the conformational landscape of apo-

SETD8, we interpreted the major decrease in fluorescence intensity (fast-phase kinetics) as a conse-

quence of the collective changes of Trp390 from the solvent-exposed hydrophilic environment in

apo conformations to the hydrophobic environment in SAM-bound conformations (Figure 6a). In

contrast, the minor decrease in fluorescence intensity (slow-phase kinetics) reflects the slow confor-

mational changes of Trp390 in the SAM-bound SETD8 conformational ensembles (Figure 7a). With

unsupervised global fitting to this two-step model, we obtained forward and reverse rate constants

for the fast- and slow-phase kinetics, which are in agreement with conventional fitting to double

exponential kinetics (Johnson, 1992) (Figures 7a, b and 8a, Figure 7—figure supplement 1,

Figure 4. Markov state models and conformational landscapes of apo- and SAM-bound SETD8. Kinetically metastable conformations (macrostates)

obtained from kinetically coupled microstates via Hidden Markov Model (HMM) analysis. The revealed dynamic conformational landscapes consist of 24

macrostates for apo-SETD8 (left panel) and 10 macrostates for SAM-bound SETD8 (right panel). (a) Kinetic and structural separation of macrostates in a

3D scatterplot. The MDS1/MDS2 axes are the two top vectors used in multidimensional scaling (MDS), a dimensionality reduction method, for

separation of macrostates via log-inverse flux kinetic embedding (see Materials and methods). The Z axis reports root-mean-square deviations (RMSDs)

of each macrostate to APO (left) or BC-SAM (right). The relative population of each macrostate of apo- or SAM-bound SETD8 ensembles is

proportional to the volume of each representative sphere. (b) Cartoon depiction of macrostates in a 2D scatterplot. The diameter of the corresponding

circle in the 2D scatterplot is proportional to the diameter of the respective sphere in the 3D scatterplot above. Equilibrium kinetic fluxes larger than

7.14 � 102 s�1 for apo- and 1.39 � 103 s�1 for SAM-bound SETD8 are shown for interconversion kinetics with thickness of the connections proportional

to fluxes between two macrostates.

DOI: https://doi.org/10.7554/eLife.45403.014
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Figure 5. Chord diagrams and representative conformers of macrostates. The colors represent the free energy of

each macrostate relative to the lowest free energy macrostate. The equilibrium flux between two macrostates is

proportional to thickness of connecting arcs.

DOI: https://doi.org/10.7554/eLife.45403.015
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Supplementary file 1h). The k-1 value was also confirmed independently by rapid-mixing stopped-

Figure 5 continued

The following figure supplements are available for figure 5:

Figure supplement 1. Representative conformations of macrostates in the conformational landscape of apo-

SETD8.

DOI: https://doi.org/10.7554/eLife.45403.016

Figure supplement 2. Representative conformations of macrostates in the conformational landscape of SAM-

bound SETD8.

DOI: https://doi.org/10.7554/eLife.45403.017

Figure 6. Experimental design to probe the conformational landscape of SETD8. (a) Comparison of binding environments of Trp390 (blue) between

apo and SAM-bound (orange) SETD8 in the context of their dynamic conformational landscapes. (b) Illustration of rapid-quenching stopped-flow

experiments. These experiments were conducted to trace fluorescence changes of Trp390 upon SAM binding. (c) Comparison of the conformations of

post-SET kink and SET-I helix between apo- and SAM-bound SETD8 in the context of their dynamic conformational landscapes. Analysis of key

structural motifs indicated K382P (blue in the upper panel), I293G and E292G (red in the lower panel) as potential gain-of-function variants.

DOI: https://doi.org/10.7554/eLife.45403.018
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Figure 7. Biochemical characterization of gain-of-function mutations revealed by conformational landscapes of

SETD8. (a) Fluorescence changes of wild-type and K382P SETD8 traced with a rapid-quenching stopped-flow

instrument within 1 s upon SAM binding. (b) Stepwise SAM-binding of SETD8 in the integrative context of

biochemical, biophysical, structural, and simulation data. ITC determines the thermodynamic constant of SAM

binding by SETD8. MD simulations and MSM uncover metastable conformations and interconversion rates of apo-

and SAM-bound SETD8 (Kapo and KSAM). Stopped-flow experiments revealed that SETD8 binds SAM via biphasic

kinetics. Rate constants uncovered by stopped-flow experiments (k1, k-1, k2, k-2) represent macroscopic rates of

SAM binding by SETD8 with multiple metastable conformations. The microscopic behavior of individual

metastable states and corresponding rates (k1, k-1, k2, k-2) have not been resolved. Transition probability matrices

(red) and microscopic rate constant matrices (blue) are shown as colored grids. A rigorous mathematical derivation

of this scheme is shown in Figure 7—figure supplement 3. (c) ITC enthalpogram for the titration of SAM into

wild-type and K382P SETD8.

DOI: https://doi.org/10.7554/eLife.45403.019

The following figure supplements are available for figure 7:
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flow dilution of SAM-bound SETD8 (Agafonov et al., 2014) (‘ES +E’S’, Appendix 1—figure 15,

Supplementary file 1h). Here the k-1/k1 ratio (Figure 7b) of 309 ± 6 mM corresponds to the average

SAM dissociation constant Kd1 of apo-SETD8 conformers, which is consistent with independently

determined ITC Kd of 251 ± 16 mM (Figure 7b and c, Figure 7—figure supplement 2). In contrast,

the large k-2/k2 ratio (Figure 7b) of 30 ± 11 suggests that the second phase corresponds to a slow

equilibrium between ES and E’S with minimal contribution of E’S to the overall SAM dissociation

constant Kd (Figure 7c). The conformational ensembles we identified for apo- and SAM-bound

SETD8 demonstrate the statistical nature of its SAM-binding process. Therefore, the observed fluo-

rescence changes and herein determined macroscopic kinetic constants represent an ensemble-

weighted average of microscopic behaviors of all species that exist in the solution. A rigorous math-

ematical description of microscopic kinetics of SAM binding was thus obtained under the consider-

ation of interconversion of the metastable conformational states of apo- and SAM-bound SETD8

(Figure 7—figure supplement 3).

Figure 7 continued

Figure supplement 1. Rapid-mixing stopped-flow experiments of SAM-binding and double-exponential

conventional fitting analysis.

DOI: https://doi.org/10.7554/eLife.45403.020

Figure supplement 2. Isothermal Titration Calorimetry (ITC) of wild-type SETD8 and its mutants in complex with

SAM.

DOI: https://doi.org/10.7554/eLife.45403.021

Figure supplement 3. Rigorous derivation of stepwise, microscopic resolution of SETD8 SAM-binding kinetics.

DOI: https://doi.org/10.7554/eLife.45403.022

Figure 8. Kinetic and thermodynamic constants of wild-type SETD8 and its rationally designed mutants. For k1, k-1, k2, k-2 in Figure 7, data are best

fitting values ± standard error (s.e.) from KinTek. For Kd-ITC, data are mean ±s.e. of at least three replicates. Kd1, Keq, and Kd are calculated based on

equations in Methods. Uncertainties of Kd1, Keq, Kd, and DG are s.e. calculated by the propagation of uncertainties from individual rate constants and

dissociation constants, respectively. h, Relative energy landscapes of apo- and SAM-bound SETD8 and its gain-of-function mutants. The relative energy

of apo- and SAM-bound (wildtype and mutated) SETD8 as well as their transition states were determined on the basis of their k1, k-1, and Kd values. The

relative position of each energy landscape was then set on the basis of the rough counts of mutation-associated loss or gain of favorable interactions in

contrast to apo- or SAM-bound wild-type SETD8. All SETD8 variants except SAM-bound I293G disrupt the favorable interactions to various degrees.

DOI: https://doi.org/10.7554/eLife.45403.023
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We then proposed to confirm our understanding of functionally-relevant conformations and their

thermodynamics by identifying SETD8 variants with increased affinity for SAM. We uncovered a col-

lection of characteristic kink motifs around Lys382 in the post-SET motif of SAM-bound SETD8 con-

formational ensembles (Figure 6c), while this region is less structured in apo-SETD8 conformational

ensembles. We hypothesized that a proline mutation (K382P) could better stabilize the conforma-

tional ensembles of SAM-bound SETD8 than apo-SETD8 (Figures 6c and 8b). We also considered

the characteristic a-helix in the SET-I motif, which adopts flexible and diverse configurations in the

apo ensembles but becomes constrained and elongated in SAM-bound ensembles (Figure 6c). We

proposed that the replacement of I293 or E292 adjacent to the a-helix with a flexible glycine should

relax this distortion to better stabilize SAM-bound ensembles (Figures 6c and 8b). We therefore

characterized the SAM-binding kinetics and affinities of K382P, I293G, and E292G variants of SETD8

with stopped-flow kinetics and ITC (Figures 6c, 7a, b and c, Figure 7—figure supplements 1 and

2, Appendix 1—figure 15). While exhibiting biphasic kinetics similar to that of wild-type SETD8, the

stopped-flow mixing experiment revealed the three variants showed a significant two-fold decrease

of Kd,SAM (Figures 7a, c and 8a). The stopped-flow data further revealed that the two-fold change of

Kd,SAM mainly arises from increased SAM-binding rates k1 with relatively unchanged k-1 (Figure 8a).

These results are consistent with independently determined Kd and k-1 from ITC and stopped-flow

Figure 9. Evaluation of key simulation parameters of molecular simulations. (a�b) Assessments of simulations of apo-SETD8: (a) Heat map for the

coverage of the 100 microstates with all combinations of the crystal structures (BC-Inh1, BC-Inh2, BC-SAM, APO, and TC) as seed conformations; (b)

Venn diagrams of the coverage of the 100 microstates with all conformational combinations of SET-I and post-SET motifs (I1-3 and P1-4) as seed

structures for MD simulations. (c�d) Robustness of simulations of SAM-bound SETD8: (c) Venn diagram of the coverage of the 67 microstates with TC,

BC-SAM or both as seed structures for MD simulation; (d) Minimal time required by MD simulations to reach certain coverage of the 67 microstates of

SAM-bound SETD8 with representative combinations of seed structures. (e) Minimal time required by MD simulations to reach certain coverage of the

100 microstates of apo-SETD8 with representative combinations of seed structures.

DOI: https://doi.org/10.7554/eLife.45403.024
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dilution, respectively (Figure 7b and c, Figure 7—figure supplement 2, Appendix 1—figure 15,

Supplementary file 1h). Collectively, these observations confirm the robustness of our conforma-

tional landscape model for apo- and SAM-bound SETD8.

Effects of key simulation parameters on construction of conformational
landscapes
We systematically investigated how the choices of seed structures and simulation time—key compu-

tational parameters—influence microstate discovery and quality of conformational landscapes of

SETD8 (Figures 9 and 10). The simulations of apo-SETD8 initiated from any single X-ray structure

(BC-Inh1, BC-Inh2, BC-SAM, APO, or TC in Figure 1c) only reveal a partial conformational landscape

(28–61% microstate coverage, Figure 9a, Supplementary file 1i). To achieve >90% microstate cov-

erage, at least two crystal structures—BC-SAM in combination with either BC-Inh1 or BC-Inh2—

must be included (Figure 9a). If three crystal structures are included, BC-SAM in combination with

TC and APO can provide >90% coverage (Figure 9a). In terms of the structural motifs (I1-3 or P1-4,

Figures 2 and 3a), simulations originating from the SET-I motif I1, I2, or I3 alone led to the discovery

of 69, 58, or 39 of the 100 microstates, respectively (Figure 9b, Supplementary file 1j). The combi-

nation of I1 and I2 is sufficient to cover all 100 microstates, arguing for the redundant character of

I3. For the post-SET motif, any combination of two post-SET configurations except P2
S
P3 leads

to >90 microstate coverage (Figure 9b, Supplementary file 1j). These findings are in agreement

with the key requirement of structural motif conformations I1 (equivalent to BC-Inh1, BC-Inh2, or

TC), I2 (equivalent to BC-SAM), and any two of P1�4 except P2
S
P3 (e.g. P1

S
P3 is equivalent to

the combination of APO with BC-SAM or TC) to achieve >90% microstate coverage. For SAM-bound

SETD8, the seed conformations derived from BC-SAM and TC structures contribute 31 and 38 of 67

Figure 10. Contour map of microstate coverage at various combinations of trajectory lengths and numbers as percentage of the maximal trajectory

length and number of MD simulations. The seed structures of each panel are listed as the simulation entries e1, e5�8 for apo-SETD8, and d1�3 for

SAM-bound SETD8 in Figure 9d and e. Each curve corresponds to the aggregation of specific simulation time.

DOI: https://doi.org/10.7554/eLife.45403.025

The following figure supplement is available for figure 10:

Figure supplement 1. Contour maps presenting microstate coverage at various trajectory lengths and numbers versus the maximal possible trajectory

length or number at different combinations of starting conformations.

DOI: https://doi.org/10.7554/eLife.45403.026
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microstates (Figure 9c and d, Supplementary file 1k). These findings argue for the importance of

using multiple structures to construct the landscape within achievable computer time. The seed con-

formations prepared from ligand-trapped SETD8 structures are essential to discovering the com-

plete conformational landscapes of SETD8.

For simulation time, we observed that the fewer seed conformations of apo-SETD8 were

employed, the more computing power (the product between the number of simulation trajectories

and the time length per trajectory) was required to reach a comparable level of microstate coverage

(Figure 9e, Supplementary file 1l, 1m). When computing power is fixed, comparable microstate

coverages of apo- and SAM-bound SETD8 can be obtained by running either multiple short trajecto-

ries or few long trajectories (Figure 10, Figure 10—figure supplement 1). While the current aggre-

gate simulation time (5 ms for apo-SETD8 and 1 ms for SAM-bound SETD8) appears sufficient to

Figure 11. Functional annotation of the dynamic conformational landscapes of SETD8. (a) 3D scatterplots of the 24 macrostates of apo-SETD8

landscape and 10 macrostates of SAM-bound SETD8 landscape in the coordinates of RMSDs relative to APO, BC-SAM, and TC. Volume of each sphere

is proportional to the relative population of the corresponding macrostate in the context of the 24 macrostates for apo-SETD8 or the 10 macrostates for

SAM-bound SETD8. The RMSD of each macrostate is the average of its microstates weighted with their intra-macrostate populations. The RMSD of

each microstate is the average of the top 10 frames most closely related to the clustering center of the microstate. The feature of each macrostate is

annotated in color. (b) Cartoons of representative conformations of key macrostates in the apo-SETD8 landscape. Structural annotations are shown in

bottom right of each conformation. (c) 3D scattering plot of 100 microstates of the apo landscape in the coordinates of RMSDs to APO, BC-SAM, and

TC. Volume of each cube is proportional to the relative population of the corresponding microstate in the context of the 100 microstates. Microstates

clustered in intermediate-like macrostates are highlighted in colors. Structural diversity of microstates within individual macrostates indicates that each

intermediate-like state contains multiple structurally distinct but readily interconvertible microstates. (d) Radar chart of representative macrostates of

apo (left) and SAM-bound (right) landscapes in reference to the five crystal structures. Distances between dots and cycle centers are proportional to the

reciprocal values of RMSDs of macrostates relative to the crystal structures. (e) Cartoons of representative conformations of key macrostates in the

SAM-bound SETD8 landscape. Structural annotations are shown in bottom right of each conformation.

DOI: https://doi.org/10.7554/eLife.45403.027
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discover essentially all relevant conformations in the landscapes of SETD8 and estimate their relative

populations and corresponding uncertainties, more data would yet be needed to improve estimates

of inter-macrostate kinetics in order to develop a fully kinetically accurate model

(Supplementary file 1h, 1l). Collective contributions of the number of seed structures and the over-

all simulation time determined the efficiency of uncovering conformational landscapes of SETD8.

The conformational landscape of apo-SETD8 can be revealed upon implementing a minimum of two

seed structures (TC and BC-SAM) or 10% of the current simulation time. With the two seed struc-

tures (TC and BC-SAM) and sufficient simulation time, apo-SETD8 sampled 22 more microstates

than SAM-bound SETD8 (89 states with 750 ms simulation versus 67 states with 850 ms simulation,

Figure 9d,e), consistent with the conformational restriction of SETD8 upon SAM binding. We also

noted that it is redundant to include the four structurally-chimeric conformers because this operation

contributes less than 10% of microstate coverage and the comparable conformational landscape of

apo-SETD8 can be generated with the subsets of seeds solely prepared from the X-ray structures

(Supplementary file 1l).

Functionally relevant conformations in the dynamic landscapes of apo-
and SAM-bound SETD8
After experimentally corroborating the conformational landscapes of apo- and SAM-bound SETD8,

we explored the dynamic details of these landscapes with the focus on the connectivity and equilib-

rium fluxes between kinetically metastable macrostates (henceforth referred to as the ‘network’).

When projected into two dimensions, the conformational landscape of apo-SETD8 takes the form of

a dumbbell-like shape containing two lobes, each composed of about 12 macrostates primarily con-

nected via a single hub-like central macrostate A11 (Figures 4b and 11, Supplementary file 1e).

The conformational landscape also consists of other multiply-connected macrostates, including

A1�A4, A9, and A14, as characterized by their rapid kinetic interconversion with multiple other mac-

rostates (Figures 4b and 5a). Most low-populated macrostates (A17�A24) appear as satellite macro-

states in the periphery of the network with few high-flux channels of interconversion to other

macrostates (Figures 4b and 5a). The remaining states were classified as basin-like macrostates

including {A5, A10}, A7, A8, {A12, A13, A16} and A15, because these macrostates are highly popu-

lated and either are relatively isolated or appear in tightly interconnected but globally isolated

groups.

The hub-like macrostate A11 consists of two structurally distinct microstates with comparable

populations (Figures 4b and 11a). One microstate structurally resembles the conformation of APO

(I3P3), while the other microstate represents a conformer with the I1P23 feature for its SET-I and post-

SET motifs (Figure 11b, Supplementary file 1d). Rapid conformational interconversions within A11

are consistent with its hub-like character, centered between the two lobes of the dumbbell-like net-

work. Interestingly, macrostates kinetically adjacent to A11 have structurally similar SET-I motifs

within each lobe but distinct SET-I motifs between the two lobes ({I2 ~3} for the left and {I1 ~2} for

the right) (Figures 4b and 11b). Therefore, A11 is a transition-type state essential for the conforma-

tional fluxes of the macrostates between the two lobes, involved in a key step of conformational

changes of the SET-I motif between {I1 ~2} and {I2 ~3}.

The intermediate-like macrostates A1�A4, A9, and A14 each contains multiple structurally dis-

tinct but kinetically associated microstates (Figures 4b, 11a and b). The satellite macrostates

A17�A24 are less populated and more structurally homogeneous (Figures 4b, 11a and b). Con-

formers in the macrostates A22, A24, and A20 are structurally similar to TC and BC-SAM with slightly

different but well-defined SAM-binding pockets, suggesting minimal conformational reorganization

of A22, A24, and A20 is required to accommodate the cofactor (Figure 11a,b,c). Interestingly, A22

and A24, whose overall structures are similar to each other (TC-like), rarely interconvert in the apo

landscape (Figure 4b). In contrast, the basin-like macrostates {A5, A10}, A7, A8, {A12, A13, A16}

and A15 do not contain a well-defined SAM-binding pocket (Figure 11a,b,c). Here the conformers

in macrostate A12 are similar to APO, the conformers in the macrostate A6 are similar to BC-Inh1,

and the conformers in the macrostate A10 are similar to BC-Inh2 (Figure 11d). The structural similar-

ity between the simulated conformers and BC-Inh1/2 suggests that the two covalent inhibitors suc-

cessfully trapped key hidden conformers of apo-SETD8.

Similar to that of apo-SETD8, the interconversion network of the macrostates of SAM-bound

SETD8 also displays a dumbbell-like shape with S9 as the hub-like state connecting the two lobes of

Chen et al. eLife 2019;8:e45403. DOI: https://doi.org/10.7554/eLife.45403 17 of 76

Research article Biochemistry and Chemical Biology

https://doi.org/10.7554/eLife.45403


the network (Figures 4b and 11a). The macrostates S1 and S3�S5 are multi-connected states; S6,

S8, and S10 are satellite-like states; S2 and S7 are basin-like states (Figure 11a,b). Notably, the com-

plexity of the overall conformational landscape of SAM-bound SETD8 is significantly reduced in com-

parison with those of apo-SETD8 (Figures 4b and 11a). The conformers in S1, S2, and S10 are

structurally similar to those of A20, as well as BC-SAM; the conformers in S4, S6, and S8 are structur-

ally similar to those in A22 and A24, as well as TC (Figure 11d,e). The structural similarities between

these apo and SAM-bound macrostates suggest possible pathways for connecting the two confor-

mational landscapes upon SAM binding.

Characterization of cancer-associated SETD8 mutants
Sequences from tumor samples retrieved from cBioPortal (Cerami et al., 2012; Cheng et al., 2015;

Gao et al., 2013) contain two dozen point mutations in the catalytic domain of SETD8 (Figure 12a

and b, Supplementary file 1n). We expect that some of these mutations perturb SETD8 function.

Because of conformational heterogeneity, it has historically been challenging for in silico approaches

to annotate how mutations—in particular those structurally remote from functional sites—allosteri-

cally affect a target protein on the basis of its static structure(s) (Campbell et al., 2016;

Klinman and Kohen, 2014; Stefl et al., 2013). Here, we envisioned addressing this challenge with

reference to the conformational ensemble of wild-type SETD8. To characterize mutations remote

from catalytic sites (20 out of 24 known mutations), 40 independent microsecond-long MD simula-

tions for each of the cancer-associated apo-SETD8 mutants were conducted with seed structures

prepared from one ternary complex (TC) conformer—a structure resembling the enzymatic transition

state and thus essential for SETD8-catalyzed methylation reaction (Linscott et al., 2016). We then

constructed a differential residue-contact map for each variant (Figure 12c,d) and extracted snap-

shots representing the largest conformational deviations from the wild-type conformational ensem-

bles (Figure 12e). Even with modest simulation time, 8 of the 20 examined cancer-associated

mutants displayed neo-conformations that were not observed in the 5 ms wild-type dataset and can-

not be predicted from static X-ray crystal structures. Interestingly, all of the neo-conformations dis-

play distinct reorganizations at the SET-I motif (Figure 12e). For instance, a single point mutation

A296T, ~16 Å remote from the active site, yields five distinct neo-conformations (Figure 12e,f). In

addition, relative to wild-type apo-SETD8, this mutant populates several conformations with a struc-

turally relaxed a-helix at the SET-I motif (Figure 12e). C324del, ~20 Å from the SET-I motif, is associ-

ated with three neo-conformations and displays the largest changes in the differential contact map

(Figure 12d, panel 13). The remote H340D mutation is associated with one neo-conformation as

well as more populated conformations containing spatially compressed active sites (Figure 12d,

panel 7; Figure 12e). Using in vitro radiometric assays, the A296T and H340D mutants were charac-

terized by loss of the methyltransferase activity on H4K20 peptide substrate (Figure 12g). The failure

to purify recombinant C324del also supports the impact of this deletion on SETD8 function. H388Q,

which mutates a histidine involved in substrate binding, is also associated with neo-conformations as

well as loss of the methyltransferase activity (Figure 12e,g). These observations provide potential

molecular rationale for how remote mutations can alter the active sites and the SET-I motif—and

hence catalysis allosterically—via modulating the overall conformational landscape rather than

directly affecting specific residues at the catalytic site. Exceptions are T274I, R279W, R279Q, and

A368V, which yielded neo-conformations but showed activity comparable to wild-type SETD8

(Figure 12e,g), suggesting that certain neo-conformations must either still be catalytically compe-

tent or their population may not significantly alter the ability to populate conformations relevant for

catalysis. The exceptions suggest that a more complete picture of the conformational ensembles

might be necessary to uncover quantitative correlations with the relative methyltransferase activities

of these SETD8 mutants.

The differential residue-contact maps further revealed that 8 out of the 20 remote mutations alter

conformational landscapes by changing populations of pre-existing conformations (Figure 12c,d).

For instance, E257K, G280S, A301V, T309M, E330Q, D352Y mutations populate conformations con-

taining spatially compressed active sites (Figure 12—figure supplement 1); E372D populates con-

formations containing a constrained post-SET motif; R333C populates conformations with

reorganized SET motifs adjacent to the peptide binding pocket. All of these mutations showed par-

tial loss of methyltransferase activity (Figure 12g). Notably, these structural alterations are often

remote from the corresponding mutation sites (Figure 12b). In contrast, R244S and V356I (2 out of
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Figure 12. Computational and experimental characterization of cancer-associated SETD8 mutants. (a) Cancer-associated mutations in the catalytic

domain of SETD8 examined in this work. (b) Cartoon representations of TC with cancer-associated SETD8 mutations highlighted. (c) Differential

residue-contact maps of cancer-associated SETD8 mutants in reference to wild-type apo-SETD8 (gray). Residue-residue contact map of wild-type apo-

SETD8 is presented as a 162 � 162 matrix. The vertical and horizontal axes show the residue numbers of SETD8’s catalytic domain. The contact of a

Figure 12 continued on next page

Chen et al. eLife 2019;8:e45403. DOI: https://doi.org/10.7554/eLife.45403 19 of 76

Research article Biochemistry and Chemical Biology

https://doi.org/10.7554/eLife.45403


20) showed no significant conformational change on the basis of their differential contact maps, con-

sistent with their comparable methyltransferase activity to wild-type SETD8 (Figure 12g). Likely due

to insufficient simulation time (40 � 1 ms/mutant), R333L and L334P variants, characterized by par-

tial-to-complete loss of the methyltransferase activity (Figure 12g), showed similar conformational

landscapes to that of wild-type apo-SETD8. These exceptions, though only a small portion of all

mutants studied, point to the necessity of a more extensive exploration of the conformational

ensembles to obtain quantitative correlations of the atomistic structure with activities of this collec-

tion of SETD8 mutants. Exploring these conformational landscapes is thus an effective strategy to

reveal structural alterations associated with majority of remote-site mutations of SETD8 for qualita-

tive functional annotation. More importantly, this change provides a mechanistic rationale of the allo-

steric effect of remote residues of SETD8 with reference to its conformational landscape.

Discussion
Here we have demonstrated that tight integration of structural determination—using covalent

probes and multiple ligand-binding states to trap hidden conformations (Figure 1)—with distributed

molecular simulations and the powerful framework of Markov state models (Figure 3b) can provide

insights into the detailed conformational dynamics of an enzyme. The current work demonstrates

the merit of an approach that leverages multiple X-ray structures with distinct diverse conformations

of a PKMT for MD simulations and machine-learning-based MSM construction to elucidate complex

conformational dynamics, and corroborates the resulting model experimentally with testable bio-

physical predictions (Figures 6–8). Previously, individual components of our integrative strategy

have been employed to study the dynamics of transcriptional activators (Wang et al., 2013), kinases

(Shukla et al., 2014; Sultan et al., 2017), and allosteric regulation (Bowman et al., 2015). Several

efforts have also been made to combine experimental and computational approaches to explore

conformational landscapes of proteins and their utilities (Hart et al., 2016; Knoverek et al., 2019;

Latallo et al., 2017; Zimmerman et al., 2017). However, it is the first time that these diverse

approaches are consolidated explicitly with the goal of illuminating conformational dynamics of a

PKMT in a comprehensive and feasible manner. Assessment of key computational parameters con-

cluded that we have utilized sufficient or even redundant seed structures and simulation time for

essentially complete microstate discovery (Figures 9 and 10). This implementation is essential for

the current work because of the lack of the conformational landscapes of PKMTs as reference or for

Figure 12 continued

pair of residues is scored as ‘1’ if their distance is shorter than 4.0 Å; ‘0’ if the distance is equal or above 4.0 Å. For the 60 1ZKK(chain A)-seeded MD

trajectory frames of wild-type apo-SETD8, the average contact fraction of each residue pair is presented in a square shape and depicted with a gray

gradient at the corresponding vertical and horizontal coordinates. The contact fraction of cancer-associated SETD8 mutants were obtained in a similar

manner. The vertical and horizontal coordinates of representative positive changes of the contact scores from wild-type to mutated SETD8 (newly

acquired interactions) are highlighted in red-gradient squares with details expanded in the next panel. (d) Representative contacts in the differential

residue-contact maps of cancer-associated SETD8 mutants. The contacts of SETD8 mutants with >3 fold gain of contact fraction relative to wild-type

SETD8 are listed. Increased magnitude of the contact fraction is depicted in red gradient as described in the previous panel. Only positive changes

(newly acquired interactions) are presented with the two residues involved labeled in left and top; the fold of the increase of their contact score labeled

in bottom. (e) Cartoon representations of neo-conformations revealed by simulations of SETD8 mutants. Large conformational changes are observed in

the SET-I (purple) and post-SET (orange) motifs. (f) Differential residue-contact maps of the structurally relaxed a-helix at the SET-I motif of SETD8

A296T mutant. Decrease of contact fraction relative to wild-type SETD8 is depicted in blue gradient. (g) Enzymatic activities of wild-type and mutated

SETD8 determined by an in vitro radiometric assay with H4K20 peptide substrate. Here SETD8 mutants are categorized as the following: red,

uncovered neo-conformations (Neo-conf.) with >90% loss of methyltransferase activity; green, populated inactive conformations (Pop. shift) with

partially abolished methyltransferase activity; blue, no large change of differential contact maps with comparable methyltransferase activity with wild-

type SETD8; brown, unknown relationship between differential contact maps and methyltransferase activities. Data are mean ±standard deviation (s.d.)

of 3 replicates.

DOI: https://doi.org/10.7554/eLife.45403.028

The following figure supplements are available for figure 12:

Figure supplement 1. Cartoon representations of cancer-associated SETD8 variants with more populated inactive conformations.

DOI: https://doi.org/10.7554/eLife.45403.029

Figure supplement 2. Cancer-associated mutations in the SET-I region of PKMTs reported in cBioPortal.

DOI: https://doi.org/10.7554/eLife.45403.030
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validation. Notably, we relied on a unique computational resource—Folding@home—to collect six-

millisecond of aggregate simulation data (see Materials and methods). Without access to Folding@-

home, contemporaneous progress on developing adaptive Markov state model construction algo-

rithms—where iterative model building guides the collection of additional simulation data

(Hruska et al., 2018; Shamsi et al., 2017; Zimmerman et al., 2018)—will still allow research groups

to achieve this feat on local GPU clusters or cloud resources in the near future. Furthermore, the con-

cept of adaptive model construction can be extended to identify which new structural or biophysical

data would be valuable in reducing uncertainty (Dixit and Dill, 2018; Matsunaga and Sugita, 2018;

Olsson et al., 2017) and producing refined MSMs. Utilizing the slow collective variables identified

here, advanced sampling methods such as metadynamics (Saladino and Gervasio, 2012) or

umbrella sampling (Meng and Roux, 2014) can be applied to more efficiently compute the free

energy landscape for SETD8 and its mutants. With a transfer learning approach (Sultan et al., 2017),

it is also possible to adapt these collective variables to other members of the PKMT protein family.

This work represents the first time that conformational dynamics of a protein methyltransferase

have been definitively characterized with atomic details. SETD8 adopts extremely diverse dynamic

conformations in apo and SAM-bound states (24 and 10 kinetically metastable macrostates, respec-

tively, Figure 4). Interconversions between metastable conformers cover a broad spatio-temporal

scale in particular associated with motions of SETD8’s SET-I and post-SET motifs (Figures 1, 2 and

11). In the apo landscape, the general structural features of the X-ray structures of BC-Inh1, BC-

Inh2, APO, BC-SAM and TC (Figure 1) are recapitulated by a subset of macrostates (e.g. A6 for BC-

Inh1; A10 for BC-Inh2; A12 for APO; A20 for BC-SAM; A22, A24 for TC, 6 of 24 macrostates, Fig-

ure 11). Such observation indicates that these X-ray structures trapped in the different ligand-bind-

ing states are not ligand-induced artifacts but indeed relevant snapshots of hidden conformations of

apo-SETD8. Similarly, a few macrostates in the SAM-bound landscape also recapitulate major struc-

tural features of the two cofactor-bound X-ray structures (e.g. S1, S2, S10 for BC-SAM, S4, S6, S8 for

TC, 6 of 10 macrostates, Figure 11). Meanwhile, our results also demonstrate that X-ray crystallogra-

phy alone is insufficient to capture all metastable conformations of SETD8. In addition, there is no

correlation of overall structural similarity and interconversion rates between metastable conformers.

As observed previously in other studies of protein dynamics (Bowman and Pande, 2010), in addition

to fast transitions between structurally similar conformers and slow transitions between structurally

distinct conformers (e.g. microstates within individual satellite macrostates A17�A24 of apo--SETD8;

S6, S8, and S10 of SAM-bound SETD8, Figure 11), we frequently observed fast kinetics of transitions

between structurally distinct microstates (e.g. microstates within hub-like macrostates A11 and S8;

multi-connected states A1�A4, A9, A14, S1 and S3�S5) and vice versa (e.g. macrostates A22 and

A24) (Figures 4 and 11). It is thus interesting to examine how other factors such as specific residue

contacts and cooperative long-range motions of certain structural motifs play roles in interconversion

kinetics. Meanwhile, utilizing the power of Markov state models to stitch together multiple short

(microseconds long) trajectories and generate synthetic trajectories orders of magnitude longer

(milliseconds), we visualized the MSMs of apo- and SAM-bound SETD8 via 2 ms long (enough to visit

all macorstates) movies (Videos 1 and 2).

Video 1. A 2 ms molecular dynamics trajectory

simulated from the HMM of apo-SETD8.

DOI: https://doi.org/10.7554/eLife.45403.031

Video 2. A 2 ms molecular dynamics trajectory

simulated from the HMM of SAM-bound SETD8.

DOI: https://doi.org/10.7554/eLife.45403.032
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Functional annotation of the landscapes revealed that the SET-I motif adopts diverse conforma-

tions (Figures 4 and 5), and its overall configuration is a key feature that differentiates the lobes of

the dumbbell-like conformational landscape of SETD8. The conformational dynamics within the hub-

like macrostate A11 primarily involve motions of the SET-I motif, secondarily coupling a shift of the

post-SET motif. Two gain-of-function I293G and E292G variants of SETD8 were designed for relaxing

constrained elongate helix configurations of the SET-I motif upon SAM binding (Figure 6). These

findings argue the functional essentiality of the intrinsically dynamic motions of SET-I motif for

SETD8 SAM binding and catalysis. Importance of dynamic conformational modulation of the SET-I

motif has also been shown for other SET-domain PKMTs. For instance, the SET domains of MLLs and

EZH1/2 alone are catalytically inert but active in the presence of binding partners WDR5-RbBP5-

Ash2L-Dpy30 (referred as MLL-WRAD) and EED-Suz12 (referred as PRC2), respectively (Luo, M.,

2018). Recent structural evidence implicated that the formation of these complexes regulates the

conformational dynamics of the SET-I motif, which is essential for catalysis (Justin et al., 2016;

Li et al., 2016). Interestingly, this region has also been exploited by cancer-associated mutants of

PKMTs. For instance, NSD2’s E1099 is located in its SET-I motif and its E1099K mutant was charac-

terized as a hot-spot cancer mutation with the gain-of-activity of H3K36 methylation (Oyer et al.,

2014). Additionally, many mutations of PKMTs have been mapped in their SET-I motifs, implicating

their potential roles in alternation of function (Figure 12—figure supplement 2, Supplementary file

1o). In contrast to static X-ray structures, this analysis greatly facilitated the characterization of can-

cer-associated SETD8 mutants (Figure 12). Among the 20 examined SETD8 mutations, eight deplete

the pre-existing conformations of TC and showed the partial loss of activity in comparison with wild-

type SETD8 (8 out of 8); eight have neo-conformations with four characterized with the partial loss

of methyltransferase activity (4 out of 8); four do not affect the conformational landscape with two

characterized for no loss of methyltransferase activity (2 out of 4). Collectively, comparing the confor-

mational landscapes between SETD8 mutations and wild-type TC allows us to predict the methyl-

transferase activity with 70% accuracy (14 out of 20). However, we could not quantitatively correlate

the amounts of the neo- or altered conformations of these SETD8 mutants with their methyltransfer-

ase activities. We reason that certain nonnative conformations can still be catalytically active. A sig-

nificant portion of cancer-associated, loss-of-function SETD8 mutations, though remote from active

sites, were revealed to perturb the SET-I motif and thus catalysis allosterically via altering the confor-

mational landscape, which is relevant to the formation of the ternary complex and likely the transi-

tion state of native SETD8 (Figure 12). We also discovered significant changes in the connective

networks and a large decrease in conformational heterogeneity of SETD8 upon SAM binding (Fig-

ures 4 and 5). This finding highlights how SETD8-SAM interactions reshape conformational land-

scapes. The conformational landscapes of SETD8 thus provide a platform for virtual screening of

ligand candidates as inhibitors via exploring different modes of interaction (SAM-competitive, sub-

strate-competitive, covalent or allosteric). Uncovering hidden conformations can thus be essential

for developing potent and selective SETD8 inhibitors by targeting these conformations.

Furthermore, it seems feasible that additional simulation effort—if appropriately allocated among

poorly-sampled transitions—can produce a statistically precise kinetic model of the conformational

dynamics of apo- and SAM-bound SETD8, and that these landscapes could be used to seed simula-

tions for the construction of atomistic models of the rest of the catalytic cycle. Furthermore, the

structural information in the resulting models and the kinetic experimental observables could be rec-

onciled using the dynamical fingerprints framework (Noé et al., 2011). This approach can also be

used to design new experiments by proposing locations of site-specific labels for optimal experi-

mental probing of the molecular relaxation processes of interest. Future work could therefore furnish

a quantitative atomistic explanation of the experimentally observed kinetics.

Additionally, these metastable states could be paired with alchemical free energy calculations

(Gapsys et al., 2016) to rapidly assess the impact of point mutations on the populations of each

metastable state in each stage of the catalytic cycle to aid the annotation of the functional impact of

these mutations. A prerequisite of our approach was the determination of conformationally diverse

structures as seeds for molecular simulations. Here, this was achieved with Cys-covalent inhibitors

and native ligand depletion because of the lack of conventional structural probes of SETD8. Given

the significant interest in exploring PKMT catalysis and developing selective inhibitors to study func-

tions (Luo, 2018), we envision applying similar strategies to other native or disease-associated

PKMTs (Nacev et al., 2019).
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Materials and methods

Key resources table

Reagent
type (species)
or resource Designation

Source or
reference Identifiers

Additional
information

Gene (Homo sapiens) Human SETD8
catalytic domain

Blum et al., 2014 Uniprot: Q9NQR1-1 (positions 232–393) with an N-terminal
6 � His tag
for in vitro
crystallography

Gene (Homo sapiens) Human SETD8
catalytic domain

Ma et al., 2014 Uniprot: Q9NQR1-1 (positions 232–393) with an N-terminal
6 � His tag
for crystallogra
BC-Inh2 and

Gene (Homo sapiens) Human SETD8
catalytic domain

Addgene Plasmid #51327 with an N-terminal
6 � His tag
for crystallogra
of BC-Inh1

Strain, strain
background (E. coli)

Rosetta 2(DE3) Novagen #71400

Strain, strain
background (E. coli)

BL21-CodonPlus(DE3)-RIL Stratagene #230245

Strain, strain
background (E. coli)

BL21 (DE3) V2R-pRARE SGC

Sequence-
based reagent

Forward Primer for K382P IDT 5’-CTATGGGGACC
CGGCTTCCATTGAAG

Sequence-
based reagent

Forward Primer for I293G IDT 5’-CGGGG
GCACCGACGCCAAG

Sequence-
based reagent

Forward Primer for E292G IDT 5’-CGGGG
GCATCACCGACGC

Peptide,
recombinant
protein

H4K20 peptide (10-30) The Rockefeller
University Proteomics
Resource Center

NH2-LGKGG
KVLRDNIQGIT-COOH

Chemical compound SAM Sigma Aldrich #A2408

Chemical compound [3H-Me]-SAM PerkinElmer
Life Sciences

#NET155001MC

Commercial
assay or kit

UltimaGold PerkinElmer
Life Sciences

#6013327

Software, algorithm Anaconda Python Oliphant, 2007;
Millman and Aivazis, 2011

Software, algorithm ARP/wARP Perrakis et al., 1997;
Murshudov et al., 2011

Software, algorithm AUTOBUSTER Emsley et al., 2010

Software, algorithm CCP4 suite Collaborative Computational Project, Number 4, 1994

Software, algorithm COOT Emsley and Cowtan, 2004

Software, algorithm Ensembler 1.0.5 Parton et al., 2016

Software, algorithm Folding@home Shirts and Pande, 2000

Software, algorithm GRADE Bruno et al., 2004

Software, algorithm HKL2000 PMID: 27799103

Software, algorithm IPython Perez and Granger, 2007

Software, algorithm Jupyter Notebook DOI: 10.3233/978-1-61499-649-1-87

Software, algorithm KinTek Explorer Johnson et al., 2009

Software, algorithm matplotlib 2.2.2 Hunter, 2007

Software, algorithm MDTraj McGibbon et al., 2015a

Software, algorithm MOGUL Langer et al., 2008

Continued on next page
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Continued

Reagent
type (species)
or resource Designation

Source or
reference Identifiers

Additional
information

Software, algorithm MolProbity PMID: 20057044

Software, algorithm MOLREP PMID: 20057045

Software, algorithm MSMBuilder Harrigan et al., 2017

Software, algorithm MSMExplorer 1.1 Harrigan et al., 2017

Software, algorithm NumPy https://www.numpy.org

Software, algorithm OpenMM 6.6.1 Eastman et al., 2013

Software, algorithm Origin 7.0 OriginLab

Software, algorithm OriginPro 2018 OriginLab

Software, algorithm pandas https://conference.
scipy.org/proceedings/
scipy2010/pdfs/
mckinney.pdf

Software, algorithm PDBFixer 1.3 https://github.
com/pandegroup/pdbfixer

Software, algorithm PHASER McCoy, 2007

Software, algorithm phenix.refine Adams et al., 2010;
Afonine et al., 2012

Software, algorithm POINTLESS/
AIMLESS

Evans and Murshudov, 2013

Software, algorithm PRODRG Schüttelkopf and van Aalten, 2004

Software, algorithm PyEMMA Scherer et al., 2015

Software, algorithm PyMOL 1.8.4 Schrödinger, LLC

Software, algorithm REFMAC Murshudov et al., 1997

Software, algorithm seaborn 0.8.1 DOI: 10.5281/zenodo.883859

Software, algorithm MODELLER 9.16 Sali and Blundell, 1993

Software, algorithm XDS Kabsch, 2010

Software, algorithm XtalView McRee, 1999

Synthesis of MS4138 (Inh1)
General procedure for synthesis of MS4138 (Inh1)
HPLC spectra for all compounds were acquired using an Agilent 1200 Series system with DAD

detector. Chromatography was performed on a 2.1 � 150 mm Zorbax 300 SB-C18 5 mm column

with water containing 0.1% formic acid as solvent A and acetonitrile containing 0.1% formic acid as

solvent B at a flow rate of 0.4 mL/min. The gradient program was as follows: 1% B (0–1 min), 1–99%

B (1–4 min), and 99% B (4–8 min). High resolution mass spectra (HRMS) data were acquired in posi-

tive ion mode using an Agilent G1969A API-TOF with an electrospray ionization (ESI) source. Nuclear

Magnetic Resonance (NMR) spectra were acquired on a Bruker DRX-600 spectrometer with 600

MHz for proton (1H-NMR) and 150 MHz for carbon (13C-NMR); chemical shifts are reported in ppm

(d). Preparative HPLC was performed on Agilent Prep 1200 series with UV detector set to 254 nm.

Samples were injected onto a Phenomenex Luna 75 � 30 mm, 5 mm, C18 column at room tempera-

ture. The flow rate was 30 mL/min. A linear gradient was used with 10% (or 50%) of MeOH (A) in

H2O (with 0.1% TFA) (B) to 100% of MeOH (A). HPLC was used to establish the purity of target com-

pounds. All final compounds had >95% purity using the HPLC methods described above.

N-(3-((7-hydroxy-6-methoxy-2-(pyrrolidin-1-yl)quinazolin-4-yl)amino)propyl)-
acrylamide (3)
The precursor N-(7-(benzyloxy)�6-methoxy-2-(pyrrolidin-1-yl)quinazolin-4-yl)propane-1,3-diamine 2

was prepared from 7-(benzyloxy)�2,4-dichloro-6-methoxyquinazoline1 as previously published
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(Butler et al., 2016) and dissolved in methanol. Into the solution were added Pd/C and ammonium

formate, and stirred for 1 hr at 80˚C. The filtrate of the expected product 4-((3-aminopropyl)amino)-

6-methoxy-2-(pyrrolidin-1-yl)quinazolin-7-ol was collected, concentrated and directly used for next

step without purification. To the solution of 4-((3-aminopropyl)amino)-6-methoxy-2-(pyrrolidin-1-yl)

quinazolin-7-ol (150 mg, 0.47 mmol, calculated on the basis of the starting material 2) and methanol

(2.5 mL) were added potassium carbonate (78 mg, 0.56 mmol) and acryloyl chloride (46 mL, 0.56

mmol) successively. The resulting suspension was stirred for 2 hr at room temperature. After removal

of the solvent under vacuum, the residue was redissolved in dichloromethane, and washed with

brine. The organic layer was dried, concentrated and purified by ISCO CombiFlash to give com-

pound N-(3-((7-hydroxy-6-methoxy-2-(pyrrolidin-1-yl)quinazolin-4-yl)amino)-propyl)acrylamide 3 (60

mg, yield 34%). 1H-NMR (600 MHz, CD3OD) d 7.52 (s, 1H), 6.96 (s, 1H), 6.22 (dd, J = 6.0, 4.3 Hz,

2H), 5.67 (dd, J = 8.5, 3.5 Hz, 1H), 3.96 (s, 3H), 3.76–3.54 (m, 6H), 3.38 (t, J = 6.8 Hz, 2H), 2.07 (br.s,

4H), 1.97 (p, J = 6.9 Hz, 2H). HRMS calcd for C19H25N5O3 + H, 372.2030; found, 372.2043 [M + H]+.

N-(3-((7-(2-aminoethoxy)-6-methoxy-2-(pyrrolidin-1-yl)quinazolin-4-yl)amino)
propyl)-acrylamide (MS4138 or Inh1)
To a suspension of N-(3-((7-hydroxy-6-methoxy-2-(pyrrolidin-1-yl)quinazolin-4-yl)amino)propyl)-acryl-

amide 3 (60 mg, 0.16 mmol), KI (5 mg, 0.03 mmol), K2CO3 (66 mg, 0.48 mmol) and acetonitrile (10

mL) was added 2-(Boc-amino)ethyl bromide (36 mg, 0.16 mmol). The resulting suspension was

stirred for 3 days at 90˚C until LCMS showed that most of the starting material had disappeared.

After purification by reverse phase ISCO CombiFlash, tert-butyl (2-((4-((3-acrylamidopropyl)amino)�

6-methoxy-2-(pyrrolidin-1-yl)quinazolin-7-yl)oxy)ethyl)carbamate 4 was obtained and dissolved in

dichloromethane (3.0 mL). To the solution of 4 was added trifluoroacetic acid (37%, 0.2 mL) at 0˚C.

The resulting solution was stirred at room temperature for 4 hr until LCMS showed that the starting

material had disappeared. After removal of the solvent under vacuum, the residue was purified by

HPLC to give the desired compound MS4138 (Inh1) as a TFA salt, white solid (8 mg, yield 10% for

two steps). 1H-NMR (600 MHz, CD3OD): d 7.65 (s, 1H), 7.19 (s, 1H), 6.28–6.16 (m, 2H), 5.67 (dd,

J = 9.0, 3.0 Hz, 1H), 4.43–4.33 (m, 2H), 3.99 (br.s, 3H), 3.74 (t, J = 6.9 Hz, 4H), 3.62 (br.s, 2H), 3.52–

3.44 (m, 2H), 3.39 (t, J = 6.8 Hz, 2H), 2.15 (br.s, 2H), 2.05 (br.s, 2H), 1.98 (dt, J = 13.8, 6.8 Hz, 2H)

(Appendix 1—figure 16). 13C NMR (151 MHz, CD3OD) d 168.3, 160.4, 155.1, 151.6, 148.6, 136.8,

132.0, 126.8, 105.5, 104.7, 101.2, 66.8, 57.0, 47.4 (two carbons), 40.3, 40.0, 38.0, 29.7, 26.8, 25.6

(Appendix 1—figure 17). HRMS calcd for C21H30N6O3 + H, 415.2452; found, 415.2444 [M + H]+.

Synthesis of SGSS05NS (Inh2)
General procedure for synthesis of SGSS05NS (Inh2)
High resolution mass spectra (HRMS) data were acquired in positive ion mode using a Waters LCT

Premier XE with an electrospray ionization (ESI) source. Nuclear Magnetic Resonance (NMR) spectra

were acquired on a Bruker Avance III 500 spectrometer with 600 MHz for proton (1H-NMR) and

Bruker Avance III 600 spectrometer with 150 MHz for carbon (13C-NMR); chemical shifts are reported

in ppm (d).

2-Chloro -3-(4-methyl-1-piperazinyl) -1, 4-naphthalenedione (SGSS05N)
2,3-Dichloro-1,4-naphthalenedione 5 (100 mg, 0.44 mmol) was reacted with 1-methyl-piperazine (49

mL, 0.44 mmol) in 1,4-dioxane (5 mL) overnight at room temperature. The resulting mixture was

washed with saturated sodium bicarbonate and extracted with 20 mL ethylacetate. The organic

phase was further washed with water and brine, dried on sodium sulfate and concentrated by rotary

evaporation. The final product was purified by normal phase silica gel flash chromatography (metha-

nol/dichloromethane, 9:1). The desired product was obtained as red orange liquid (109 mg, yield

85%). 1H-NMR (500 MHz, chloroform-d) d 8.12 (dd, J = 7.6, 1.6 Hz, 1H), 8.01 (dd, J = 7.9, 1.7 Hz,

1H), 7.72–7.65 (m, 2H), 3.65 (dd, J = 6, 4.86 Hz, 4H), 2.64–2.62 (m, 4H), 2.38 (s, 3H) (Appendix 1—

figure 18). 13C-NMR (151 MHz, chloroform-d) d 182.11, 178.35, 149.95, 134.55, 133.61, 131.83,

131.65, 127.28, 127.01, 124.28, 55.52, 50.64, 45.83 (Appendix 1—figure 19). HRMS calcd for

C15H15ClN2O2 + H, 291.0900; found, 291.0894 [M + H]+.
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2-(4-methyl- 1- piperazinyl) -3-(phenylthio) -1,4-naphthalenedione
(SGSS05NS)
2-chloro -3-(4-methyl-1-piperazinyl)-1, 4-naphthalenedione (SGSS05N) (100 mg, 0.34 mmol) was

reacted in methanol (5 mL) with thiophenol (70 mL, 0.68 mmol) in the presence of triethylamine (95

mL, 0.68 mmol) overnight at room temperature. The resulting mixture was washed with saturated

sodium bicarbonate, and extracted with 20 mL ethylacetate. The organic phase was further washed

with water and brine, dried on sodium sulfate and concentrated by vacuum. The final products were

purified on silica gel flash chromatography (methanol/dichloromethane, 9:1). After removing the sol-

vent through rotary evaporation, a red dark liquid was collected as the final product, 2-(4-methyl-1-

piperazinyl)-3-(phenylthio)�1,4-naphthalenedione (SGSS05NS) (115 mg, yield 93%). 1H-NMR (500

MHz, Chloroform-d), d 8.07 (dd, J = 7.1, 1.7 Hz, 1H), 8.02 (dd, J = 6.8, 1.6 Hz, 1H), 7.70–7.65 (m,

2H), 7.25–7.21 (m, 4H), 7.17–7.13 (m, 1H), 3.51 (dd, J = 6.2, 3.9 Hz, 4H), 2.58–2.49 (m, 4H), 2.31 (s,

3H) (Appendix 1—figure 20). 13C-NMR (151 MHz, chloroform-d) d 182.47, 182.11, 154.17, 136.29,

134.34, 133.29, 132.86, 132.37, 129.36, 128.14, 127.09, 126.91, 126.67, 55.68, 51.37, 46.15 (Appen-

dix 1—figure 21). HRMS calcd for C21H20N2O2S + H, 365.1324; found, 365.1331 [M + H]+.

Preparation of SETD8 and its mutants for biochemical assays
Human SETD8 catalytic domain (Uniprot Q9NQR1-1 positions 232–393, SRKSKAELQSEERKRIDELIE

SGKEEGMKIDLIDGKGRGVIATKQFSRGDFVVEYHGDLIEITDAKKREALYAQDPSTGCYMYYFQYLSKTYC

VDATRETNRLGRLINHSKCGNCQTKLHDIDGVPHLILIASRDIAAGEELLDYGDRSKASIEAHPWLKH) with

an N-terminal 6 � His tag in pHIS2 vector was overexpressed in E. coli Rosetta 2(DE3) in LB medium

in the presence of 100 mg/ml of ampicillin. Cells were grown at 37˚C to an OD600 of 0.4 ~ 0.6 and

the expression of SETD8 was induced by 0.4 mM isopropyl-1-thio-D-galactopyranoside (IPTG) at 17˚

C overnight. Harvested cells were suspended in a lysis buffer (50 mM Tris-HCl, pH = 8.0, 25 mM

NaCl, 10% Glycerol, 25 mM imidazole) supplemented with EASY pack protease inhibitor (one tablet/

10 mL solution), a tip amount of lysozyme and DNAase I. The mixture was lysed by FrenchPress.

SETD8 (aa 232–393) was purified by a Ni-NTA column subjected to a washing buffer (50 mM Tris-

HCl, pH = 8.0, 25 mM NaCl, 10% glycerol, 25 mM imidazole) and then an eluting buffer (50 mM

Tris-HCl, pH = 8.0, 25 mM NaCl, 10% glycerol, 400 mM imidazole). The protein was further purified

by a Superdex-75 gel filtration column with a buffer containing 25 mM Tris-HCl (pH = 8.0), 200 mM

NaCl, and 10% glycerol. The elution fractions were pooled, supplemented with 5 mM of tris(2-car-

boxyethyl)phosphine (TCEP), and concentrated to about 60 mg/mL for storage at �80˚C. All purifica-

tion was conducted at 4˚C. The N-terminal 6 � His SETD8 (aa 232–393) construct was used to

measure IC50 of SETD8 inhibitors. Plasmids of SETD8 mutants were generated by QuickChange site-

directed mutagesis kit (Stragaene) according to manufacturer’s instructions and validated by DNA

sequencing. Primer sequences for mutagesis were designed by PrimeX and listed in

Supplementary file 1p. SETD8 mutants were expressed and purified as described above for wild-

type SETD8.

Measurement of IC50 of SETD8 inhibitors
The IC50 of SETD8 inhibitors were measured by a previously reported filter plate assay (Blum et al.,

2014; Ibanez et al., 2012) with some modifications. DMSO stock solutions of SETD8 inhibitors with

different concentrations were prepared through series dilution. The final assay mixture (a total vol-

ume of 20 mL) contains 300 nM SETD8 protein (N-terminal 6 � His taged, amino acid 232–393), 10

mM H4K20 peptide (aa 10–30, prepared by Rockefeller University Proteomics Resource Center, New

York, NY), 1.5 mM [3H-Me]-SAM (PerkinElmer Life Sciences), and various concentrations of inhibitors

in a reaction buffer (50 mM HEPES, pH = 8.0, 0.005% Tween-20, 5 mg/mL BSA, 1 mM TCEP and

0.5% DMSO). Prior to each reaction, 10 mL of a reaction mixture containing 2 � concentrations of

SETD8 and inhibitors was pre-incubated at ambient temperature (22˚C) for 2 hr. 10 mL of another

reaction mixture containing 2 � concentrations of peptide and [3H-Me]-SAM was then added to ini-

tialize the reaction. The resulting mixture was allowed to react at ambient temperature (22˚C) for 2

hr. 3 � 6 mL (total 18 mL) of this mixture were spotted onto 3 wells of MultiScreenHTS PH Filter plate

(Millipore) to immobilize 3H-labeled peptide. After drying in ambient air overnight, each well was

washed 6 times with 200 mL of 50 mM Na2CO3/NaHCO3 buffer (pH = 9.2), followed by the addition

of 30 mL Ultima Gold scintillation cocktail (PerkinElmer Life Sciences). The plate was sealed and the
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mixture was further equilibrated for 30 min. The immobilized radioactivity of 3H-labeled peptide was

quantified by 1450 Microbeta liquid scintillation counter. The inhibition curve was generated accord-

ing to the equation: Percentage of inhibition = [("CPM of no inhibitor control" – "CPM of a reaction

mixture")/("CPM of no inhibitor control" – "CPM of background")]�100%. The IC50 values were

obtained by fitting inhibition percentage versus concentrations of inhibitors using GraphPad Prism.

Data presented are best fitting values ± s.e.

Crystallography
BC-Inh1 (6BOZ)
Human SETD8 catalytic domain (amino acids 232–393) with a C343S mutation and an N-terminal

6 � His tag in pHIS2 vector was overexpressed in E. coli BL21-CodonPlus(DE3)-RIL in Terrific Broth

medium in the presence of 100 mg/ml of carbenicillin and 30 mg/ml of chloramphenicol. Cells were

grown at 37˚C to an OD600 of 2.5 and SETD8 expression was induced by 0.3 mM IPTG with a supple-

ment of 1 mM zinc sulfate at 15˚C overnight. Harvested cells were suspended in a lysis buffer (50

mM sodium phosphate, pH = 7.5, 0.5 mM NaCl, 5% glycerol) and lysed by microfluidizer. The

SETD8 protein (aa 232–393) was purified by a Ni-NTA column. The column was washed by a washing

buffer (50 mM sodium phosphate, pH = 7.5, 0.5 mM NaCl, 5% glycerol) and the protein was eluted

by an eluting buffer (50 mM Tris, pH = 8.0, 250 mM NaCl, 250 mM imidazole, 0.5 mM TCEP). N-ter-

minal His tag was removed by TEV protease. The protein was further purified by a Superdex 200

(26/600) gel filtration column with a buffer containing 50 mM Tris-HCl (pH = 8.0) and 150 mM NaCl.

The elution fractions were pooled and supplemented with 0.5 mM of TCEP. All purification steps

were performed at 4˚C and in the presence of a protease inhibitor AEBSF (Goldbio).

The purified SETD8 protein sample was mixed with Inh1 (MS4138) at a molar ratio of 1:5, and

incubated at 4˚C overnight. The solution was then concentrated to about 20 mg/mL and crystallized

with the hanging drop vapor diffusion method at 17˚C by mixing equal volume of the protein solu-

tion with the reservoir solution (0.1 M HEPES, pH = 7.0, 20% (w/v) PEG 6,000, 0.2 M MgCl2). SETD8-

MS4138 crystals (BC-Inh1) were soaked in the corresponding reservoir liquor supplemented with

20% ethylene glycol as cryoprotectant before flash freezing in liquid nitrogen. X-ray diffraction data

were collected at 100K at NE-CAT beamline 24-ID-E of Advanced Photon Source (APS) at Argonne

National Laboratory. The data integration and reduction were performed with MOSFLM and SCALA,

respectively, from the CCP4 suite (Collaborative Computational Project, Number 4, 1994). The

structures of the SETD8-MS4138 complex were solved by molecular replacement using PHASER

software (McCoy, 2007) using the atomic model of the SETD8 catalytic domain (PDB file 4IJ8). The

locations of the bound molecules were determined from a Fo-Fc difference electron density map.

REFMAC (Murshudov et al., 1997) and phenix.refine (Adams et al., 2010; Afonine et al., 2012)

were used for structure refinement. Graphic program COOT (Emsley and Cowtan, 2004) was used

for model building and visualization. The overall assessment of model quality was performed using

MolProbity (Chen et al., 2010). Data reduction and refinement statistics are summarized in Table 1.

BC-Inh2 (5W1Y)
Human SETD8 catalytic domain (amino acid 232–393) with a C343S mutation and an N-terminal

6 � His tag in pHIS2 vector was overexpressed in E. coli BL21 (DE3) V2R-pRARE in Terrific Broth

medium in the presence of 50 mg/ml of ampicillin and 50 mg/ml of chloramphenicol (Ma et al.,

2014). Cells were grown at 37˚C to an OD600 of 1.5 and SETD8 expression was induced by 1 mM

IPTG at 15˚C overnight. Harvested cells were suspended in lysis buffer (50 mM Tris-HCl, pH = 8.0,

300 mM NaCl, 20 mM imidazole, 1 mM phenylmethyl sulfonyl fluoride (PMSF)) and lysed by sonica-

tion. SETD8 (aa 232–393) was purified by Ni-NTA column. The column was washed by a washing

buffer (50 mM Tris-HCl, pH = 8.0, 300 mM NaCl, 20 mM imidazole) and the protein was eluted by

an eluting buffer (50 mM Tris-HCl, pH = 8.0, 300 mM NaCl, 250 mM imidazole). N-terminal His tag

was removed by TEV protease. The protein was further purified by a Superdex-75 gel filtration col-

umn with a buffer containing 50 mM Tris-HCl (pH = 8.0), 100 mM NaCl and 5 mM 1,4-dithiothreitol

(DTT). The elution fractions were pooled and concentrated to about 0.7 mg/mL.

The purified SETD8 protein sample (final concentration 1.4 mM) was mixed with Inh2 (SGSS05NS,

final concentration 4.2 mM) at a molar ratio of 1:3, and incubated on ice for 3 hr until SETD8 was

completely covalently modified (confirmed by mass spectrometry). Crystals were initially obtained
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with a sitting-drop vapor diffusion method at the condition of 0.2 M NaF, 20% w/v polyethylene gly-

col 3350 by mixing 0.5 uL of this solution with 0.5 uL of the SETD8-Inh2 solution against 90 uL reser-

voir buffer at 18˚C. Crystals grew to a mountable size in three days, and were soaked in reservoir

solution with newly added glycerol (v/v 15%) as a cryoprotectant before mounting. Diffraction data

were collected under cooling at beam line 19ID of the Advanced Photon Source and reduced with

XDS (Kabsch, 2010). Intensities for a 100-degree wedge of the images were merged with POINT-

LESS/AIMLESS (Evans and Murshudov, 2013). The structure was solved by molecular replacement

with PHASER software (McCoy et al., 2007) and coordinates from the SETD8-SAM complex

(4IJ8, see below). Geometry restraints for the compound were calculated with PRODRG

(Schüttelkopf and van Aalten, 2004) or, for later stages of refinement, with GRADE (Bruno et al.,

2004), which uses MOGUL (Langer et al., 2008). The protein model was automatically rebuilt with

ARP/wARP (Murshudov et al., 2011; Perrakis et al., 1997). REFMAC (Bricogne et al., 2016) and

AUTOBUSTER were used for restrained refinement (Emsley et al., 2010). COOT and MolProbity

were used for interactive rebuilding and geometry validation, respectively (Adams et al., 2010;

Chen et al., 2010; Yang et al., 2004). Data reduction and refinement statistics are summarized in

Table 1.

BC-SAM (4IJ8)
The conditions for expression and purification of SETD8 (amino acid 232–393 containing a C343S

mutation) for crystallography of BC-SAM is similar to those of BC-Inh2 with slight modifications. Puri-

fied protein samples were concentrated to about 18 mg/mL, and then mixed with SAM at a molar

ratio of 1:10 and incubated on ice for one hour. The sample was crystallized using the sitting drop

vapor diffusion method at 18˚C. The crystals of SETD8 in complex with SAM were grown in a condi-

tion of 1.08–1.2 M trisodium citrate and 100 mM HEPES (pH = 7.5). SETD8-SAM crystals were

soaked in the corresponding reservoir liquor supplemented with 20% ethylene glycol as cryoprotec-

tant before flash freezing in liquid nitrogen. Diffraction images were collected at beam line 08ID of

the Canadian Light Source (Grochulski et al., 2011). Diffraction images were processed with the

HKL software suite (Otwinowski and Minor, 1997) for early stages of structure determination. For

later steps of model refinement, diffraction images were processed with XDS, and intensities further

scaled with SCALA (Evans, 2006). A starting model was obtained from an isomorphous crystal struc-

ture, which had been solved by molecular replacement with coordinates from PDB entry 1ZKK

(Couture et al., 2005). The model was automatically rebuilt with ARP/wARP, manually rebuilt with

COOT, and refined with REFMAC. Data reduction and refinement statistics are summarized in

Table 1.

Apo (5V2N)
Human SETD8 catalytic domain (amino acid 231–393) with mutations of K297A, K298A, E300A and

an N-terminal 6 � His tag in pET28 vector was overexpressed in Rosetta2(DE3) E. coli strain in LB

medium in the presence of 50 mg/L kanamycin and 34 mg/L chloramphenicol. The K297A, K298A,

E300A mutants were introduced to reduce entropy at the protein surface and thus enhance the abil-

ity of apo-SETD8 to crystallize. Cells were grown at 37˚C to an OD600 of 0.8 and SETD8 expression

was induced by 0.4 mM IPTG at 17˚C overnight. Harvested cells were suspended in lysis buffer con-

taining 25 mM Tris (pH = 7.6), 500 mM NaCl, 0.25 mM TCEP, 0.5% Triton X-100, and protease inhib-

itors, and lysed by microfluidizer. SETD8 (aa 231–393) was purified by a cobalt column. The column

was washed by a washing buffer containing 25 mM Tris (pH = 7.6), 500 mM NaCl, 0.25 mM TCEP.

The protein was eluted by an eluting buffer containing 25 mM Tris (pH = 7.6), 500 mM NaCl, 200

mM imidazole, and 0.5 mM TCEP. N-terminal 6 � His tag was removed by TEV protease. The pro-

tein was further purified by a Superdex-75 gel filtration column with a buffer containing 20 mM Tris-

HCl (pH = 7.0), 100 mM NaCl and 1 mM TCEP. The elution fractions were pooled and dialyzed

against 20 mM Tris-HCl (pH = 7.0), 100 mM NaCl and 1 mM TCEP. The peak fractions were pooled,

concentrated to 26 mg/ml, and immediately frozen as aliquots with liquid nitrogen.

Initial crystal trials were conducted with Takeda California’s automated nanovolume crystallization

platform. The purified SETD8 protein sample (26 mg/ml) was crystallized with a sitting drop vapor

diffusion method at 20˚C with reservoirs containing 100 mM Tris (pH 8.2–8.8), 30% PEGMME 550,

and 5% ethylene glycol. Crystals were soaked in the corresponding reservoir liquor supplemented
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with 22% ethylene glycol as cryoprotectant before flash freezing in liquid nitrogen. Diffraction data

were collected from a single cryogenically protected crystal at the Advanced Photon Source (APS)

beamline 23-ID-B at Argonne National Laboratory. Data were reduced using the HKL2000 software

package (Otwinowski and Minor, 1997). The structure was determined by molecular replacement

with either MOLREP (Vagin and Teplyakov, 1997) of the CCP4 program suite utilizing the SETD8

catalytic domain (PDB file 4IJ8) as search model, and refined with the program REFMAC

(Murshudov et al., 1997). Several cycles of model building with XtalView (McRee, 1999) and refine-

ment were performed for improving the quality of the model. Data reduction and refinement statis-

tics are summarized in Table 1.

Preparation of SAM-free SETD8
SAM-free SETD8 was prepared as described previously (Linscott et al., 2016). Briefly, the concen-

trated N-terminal 6 � His tagged SETD8 protein (aa 232–393, ~60 mg/mL) was diluted by about

1:10 ratio (v/v) with a stripping buffer (25 mM Tris-HCl, pH = 8.0, 35 mM KCl, and 5% glycerol). Acti-

vated charcoal was added into the solution (1:1 w/w ratio of protein versus charcoal). The resulting

mixture was incubated for 45 min. The charcoal-treated sample was then centrifuged and filtered to

afford SAM-free SETD8. All these steps were performed at 4˚C. SAM-free SETD8 mutants were pre-

pared in a similar manner.

Isothermal titration calorimetry (ITC)
Dissociation constants of SETD8 with SAM (Sigma-Aldrich) were measured using an Auto-iTC200 cal-

orimeter (MicroCal) at 20˚C. Both SAM and SAM-free SETD8 proteins were dissolved into an assay

buffer containing 50 mM HEPES (pH = 8.0), 0.005% Tween-20, 5 mg/mL BSA, 0.00125% TFA, and 1

mM TCEP. 2.5 mM SAM was titrated into 125 mM SETD8 through 20 injections. Experimental data

were analyzed by Origin 7.0 after correcting the heat generated upon injecting SAM into the assay

buffer. Best fits were obtained with a fixed stoichiometry (N = 1). Data are shown as mean ± s.e. of

at least three biological replicates.

Stopped-flow rapid mixing experiment
The binary binding kinetics of SAM to SETD8 (wild-type and mutants) were studied using stopped

flow spectrometry (SX20, Applied Photophysics). The slit widths of the entrance and exit of the

monochromator were set to 2.0 mm. Equal volume of samples from two 2.5 mL syringes were driven

into a 20-mL observation cell to mix at ambient temperature (22 ˚C), to reach the final concentration

of 1 mM SAM-free SETD8 and serial concentrations of SAM (16 mM to 2000 mM) in a mixing buffer

containing 50 mM HEPES-HCl (pH = 8.0), 0.005% Tween 20, and 1 mM TCEP. 6–8 shots (drives)

were taken for each SAM concentration. Trp fluorescence change was recorded for 1 second upon

mixing with an excitation wavelength of 295 nm and a wavelength cutoff emission filter (� 320 nm).

10000 data points were collected with Pro-Data SX20 software for each stopped-flow experiment.

Data analysis was performed using KinTek Explorer (Johnson et al., 2009). For the global fitting, the

signal traces for all concentrations of SAM were simultaneously fitted to a two-step binding model

with an initial binding step followed by the step of further conformational changes: "E + SAM",

"ES" and "E’S", in which E, ES, and E’S correspond to different states of SETD8. The fluorescence

signal was defined as the expression F = a� [E] + b� [ES] + c� [E’S] + bkg, in which F is the

detected total fluorescence intensity, a, b, and c are fluorescence coefficients of E, ES, and E’S,

respectively, and bkg is the background fluorescence intensity. For the calculation of equilibrium

constants, the equations of Kd1 = k-1/k1, Keq = k-2/k2, and Kd = Kd1 � Keq/(1+ Keq) were followed.

For conventional fittings, the fluorescence data were fitted into Equation. 1, in which F is the fluo-

rescence intensity, A1 and A2 are the amplitudes of the signal changes for fast and slow phases,

respectively, kobs
fast and kobs

slow are the observed rate constants for two phases, and t is time. The

plot of kobs
fast and kobs

slow versus SAM concentrations were fitted with Equation. 2 and Equation. 3,

respectively, where [S] is the concentration of SAM, ki and k-i are the association and dissociation

rate constants for step i (i = 1 or 2), respectively. For individual rate constants, data are best fitting

values ± s.e. from KinTek. Uncertainties of Kd1, Keq, Kd are shown as s.e. calculated by the propaga-

tion of s.e. from individual rate constants and dissociation constants, respectively. Meanwhile, the
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data was also globally fitted into a conformational-selection model (E = E’ + SAM = E’SAM) and

failed to generate good fitting results (Appendix 1—figure 22).

F ¼ A1 � expð�kobs
fast� tÞþA2 � expð�kobs

slow � tÞþC (1)

kobs
fast ¼ k1 �½S�þ k�1 þ k2 þ k�2 (2)

kobs
slow

»

k1� ½S� þ ðk�2 þ k2Þþ k�1� k�2

ðk1� ½S�þ k�1 þ k2þ k�2Þ
ðplateau »k�2 þ k2Þ (3)

Stopped-flow rapid dilution experiment
25 mM SAM-free SETD8 (wild-type and mutants) was pre-mixed with serial concentrations of SAM

(1000 mM to 2000 mM) in the mixing buffer and incubated for 10 min at ambient temperature (22˚C).

The pre-mixed samples were loaded into a 100 mL syringe, and the mixing buffer was loaded into a

2.5 mL syringe. The two syringes were then driven into the observation cell and mixed to achieve a

1:25 dilution of the pre-mixed samples. The time-dependent fluorescence signal changes were

recorded up to 3 s under the same setting as described above for the binding assay. Total of 11333

points were collected with 10000 points for the first 1 s and 1333 points for 1–3 s. Conventional fit-

ting of results was performed using KinTek Explorer following equation: F = A1�exp (-k-1�t)+C, in

which A1 is the amplitude of the signal change, k-1 is the dissociation constant for the first step in

rapid quenching experiment, and t is time. Signals from different concentrations of SAM are fitted

separately, and the average k-1 is calculated accordingly. Data are best fitting values ± s.e. from

KinTek.

Methyltransferase assay of cancer-associated SETD8 mutants
The methyltransferase activities of wild-type and cancer-associated SETD8 mutations were character-

ized by a previously described filter paper assay (Blum et al., 2014; Ibanez et al., 2012) with some

modifications. Briefly, 50 nM SETD8 protein (N-terminal 6 � His tag, amino acids 232–393, wild-type

or mutants), 1.5 mM [3H-Me]-SAM, and 30 mM histone H4 peptide (amino acids 10–30) were incu-

bated in a reaction buffer containing 50 mM HEPES (pH = 8.0), 0.005% Tween 20, 5 mg/mL BSA,

and 1 mM TCEP at ambient temperature (22˚C) for 3 hr. Each reaction mixture was split into three

aliquots and quenched by spotting on phosphor cellulose (P-81) filter paper, followed by 2 hr air-

dry. The dried filter paper was then washed 5 times with 50 mM Na2CO3/NaHCO3 solution

(pH = 9.2). The washed filter paper was then transferred into a scintillation vial, well mixed with 0.5

ml ddH2O and 5 ml Ultima Gold, and analyzed by a Liquid Scintillation Analyzer (Perkin Elmer Tri-

Carb 2910 TR). The methyltransferase activities of SETD8 mutants relative to that of wild-type

SETD8 were calculated with the following equation: Percentage of relative activity = [(CPM of

mutant – CPM of background)/(CPM of wild type – CPM of background)]�100%. Data are presented

as mean ± s.d. of 3 biological replicates.

Molecular dynamics (MD) simulations of apo-SETD8
Preparation of molecular dynamics (MD) simulations
All-atom models of the 162-residue SET-domain-containing apo-SETD8 fragment (amino acids 232–

393, corresponding to the catalytic domain used in our biochemical experiments) were prepared

using Ensembler 1.0.5 (Parton et al., 2016) with default parameters unless otherwise specified.

Ensembler automatically corrects sequence variations and models in missing atoms (Parton et al.,

2016). To prepare apo protein models with diverse conformations for simulation, the crystal struc-

tures of BC-Inh1 (6BOZ), BC-Inh2 (5W1Y), BC-SAM (4IJ8), APO (5V2N), and TC (1ZKK, 2BQZ, 3F9W,

3F9X, 3F9Y, 3F9Z) together with four structural chimeras were used as templates for MODELLER

9.16 (Sali and Blundell, 1993) (see Supplementary file 1a for details). The structural chimeras were

constructed with MDTraj 1.7.2 (McGibbon et al., 2015a) by combining the C-flanking domain (resi-

dues 377–393) with the rest of the protein from different crystal structures with details described

below. Using OpenMM 6.3.1 (Eastman et al., 2013), protonation states appropriate for pH = 7

were assigned with openmm.app.modeller, which uses intrinsic pKa values to determine the most

likely ionization states of individual residues but ensures all models are created with the same
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protonation and tautomeric state so they can be analyzed collectively. The protein was then energy-

minimized for 20 steps and relaxed with 100 ps of implicit solvent dynamics using the OpenMM Lan-

gevin integrator with a 2-fs timestep and a 20 ps�1 collision rate in the NVT ensemble (T = 300 K).

All covalent bonds involving hydrogen were constrained. The protein was then solvated with water

in a cubic box with at least 1 nm padding on all sides of the protein, and neutralized with a minimal

amount of NaCl. All available chains in the template crystal structures were modeled separately (see

SI for details), resulting in 30 simulation-ready structures (representing nine distinct conformers) sol-

vated by an equal number of water molecules (35,200 atoms total). These structures were equili-

brated for 5 ns in the NpT (p=1 atm, T = 300 K) ensemble. Pressure was controlled by a Monte

Carlo molecular-scaling barostat with an update interval of 50 steps. Non-bonded interactions were

treated with the Particle Mesh Ewald method (Darden et al., 1993) using a real-space cutoff of 0.9

nm and relative error tolerance of 0.0005, with grid spacing selected automatically. These simula-

tions were subsequently packaged as seeds for production simulation on Folding@home (Shirts and

Pande, 2000). For all simulations, the parameter files included in the OpenMM 6.3.1 distribution

(Eastman et al., 2013) were used for the Amber ff99SB-ILDN force field (Lindorff-Larsen et al.,

2010), the GBSA-OBC2 implicit solvent model (Onufriev et al., 2004) (for implicit refinement), the

TIP3P rigid water model (Jorgensen et al., 1983) (for explicit equilibration and production), and the

adapted Aqvist (Na+) (Aqvist, 1990) and Smith and Dang (Cl-) (Smith and Dang, 1994) parameters

for NaCl. Default parameters were used unless noted otherwise.

Preparation of structural chimeras as ensembler templates
Four new structural chimeras, in addition to the five crystal structures, were produced by combining

the post-SET motif (residues 377–393, ‘fragment 2’) with the rest of the protein (residues 232–376,

‘fragment 1’) from two different crystal structures. The four new crystal structures (BC-Inh1 (6BOZ),

BC-Inh2 (5W1Y), BC-SAM (4IJ8), and APO (5V2N)) were superposed to TC (1ZKK) in PyMOL 1.8.4

(Schrödinger LLC, 2019) and examined manually. The structural chimeras generated were: (1) I1-P3

(fragment one from TC (1ZKK) or BC-Inh2 (5W1Y) structures— the BC-Inh1 (6BOZ, also I1) structure

was not yet available when this experiment was initialized; fragment two from APO (5V2N) struc-

ture), (2) I2-P3 (fragment one from BC-SAM (4IJ8) structure; fragment two from APO (5V2N) struc-

ture), (3) I2-P4 (fragment one from BC-SAM (4IJ8) structure; fragment two from BC-Inh1 (6BOZ)

structure), and (4) I3-P4 (fragment one from APO (5V2N) structure; fragment two from BC-Inh1

(6BOZ) structure). The heavy-atom-only homology models derived from the corresponding crystal

structures generated by Ensembler 1.0.5 were used to construct the structural chimeras so they

could be directly superimposed for coordinate transfer. The homology models were superposed on

all atoms to the APO structure, and the appropriate fragments were isolated and re-joined using

MDTraj 1.8 (McGibbon et al., 2015a). The resulting models were injected into the Ensembler work-

flow as new templates using a dedicated script, as these features were not yet available in Ensem-

bler. Steric clashes were observed for the following pairs: (1) SET-I motif of BC-SAM (4IJ8) (I2) and

post-SET motif of BC-Inh2 (5W1Y) (P2); (2) SET-I motif of APO (5V2N) (I3) and post-SET motif of TC

(1ZKK) (P1); (3) SET-I motif of APO (5V2N) (I3) and post-SET motif of BC-Inh2 (5W1Y) (P2). The three

combinations were then excluded from subsequent procedures.

Ensembler homology modeling
For the generation of structural chimeras, only ‘A’ chains from the appropriate crystal structures

were used, as this part of the workflow was not automated. For all other seed conformations, if mul-

tiple protein chains were present in the crystal structures, these were treated as separate templates

by Ensembler 1.0.5 in order to increase the conformational heterogeneity of simulation starting

points. When multiple crystal structures of the same conformation were available (e.g. the TC confor-

mation), all chains of all crystal structures were modeled separately. Herein one chain was present in

the APO crystal structure (5V2N), two in the BC-SAM structure (4IJ8), two in the BC-Inh1 structure

(6BOZ), two in the BC-Inh2 (5W1Y) structure, and twenty in the TC structures (1ZKK, 2BQZ, 3F9W,

3F9X, 3F9Y, 3F9Z). In total, 30 final simulation models were generated. The overall set of seed struc-

tures is summarized in Supplementary file 1a.
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Preservation of stereochemistry
During quality checks following the Ensembler automated modeling procedure, it was discovered

that some of the final models showed incorrect Ca stereochemistry on some residues and/or cis-

peptide bonds were present (using VMD 1.9.2; Kruskal, 1964), inspired by a previous study on a 15-

amino-acid a-helix (Schreiner et al., 2011). This was determined to stem from homology modeling

errors or flips during the energy minimization/implicit solvent refinement due to initial strain. This

was solved by repetition of the whole Ensembler workflow for those models a number of times until

no more chirality and/or cis-peptide conformational error was detected. This was not successful

within a reasonable number of repeats for chain ‘C’ of the 1ZKK crystal structure and chain ‘A’ of the

3F9Z crystal structure for unknown reasons. These were replaced with another copy of chain ‘A’ of

1ZKK and chain ‘B’ of 3F9Z.

Diversity of histidine tautomers
Both tautomers of His351 were present in the simulations - the p tautomer (McNaught and Wilkin-

son, 1997) for seed structures TC_APO, BC-Inh2_APO, and BC-SAM_APO (structures 26–28 in

Supplementary file 1a), and the t tautomer for all others. This was because, by default, for all mod-

els created in a given run Ensembler enforces the use of the same tautomer of His351, which is cho-

sen by OpenMM mainly upon consideration of its optimal hydrogen bonding. The models used here

were prepared in three separate Ensembler 1.0.5 runs, as the crystal structures became available. All

data analysis was performed after removing the hydrogen atoms from the trajectories, so that all tra-

jectories had the same topology. To ensure that the mixing of different tautomers did not have an

effect on the overall model estimation, the estimates of kinetics of escape from a selection of macro-

states were compared using subsets of the dataset containing the different tautomers of His351

(Appendix 1—figure 23). The discrete microstate trajectories were transformed into discrete macro-

state trajectories, by changing the label of each microstate to the label of a macrostate to which it

had the largest membership probability in the apo-SETD8 HMM. The count matrices for both trajec-

tory subsets were obtained from PyEMMA 2.5.2 (Scherer et al., 2015) MSM objects at the Markov-

ian lag time t = 50 ns. Macrostates were ranked by the sums of counts out of (out-of-state-

transitions) or remaining (self-transitions) in each macrostate and the ranks obtained from both count

matrices were added. The three macrostates with the highest consensus ranks were chosen for com-

parison (macrostates A9, A1, and A4 in Figure 4). Count matrices were then estimated at lag times

between 50–400 ns, at 50 ns intervals. The probability of remaining in each of the three macrostates

at a given lag time f was estimated by dividing the number of self-transition counts M by the sum of

self- and out-of-state-transitions N: f = M/N. The errors were estimated using the Beta distribution

and assuming Neff = N/t uncorrelated counts as p(f)=Beta(Neff*f, Neff(1–f)). This procedure was

bootstrapped (assuming independent trajectories) 40 times at each lag time, the estimates were

averaged, and the 95% confidence intervals of the mean were determined as 2.5th and 97.5th per-

centiles of the 95% confidence intervals of p(f(t)) traces.

Folding@home simulations
The simulation seeds representing nine distinct conformers (30 distinct structures derived from multi-

ple chains in each PDB structure, see SI for details) were used to initiate parallel distributed MD sim-

ulations on Folding@home (Shirts and Pande, 2000). Production simulations used the same

Langevin integrator as the NpT equilibration described above, except that the Langevin collision

rate was set to 1 ps�1 to provide realistic heat exchange with a thermal bath while minimally per-

turbing dynamics. In total, 5,020 independent MD simulations were generated on Folding@home

(Shirts and Pande, 2000): 600 simulations were produced from each seed conformation prepared

from the five crystal structures, and 500 or 510 simulations for each seed conformation prepared

from the four structural chimeras. At least 500 MD trajectories were produced for each seed confor-

mation. 99.1% of the generated trajectories (4,976 trajectories) successfully reached 1 ms each (see

Appendix 1—figure 1 for length distribution histogram), resulting in 5.058 ms of aggregate simula-

tion time and 10,115,617 frames. This amount of simulation time corresponds to ~231 GPU-years on

an NVIDIA GeForce GTX 980 processor. Conformational snapshots (frames) were stored at an inter-

val of 0.5 ns/frame for subsequent analysis. Prior to data analysis, the first 50 frames (25 ns) of each

trajectory were discarded to allow the trajectories to relax away from their initial seed
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conformations. On initial analysis of the RMSDs of the trajectories to their starting frames, one trajec-

tory showed the protein unfolding and was removed from the dataset. The resulting final dataset

contained 5,019 trajectories, 4.931 ms of aggregate simulation time, and 9,862,657 frames. This tra-

jectory dataset without solvent is available via the Open Science Framework at https://osf.io/2h6p4/

. The code used for the generation and analysis of the molecular dynamics data is available via a

Github repository at https://github.com/choderalab/SETD8-materials.

Optimal hyperparameter selection for featurization and tICA
To select the optimal featurization of the data for subsequent Markov state model (MSM) analysis,

we used variational scoring (McGibbon and Pande, 2015b; Noé and Nüske, 2013; Nüske et al.,

2014; Wu and Noe, 2017) combined with cross-validation (Husic et al., 2016) to evaluate model

quality, consistent with modern MSM construction practice (Husic et al., 2016). To evaluate a large

set of hyperparameters to achieve optimal featurization, a reduced dataset subsampled to 5 ns/

frame intervals (986,464 frames, 10% of the dataset) was used for computational feasibility. The fol-

lowing trajectory featurization choices were assessed: a) all residue–residue distances (calculated as

the closest distance between the heavy atoms of two residues separated in sequence by at least two

neighboring residues) that cross a 0.4 nm contact threshold in either direction at least once (yielding

6,567 of 12,720 total residue-residue distances); b) a transformed version of (a) used by MSMBuilder

(Harrigan et al., 2017) to emphasize short-range distances in the proximity of residue-residue con-

tact via Equation. 4, with steepness = 5 nm�1 and center = 0.5 nm; c) backbone (phi, psi) and side-

chain (chi1) dihedral angles, with each angle featurized as its sine and cosine (yielding 920 total

features).

logistic transformed distance¼ 1=ð1þ expðsteepness�ðdistance� centerÞÞÞ (4)

To identify the optimal featurization, we used a 50:50 shuffle-split cross-validation scheme to eval-

uate various model hyperparameters while avoiding overfitting. In this scheme, subsets of the

groups of trajectories initiated from the same conformation (RUNs � see Supplementary file 1a for

further explanation) are randomly split into training and test sets of 2,509 and 2,510 trajectories

respectively, using scikit-learn 0.9.1 (Pedregosa et al., 2011). All further steps until scoring were

conducted by fitting the model to the training set only, then transforming the test set according to

this model. Scoring was based on the sum of the top 10 squared-eigenvalues of the transition matrix

(rank-10 VAMP-2 [Wu and Noe, 2017]). Model scores are reported below as means with standard

deviations over five shuffle-splits.

To evaluate each featurization choice, the data were projected into a kinetically relevant space

using tICA (Pérez-Hernández et al., 2013), retaining all tICs, at lag times of either 5 or 50 ns, with

either kinetic (Noé and Clementi, 2015) or commute mapping (Noé et al., 2016). Each of the tICA

outputs was discretized using k-means clustering into 50, 100, 500, or 1000 microstate clusters (see

Supplementary file 1b for the summary of options assessed). Featurization was performed using

MDTraj 1.8 (McGibbon et al., 2015a) and PyEMMA 2.4 (Scherer et al., 2015), tICA was performed

with PyEMMA 2.4 (Scherer et al., 2015), and clustering was performed with PyEMMA 2.5.1

(Scherer et al., 2015). MSMs at a lag time of 50 ns were constructed with PyEMMA 2.5.1

(Scherer et al., 2015) using discrete microstate trajectories from the training set and scored on the

test set trajectories. To obtain standard deviations indicative of out-of-sample model performance,

this shuffle-split model evaluation procedure was repeated 5 times with different random divisions

of the dataset into training and test sets. The data showed (Appendix 1—figures 2, 3) that the four

individual models with highest average scores were featurized with dihedral angles (featurization c;

scores: 9.68 (SD = 0.05), 9.68 (SD = 0.05), 9.63 (SD = 0.03), 9.62 (SD = 0.02)), while the highest

median score over all models was the residue-residue distance featurization (the median score of

8.20 (mean = 7.98, SD = 1.11) for featurization a; 8.06 (mean = 7.49, SD = 2.07) for featurization c;

6.99 (mean = 6.47, SD = 2.13) for featurization b). Therefore, both featurizations a and c were further

evaluated on the full dataset to determine the optimal model. For both featurizations, commute

mapping resulted in significantly higher scores (Appendix 1—figures 4, 5) than kinetic mapping,

hence commute mapping was used for the full dataset. The shorter tICA lag time (5 ns) was used for

the full dataset, as there was no significant difference in scores between 5 and 50 ns (Appendix 1—

figures 4, 5).
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Final featurization and microstate number selection
To determine the optimal number of microstates, we again used variational scoring (McGibbon and

Pande, 2015b; Noé and Nüske, 2013; Nüske et al., 2014; Wu and Noe, 2017) combined with

cross-validation (Husic et al., 2016) to evaluate model quality. The full dataset (4.931 ms, 0.5 ns/

frame, 9,862,657 frames) was separately featurized with the top-scoring feature sets: 6,567 distances

(featurization a above) and 920 dihedral angles (featurization c above). As for the featurization selec-

tion, we used the 50:50 shuffle-split cross-validation scheme, using the same five data splits. All fur-

ther steps until scoring were conducted by fitting the model to the training set only, subsampled to

5 ns/frame intervals for computational feasibility, then transforming the full training set and the test

set according to this model. Data were projected into the tICA space using a lag time of 5 ns. The

tICs were scaled by commute mapping, with subsequent clustering operations using a sufficient

number of tICs necessary to explain 95% of the total kinetic content. The tICA outputs were discre-

tized using k-means clustering into 100, 500, 1000, 2000, 3000, 4000, or 5000 microstate clusters

(see Supplementary file 1c for the summary of options assessed). Featurization was performed with

MDTraj 1.8 (McGibbon et al., 2015a) and PyEMMA 2.4 (Scherer et al., 2015), tICA was performed

with PyEMMA 2.4 (Scherer et al., 2015), and clustering was performed with PyEMMA 2.5.1

(Scherer et al., 2015). MSMs were constructed with PyEMMA 2.5.1 (Scherer et al., 2015) from the

discrete trajectories of the training set using a lag time of 50 ns and subsequently scored on the test

set, using the rank-10 VAMP-2 (Wu and Noe, 2017) score. The highest scoring model (Appendix 1—

figure 6) had dihedral features (featurization c above) and 100 microstates (VAMP-2 = 9.25

(SD = 0.32)). tICA and k-means clustering were refitted to the full dataset subsampled to 5 ns/frame

intervals for computational feasibility. Keeping the number of tICs necessary to explain 95% of the

total kinetic content resulted in 466 tICs used for k-means clustering. The full dataset was then trans-

formed to give the final discretized trajectories at 0.5 ns/frame intervals. Checking the convergence

of the implied timescales validated the choice of the MSM lag time (Appendix 1—figure 7). The

Chapman-Kolmogorov test (Prinz et al., 2011) was then conducted on the MSM to examine the

self-consistency of the model (Appendix 1—figure 8). To aid structural interpretation, the 10 frames

closest to each of the 100 microstate cluster centers were extracted from the dataset. The RMSDs of

the 10 frames in each microstate were calculated with C-alpha atoms only, after first superposing

each frame onto the reference structure using only the C-alpha atoms of the conformationally

homogenous SET motifs (residues 257–290 and 327–376). To quantify the structural diversity of each

microstate, a sample of 100 frames was randomly drawn from each. The C-alpha RMSD (after super-

position of the SET motifs only) of each frame versus all other 99 frames was then calculated, and

the minimum average RMSD over all 100 reference frames was reported (Supplementary file 1d).

Coarse-graining to kinetically metastable macrostates
To coarse-grain the MSM into a small number of kinetically metastable macrostates, a Hidden Mar-

kov Model (HMM) was constructed from the discrete trajectories of the optimal model above using

PyEMMA 2.5.1 (Scherer et al., 2015). Increasing numbers of macrostates were explored and inter-

preted structurally by assigning the 10 frames closest to each of the 100 microstate cluster centers

to the macrostate to which they had the largest fractional membership. We chose the minimal num-

ber of macrostates that achieved increasing structural separation of the distinct SET-I and post-SET

motif configurations and hence constructed a 24-macrostate HMM. The resulting HMM provides

both a macrostate-to-macrostate transition matrix and a fractional membership of each microstate

to each kinetically metastable macrostate. Checking the convergence of the HMM implied time-

scales further validated the choice of the MSM/HMM lag time (Appendix 1—figure 9). To preserve

kinetic relationships between macrostates in a two-dimensional representation, the log-inverse fluxes

between all pairs of macrostates (calculated using the third power of the transition matrix to elimi-

nate sparsity) were embedded in two dimensions using iterative multidimensional scaling (MDS)

(Borg and Groenen, 2005; Kruskal, 1964; Kruskal, 1979) with scikit-learn 0.9.1 (Pedregosa et al.,

2011). MDS was repeated at least 50 times with random initializations and the projection that leads

to a figure with the fewest crossings of inter-state flux arrows was selected. To aid structural inter-

pretation, the 10 frames closest to each of the 100 microstate cluster centers were assigned to the

macrostate to which they had the largest fractional membership. The RMSDs of the macrostates to

the homology models derived from all five crystal structures generated by Ensembler were

Chen et al. eLife 2019;8:e45403. DOI: https://doi.org/10.7554/eLife.45403 34 of 76

Research article Biochemistry and Chemical Biology

https://doi.org/10.7554/eLife.45403


calculated by averaging the RMSDs of all 10 frames in each microstate as described above, then for

each macrostate taking the mean over all microstates weighted by the HMM observation probabili-

ties. To quantify the structural diversity of each macrostate, a sample of 100 frames was drawn from

each macrostate with probabilities for each frame given by the observation probability of the frame’s

microstate from the given macrostate divided by the total number of frames in the frame’s micro-

state. The C-alpha RMSD (after superpose of the SET motifs only) of each frame versus all other 99

frames was then calculated, and the minimum average RMSD over all 100 reference frames was

reported (Supplementary file 1e).

Molecular dynamics (MD) simulations of SAM-bound SETD8
Preparation of molecular dynamics (MD) simulations
All-atom models of the same 162-residue SETD8 fragment in complex with SAM were prepared in a

similar manner as apo-SETD8 except that a manual pipeline was used instead of Ensembler. Briefly,

two available cofactor-bound crystal structures were used to generate two seed structures for simu-

lation: 4IJ8 (the crystal structure of the binary complex of SETD8 with SAM) and 2BQZ (the crystal

structure of the tertiary complex of SETD8 with SAH and a methylated H4K20 peptide). Among the

available tertiary complex structures (1ZKK, 2BQZ, 3F9W, 3F9X, 3F9Y, 3F9Z), 2BQZ was selected for

MD simulations because of the following conditions met simultaneously: no mutations present, mini-

mum number of missing residues requiring modeling (1), methylated lysine resolved on the histone

peptide (for future simulations of the tertiary complex). Protein chains ‘A’ of both structures were

used. Mutations in 4IJ8 were corrected to the reference sequence, and missing protein residues and

atoms were added using PDBFixer 1.3 (Eastman, 2013; Eastman et al., 2013). To replace SAH with

SAM in the 2BQZ model, the coordinates of SAM were copied from 4IJ8, where all SAM atoms were

resolved, after aligning the common atoms in SAM and SAH with MDTraj 1.7.2 (McGibbon et al.,

2015a). The peptide and SAH were then removed from 2BQZ. Using OpenMM 7.0.1

(Eastman et al., 2017), protonation states appropriate for pH 7 were assigned with openmm.app.

modeller. SAM was modeled in the +1 cationic form at its sulfonium center and the zwitterionic form

at its a-amino acid moiety. GAFF force field parameters (Wang et al., 2004) and AM1-BCC

(Jakalian et al., 2002) charges were assigned using Antechamber (Wang et al., 2006) from Amber-

Tools 14 (Case et al., 2014) with missing parameters assigned using Antechamber’s ParmChk2. The

SAM parameter files were then converted from the Amber format to the OpenMM XML format

using the conversion script distributed with the openmm-forcefields package (Chodera, 2018). The

systems were solvated in cubic water boxes with at least 1 nm padding and neutralized with a mini-

mal amount of NaCl. This resulted in the final systems containing 34,556 atoms (system prepared

from 4IJ8) and 35,588 atoms (system prepared from 2BQZ). These were energy-minimized with 10

kJ/mol tolerance and relaxed for 1 fs in the NVT (T = 10 K) ensemble using the OpenMM Langevin

integrator with a 0.01 fs timestep, and 91 ps�1 collision rate. Nonbonded interactions were treated

with the reaction field method only during minimization (due to its increased stability over PME

when steric clashes needed to be resolved following introduction of mutations) (Barker and Watts,

1973) at a cutoff of 0.9 nm. The systems were then equilibrated for 10 ns in the NpT (p = 1 atm,

T = 300 K) ensemble using the OpenMM Langevin integrator, the PME nonbonded method, a

Monte Carlo molecular-scaling barostat with an update interval of 25 steps, and packaged with

OpenMM 6.3.1 (Eastman et al., 2013) as seeds for production simulation on Folding@home

(Shirts and Pande, 2000). All other force field parameters and simulation settings were as previously

described for apo-SETD8.

Preservation of native configuration
The N-terminal residue Ser232 and the Ser232–Arg233 amide bond were modeled with D-configura-

tion and cis-configuration, respectively, upon preparing SAM-bound SETD8 models by PDBFixer. No

further correction was conducted, because this residue does not participate in functionally relevant

conformational dynamics and makes minimal interactions with the rest of the protein. The rest of the

sequence in the models adopts native configuration.
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Folding@home simulations
In total, 1000 independent MD simulations were generated on Folding@home: 500 each for the two

seed structures prepared above. Simulations employed the same settings as for NpT production of

apo-SETD8. 99.7% of the generated trajectories (997 trajectories) successfully reached 1 ms each

(see Appendix 1—figure 10 for length distribution), resulting in 1.003 ms of aggregate simulation

time and 2,005,945 frames. This amount of simulation time corresponds to ~46 GPU years on an

NVIDIA GeForce GTX 980 processor. Prior to data analysis, the first 25 ns of each trajectory were

discarded to allow the trajectories to relax away from the initial equilibrated configurations. One tra-

jectory was shorter than the length being discarded and was removed from the dataset. The result-

ing final dataset contained 999 trajectories, 0.978 ms of aggregate simulation time, and 1,955,965

frames. This trajectory dataset without solvent is available via the Open Science Framework at

https://osf.io/2h6p4. The code used for the generation and analysis of the molecular dynamics data

is available via a Github repository at https://github.com/choderalab/SETD8-materials.

Coarse-graining to kinetically metastable macrostates
To construct a Hidden Markov model of SAM-bound SETD8, the full dataset (0.978 ms, 0.5 ns/frame,

1,955,965 frames) was featurized using the final model generated from apo-SETD8 (featurization c,

backbone and sidechain dihedral features). The data were projected into the tICA space derived

from the apo-SETD8 simulations and assigned to the 100 k-means microstates of apo-SETD8. The

SAM-bound SETD8 trajectories populated 67 of the 100 microstates of apo-SETD8. An MSM with a

50 ns lag time was constructed, and the Chapman-Kolmogorov test (Prinz et al., 2011) was con-

ducted to examine the self-consistency of the model (Appendix 1—figure 12). Finally, a Hidden

Markov model (HMM) was constructed for a 50-ns lag time using 10 macrostates (the minimal num-

ber of macrostates to achieve increasing structural separation between distinct SET-I and post-SET

configurations was chosen in the same way as for apo-SETD8). As for apo-SETD8, log-inverse fluxes

between macrostates were used to construct a two-dimensional representation, and the 10 frames

closest to the microstate cluster centers were assigned to the macrostate to which they had the

highest fractional membership to aid structural interpretation. Prior to visualization, frames were re-

imaged with MDTraj 1.8 (McGibbon et al., 2015a) to ensure SETD8 was centered and the SAM

ligand was in the same unit cell. As for apo-SETD8, microstate C-alpha RMSDs to the homology

models derived from all five crystal structures were calculated by averaging the RMSDs of all 10

frames in each microstate, and structural diversity was quantified by the reference frame with the

minimum average RMSD of each microstate (Supplementary file 1f). Further, as for apo-SETD8,

macrostate C-alpha RMSDs were calculated by weighted mean over microstate average RMSDs, and

structural diversity was quantified by the reference frame with the minimum average RMSD of each

macrostate (Supplementary file 1g).

Cancer-associated mutant apo-SETD8 simulations
Selection of SETD8 mutants
The MSKCC-internal cBioPortal Cancer Genomics Database was searched in August of 2017 to map

cancer-associated SETD8 mutations. The resulting mutations except the R365* nonsense mutation in

the region of residues 232–393 (191–352 in the database), which corresponds to the catalytic domain

of SETD8 used in our biochemical experiments, were selected for MD simulations (see

Supplementary file 1n for the list of all mutants).

Preparation of molecular dynamics (MD) simulations
All-atom models of the same 162-residue SETD8 fragment with each of 24 cancer-associated single

mutations (including one deletion giving a 161-residue fragment) identified from the cBioPortal for

Cancer Genomics (Cerami et al., 2012; Cheng et al., 2015; Gao et al., 2013) were prepared in an

analogical way to apo-SETD8 using Ensembler 1.0.5. The mutants prepared are summarized in

Supplementary file 1n (#1–21, 23–25). As we aimed to gain a direct interpretation of the influence

of these mutations on the enzymatic activity of SETD8 and the cost of direct simulations of all

mutants mapped onto all crystal structures is computationally prohibitive, only a single chain of the

TC structure was used as the template. To choose the particular chain out of the 18 TC chains used

in the apo-SETD8 simulations (Supplementary file 1a), the homology models of all the TC chains
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generated by Ensembler were projected into the apo-SETD8 tICA space using PyEMMA 2.4

(Scherer et al., 2015). The distances between the points in the tICA space were then calculated

with SciPy 1.0 (McKinney, 2010) and chain ‘A’ of the 1ZKK structure, which had the smallest average

distance to all others, was selected. The modeling procedure was the same as for apo-SETD8,

except the appropriately mutated sequences were passed to Ensembler (Parton et al., 2016).

Briefly, homology models were created with MODELLER 9.16 (Sali and Blundell, 1993), protonation

states appropriate for pH 7 were assigned with OpenMM 6.3.1 (Eastman et al., 2013), the models

were then energy-minimized for 20 steps and relaxed with 100 ps of implicit solvent dynamics. The

proteins were then solvated in cubic boxes with at least 1 nm padding and neutralized with a mini-

mal amount of NaCl. This resulted in the final systems containing between 35,185 and 35,208 atoms.

These were equilibrated for 5 ns and packaged as seeds for production simulation on Folding@-

home. All force field parameters and simulation settings were as previously described for wild-type

apo-SETD8.

Preservation of stereoselectivity
As for the wild-type apo-SETD8 models, during quality checks following the Ensembler automated

modeling procedure, it was discovered that some of the final models showed incorrect Ca chirality

on some residues and/or cis-peptide bonds were present (using VMD 1.9.2; Kruskal, 1964), inspired

by a previous study on a 15-amino-acid a-helix (Schreiner et al., 2011). This was determined to be

due to homology modeling errors or flips because of initial strain during the energy minimization/

implicit solvent refinement. This was solved by repetition of the whole Ensembler 1.0.5 workflow for

those models a number of times until no more chirality and/or cis-peptide issues were detected.

This was not successful within a reasonable number of repeats for mutant I247L, for which the error

was introduced by the MODELLER homology modeling and was finally solved by replacing the allh-

model class (explicit hydrogen modeling, default in Ensembler 1.0.5) with the automodel class

(implicit hydrogen modeling, default in Ensembler 1.0.6, which was used).

Folding@home simulations
In total, 960 simulations were generated on Folding@home: 40 for each of the mutants. Simulations

employed the same settings as for NpT production of wild-type apo-SETD8. 99.7% of the generated

trajectories (957 trajectories) successfully reached 1 ms each (see Appendix 1—figure 24 for length

distribution), resulting in the final aggregate dataset of 0.966 ms and 1,931,849 frames. This amount

of simulation time corresponds to ~44 GPU years on an NVIDIA GeForce GTX 980 processor. This

trajectory dataset without solvent is available via the Open Science Framework at https://osf.io/

2h6p4. The code used for the generation and analysis of the molecular dynamics data is available via

a Github repository at https://github.com/choderalab/SETD8-materials.

Contact map analysis
Prior to data analysis, the first 750 ns of each trajectory were discarded to allow for successful meta-

stable transitions out of the wild-type kinetic basin. This number was chosen arbitrarily for ensuring a

reasonable balance between eliminating bias from the initial configurations in mutant trajectories

while keeping a reasonable amount of data for analysis. For the remaining frames of each mutant, all

residue-residue distances (calculated as the closest distance between the heavy atoms of two resi-

dues) for which the two residues are separated in sequence by at least two other residues (yielding

12,720 residue-residue distances) were calculated with MDTraj 1.8 (McGibbon et al., 2015a). These

were converted into binary contact maps by replacing all distances below the 0.4 nm contact thresh-

old with 1’s and all other distances with 0’s, and casting into a square-form matrix. These were then

averaged over all frames of each mutant, yielding one contact map for each mutant. In the same

way, the wild-type contact map was calculated using the 60 wild-type apo-SETD8 trajectories started

from chain ‘A’ of the 1ZKK structure (Supplementary file 1a). The wild-type contact map was then

subtracted from the mutant contact maps to generate one absolute contact change map for each

mutant. In the one case of amino acid deletion, all contact changes corresponding to that residue

position were set to zero. Relative contact changes were also calculated by dividing the absolute

contact change value by the wild-type contact value and taking the modulus of the result. The result
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was set to zero where the wild-type value was zero. Contacts with absolute changes of more than

0.2 and relative changes of more than three were selected for further structural annotations.

Extraction of hypothetical new conformations
For each mutant, of the contacts that showed an absolute fractional change of more than 0.2 or

more negative than �0.2, up to five contacts with the most positive changes (‘positive contacts’) and

up to five contacts with the most negative changes (‘negative contacts’) were noted. For each trajec-

tory (after discarding the first 750 ns) of a given mutant, every 10th (every 20th if more than 7,500

such frames were present) of the frames that had all ‘positive contacts’ present or none of the ‘nega-

tive contacts’ present was extracted. These frames were manually inspected using PyMOL 1.8.4

(Schrödinger, LLC) against the representative conformations of the wild-type apo-SETD8 microstates

(the 10 frames closest to each of the microstate cluster centers) and frames that displayed similar

SET-I and post-SET motif configurations to any of the wild-type conformations were discarded. For

the remaining frames, the C-alpha RMSDs to all frames of the wild-type apo-SETD8 dataset sub-

sampled to 5 ns/frame were calculated using MDTraj 1.8 (McGibbon et al., 2015a) and the wild-

type frames with the lowest RMSD to each mutant frame were extracted. The mutant frames were

manually inspected using PyMOL 1.8.4 (Schrödinger, LLC) against the extracted wild-type frames

and further mutant frames similar to the wild-type frames were discarded. The remaining frames for

each mutant were clustered based on the manual inspection and their C-alpha RMSDs to all frames

of the given mutant (without discarding the first 750 ns of each trajectory) were calculated using

MDTraj 1.8 (McGibbon et al., 2015a). For each cluster of the hypothetical new conformations, every

10th of all mutant frames with RMSDs below the 0.3 nm, 0.35 nm, and 0.4 nm thresholds to any of

the cluster frames were extracted and manually inspected in PyMOL 1.8.4 (Schrödinger LLC, 2019).

The 0.3 nm threshold gave good structural similarities and only a small number of false positives

(frames that were not sufficiently similar to the originally chosen hypothetical new conformations)

were discarded, while the other two thresholds introduced too many false positives. Hence the

remaining frames extracted at the 0.3 nm threshold were taken as the final clusters of hypothetical

new conformations. To further confirm that the discovered conformations were relevant and not sim-

ply an artifact of additional sampling, the rate of new microstate discovery was compared between

equivalent cumulative aggregate simulation lengths (corresponding to a uniform initial fraction of all

trajectories in the dataset). PyEMMA 2.5.1 (Scherer et al., 2015) was used for all of the following

steps. The wild-type and mutant datasets were featurized with sine/cosine of the same set of back-

bone and side chain dihedral angles (accounting for the angles not present after mutations). The

wild-type + mutant data combined were then projected into the tICA space, using a lag time of 5 ns

with commute mapping with 468 tICs sufficient to explain 95% of the kinetic content. These were

then jointly clustered into 2,000 microstates using k-means. This number of microstates was chosen

by examining increasing numbers of microstates, until the number of microstates populated by

mutants but not wild-type was larger than the number of mutants in the dataset (we found 79 such

microstates for 24 mutants). The number of new microstates discovered for equal amounts of data

(~1 ms aggregate simulation time) from the final portion of the WT trajectories and from mutant tra-

jectories were plotted (Appendix 1—figure 25), showing that the mutant dataset rapidly discovers

79 new microstates at a rate that far outstrips the discovery rate of new wild-type conformations.

Calculation of microstate coverage
To quantify how the diversity of starting conformations influences the number of microstates

observed out of the total of 100, the apo-SETD8 discrete trajectories were split into nine sets corre-

sponding to their starting conformations. All logical relations between the sets were generated and

the numbers of microstates explored in each intersection were counted in order to produce Venn

diagrams of microstate coverage. Analogically, the SAM-bound SETD8 discrete trajectories were

split into two sets and the microstate coverage was evaluated. Further, to quantify how the number

and the length of trajectories influence the number of microstates observed in addition to the diver-

sity of starting conformations, all combinations of all possible lengths of the five apo-SETD8 sets

started from crystal structures were enumerated. Appropriate sets out of the four originating from

structural chimeras were added to those combinations which contained the appropriate SET-I and

post-SET motif configurations for the formation of those chimeras. Also, if a combination contained
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either of the BC-Inh1 or BC-Inh2 sets (SET-I configuration I1), and the BC-SAM set (post-SET configu-

ration P1), the TC set (configurations I1-P1) was added as it could be generated as a structural chi-

mera. For all combinations that resulted, the microstate coverage was assessed at all trajectory

numbers between 0 to all trajectories in the combination at intervals of 50 trajectories, and simulta-

neously at all maximum trajectory lengths between 0 to the length of the longest trajectory in the

combination at intervals of 50 ns. The desired number of trajectories was randomly drawn from all

trajectories in the combination without replacement and the trajectories were trimmed to the

desired maximum length. The number of microstates observed was then calculated. This was

repeated five times with different draws of trajectories and the results of the five draws were aver-

aged. Analogically, the microstate coverage at increasing trajectory numbers and trajectory lengths

was evaluated for the two SAM-bound SETD8 sets.

List of used software
The Anaconda Python (Millman and Aivazis, 2011; Oliphant, 2007) distribution with Python 2.7,

3.5, or 3.6 was used for all programming. Conda was used for package management. The IPython

(Perez and Granger, 2007) shell and the Jupyter Notebook (Kluyver et al., 2016) environment

were used for interactive scripting and data analysis. Data were managed with the NumPy (multiple

versions) (Oliphant, 2006) and pandas (multiple versions) (McKinney, 2010) libraries. Mathematical

operations were performed with the NumPy library or Python built-in functions. Figures were made

with PyMOL 1.8.4 (Schrödinger LLC, 2019), matplotlib 2.2.2 (Hunter, 2007), seaborn 0.8.1

(Waskom et al., 2017), MSMExplorer 1.1 (Harrigan et al., 2017), and PyEMMA 2.5.1

(Scherer et al., 2015).

Code and data availability
The molecular dynamics datasets generated and analyzed in this study are available via the Open

Science Framework at https://osf.io/2h6p4. The code used for the generation and analysis of the

molecular dynamics data is available via a Github repository at https://github.com/choderalab/

SETD8-materials (Wiewiora, 2019; a copy archived at https://github.com/elifesciences-publications/

SETD8-materials).
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trajectory number criteria, depending on the CLONEs/RUN settings of a particular project. CLONE

is an individual trajectory, all CLONEs in a RUN are given different, randomized initial velocities. (b)

All of the options assessed combinatorically for featurization and tICA optimal hyperparameter

selection. *Definitions are described in Materials and methods. (c). All of the options assessed com-

binatorically for final featurization and microstate number selection. *Definitions are described in

Materials and methods. (d) Summary of 100 microstates in the conformational landscape of apo-

SETD8. *Structural features of microstates are assigned based on the conformations of SET-I and

post-SET motifs of the 10 conformers that are closest to the cluster center (as ‘representative confor-

mations’). The distinct conformational states of SET-I and post-SET motifs described in Figure 1d

are used as references. Ix (x = 1,2,3) or Py (y = 1,2,3,4) indicate that the representative conforma-

tions are very similar to the Ix or Py conformational state observed in crystal structures, respectively.

Iab (a,b = 1,2,3, a < b) or Pcd (c,d = 1,2,3,4, c < d) indicate that the representative conformations

are positioned between Ia and Ib states or Pc and Pd states, respectively. (e) Summary of macro-

states in the conformational landscape of apo-SETD8. #Structural features of macrostates are

assigned based on the structural features of most populated microstate(s) (>70%). *A11 is com-

posed of two microstates with distinct structural features and comparable populations. (f) Summary

of 67 microstates in the conformational landscape of SAM-bound SETD8. *Structural features of

microstates are assigned based on the conformations of SET-I and post-SET motifs of the 10 con-

formers that are closest to the cluster center (as ‘representative conformations’). The distinct confor-

mational states of SET-I and post-SET motifs described in Figure 1d are used as references. Ix

(x = 1,2,3) or Py (y = 1,2,3,4) indicate that the representative conformations are very similar to the Ix

or Py conformational state observed in crystal structures, respectively. Iab (a,b = 1,2,3, a < b) or Pcd

(c,d = 1,2,3,4, c < d) indicate that the representative conformations are positioned between Ia and

Ib states or Pc and Pd states, respectively. (g) Summary of macrostates in the conformational land-

scape of SAM-bound SETD8. *Structural features of macrostates are assigned based on the struc-

tural features of most populated microstate(s) (>70%). (h) Summary of analysis of rapid-mixing

stopped-flow experiments. *Estimated from the average of three data points at highest SAM con-

centration. Data are best fitting values ± s.e. from KinTek. (i) Discovery of microstates by different

seed combinations in the conformational landscape of apo-SETD8. Each row presents the condition

and results of one test. Seed conformations included in the test are marked as H. *Numbering of

microstates covered in Supplementary file 1d. (j) Discovery of microstates by different motif states

in the conformational landscape of apo-SETD8. * For #1 ~ 7, combination of seed conformations

with the noted SET-I motif conformational states and all possible post-SET motif states, as annoated

withthe SET-I states. For #8 ~ 16, combination of seed conformations with the noted post-SET motif

conformational states and all possible SET-I motif states, as annoated with the post-SET states. Con-

formers that display steric clashes and were thus excluded are described in Figure 3a. (k) Discovery

of microstates by different seed combinations in the conformational landscape of SAM-bound

SETD8. *Numbering of microstates covered in Supplementary file 1f. #Covered by both simulations

from TC and BC-SAM. (l) Completeness and efficiency of constructing the conformational landscapes

of apo-SETD8. *For conditions with a ‘(
S
TC)”, the TC conformer could be either derived directly

from crystal structure or generated from the chimeric operations of crystallographically-derived con-

formers outside the parentheses. The corresponding number of crystallographically-derived con-

formers as seeds are shown in the next column. T̂he number of covered microstates contributed by

seed conformations derived from chimeric operations (including both structural chimeras and TC)

are shown outside the parentheses, and the number of covered microstates contributed by only

structural chimeras (with TC excluded) are shown in the parentheses. +The minimum simulation time

of a seed combination to reach corresponding microstate coverage is listed in the first row. The box

is left empty if the maximum coverage of a seed combination is smaller than the corresponding num-

ber in the first row. (m) Completeness and efficiency of constructing the conformational landscapes

of SAM-bound SETD8. +The minimum simulation time of a seed combination to reach corresponding

microstate coverage listed in the first row. The box is left empty if the maximum coverage of a seed

combination is smaller than the corresponding number in the first row. (n) Summary of cancer-associ-

ated mutations in the C-terminal region of SETD8 from cBioPortal Cancer Genomics Database.

#1 ~ 25: reported before 8/30/2017. #26 ~ 34: reported after 8/30/2017, before 5/1/2018. (o) Sum-

mary of cancer-associated mutations in the SET-I motif of PKMTs from cBioPortal Cancer Genomics

Database (by 5/1/2018). (p) Primer sequences for site-directed mutagenesis. Only forward primer
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sequences are displayed here. Reverse complementary primers were also ordered. Both forward and

reverse primers were used for the experiments.

DOI: https://doi.org/10.7554/eLife.45403.033

. Transparent reporting form

DOI: https://doi.org/10.7554/eLife.45403.034

Data availability

The molecular dynamics datasets generated and analyzed in this study are available via the Open

Science Framework at https://osf.io/2h6p4. The code used for the generation and analysis of the

molecular dynamics data is available via a Github repository at https://github.com/choderalab/

SETD8-materials (copy archived at https://github.com/elifesciences-publications/SETD8-materials).

PDB files: 6BOZ for BC-Inh1, 5W1Y for BC-Inh2, 4IJ8 for BC-SAM, and 5V2N for APO.

The following datasets were generated:

Author(s) Year Dataset title Dataset URL
Database and
Identifier

Yu W, Tempel W,
Li Y, El Bakkouri M,
Shapira M, Bountra
C, Arrowsmith CH,
Edwards AM, Peter
J Brown, Structrual
Genomics Consor-
tium (SGC)

2013 Crystal structure of the complex of
SETD8 with SAM

https://www.rcsb.org/
structure/4IJ8

Protein Data Bank,
4IJ8

Wiewiora R, Cho-
dera J

2019 SETD8 wild-type apo and cofactor-
bound, and mutant apo
Folding@home simulations

https://osf.io/2h6p4 Open Science
Framework, osf.io/
2h6p4

Babault N, Anqi M,
Jin J

2019 Structure of human SETD8 in
complex with covalent inhibitor
MS4138

https://www.rcsb.org/
structure/6BOZ

Protein Data Bank,
6BOZ

Skene RJ 2018 Crystal Structure of APO Human
SETD8

https://www.rcsb.org/
structure/5V2N

Protein Data Bank,
5V2N

Tempel W, Yu W,
Li Y, Blum G, Luo
M, Pittella-Silva F,
Bountra C, Arrow-
smith CH, Edwards
AM, Brown PJ,
Structural Genomics
Consortium (SGC)

2017 SETD8 in complex with a covalent
inhibitor

https://www.rcsb.org/
structure/5W1Y

Protein Data Bank,
5W1Y

The following previously published dataset was used:

Author(s) Year Dataset title Dataset URL
Database and
Identifier

Cheng DT, Mitchell
TN, Zehir A, Shah
RH, Benayed R,
Syed A, Chandra-
mohan R, Liu ZY,
Won HH, Scott SN,
Brannon AR, O’Re-
illy C, Sadowska J,
Casanova J, Yannes
A, Hechtman JF,
Yao J, Song W,
Ross DS, Oultache
A, Dogan S, Borsu
L, Hameed M, Nafa
K, Arcila ME, La-
danyi M, Berger MF

2015 MSK-IMPACT http://www.cbioportal.
org/public-portal/

CBioPortal, MSK-
IMPACT
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Scherer MK, Trendelkamp-Schroer B, Paul F, Pérez-Hernández G, Hoffmann M, Plattner N, Wehmeyer C, Prinz
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Appendix 1

DOI: https://doi.org/10.7554/eLife.45403.035

Appendix 1—figure 1. Distribution of trajectory lengths of apo-SETD8 simulation. 5,020

Trajectories were collected in total. 99.1% of these trajectories (4,976 trajectories) reached at

least 1 ms of simulation time, resulting in 5.058 ms of aggregate simulation time.
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Appendix 1—figure 2. VAMP-2 scoring results for optimal hyperparameter choice for featuriza-

tion and tICA. For each featurization, the empirical cumulative distribution functions of VAMP-2

scores (from highest to lowest) for all other hyperparameter choices combined are shown. On

the basis of the medians of all scores, the distance features perform the best.
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Appendix 1—figure 3. VAMP-2 scoring results for optimal hyperparameter choice for featuriza-

tion and tICA. The distributions of VAMP-2 scores of five shuffle-splits of the data for each

individual set of hyperparameters (model) are shown as box-and-whisker plots. Bands of boxes

show the first, second, and third quartiles, while whisker ends represent the lowest and

highest scores still within 1.5 of the interquartile range from the first and third quartiles

respectively. Scores lying outside of that range are shown as diamonds. The models are

denoted as {featurization}_{tICA mapping}_{tICA lag time (in ns)}_{number of microstates},

where the featurization is one of ‘dih’ for dihedrals, ‘dist’ for distances, or ‘log_dist’ for logistic

distances. Test scores are shown in green and training scores in red. On the basis of the

highest scoring individual model, the dihedral features, which were used for the four top

scoring models, perform the best.
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Appendix 1—figure 4. VAMP-2 scoring results for optimal hyperparameter choice for tICA with

dihedral features. The distributions of test scores of all microstate number choices for all

combinations of tICA mapping and lag times are shown as box-and-whisker plots. Bands of

boxes show the first, second, and third quartiles, while whisker ends represent the lowest and

highest scores still within 1.5 of the interquartile range from the first and third quartiles

respectively. The models are described as {featurization}_{tICA lag time (in ns)}. Commute

mapping performs significantly better than kinetic mapping and there is no significant

difference in performance between the two lag times when commute mapping is used.
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Appendix 1—figure 5. VAMP-2 scoring results for optimal hyperparameter choice for tICA with

distance features. The distributions of test scores of all microstate number choices for all

combinations of tICA mapping and lag times are shown as box-and-whisker plots. Bands of

boxes show the first, second, and third quartiles, while whisker ends represent the lowest and

highest scores still within 1.5 of the interquartile range from the first and third quartiles

respectively. The models are described as follows: {tICA mapping}_{tICA lag time (in ns)}.

Commute mapping performs significantly better than kinetic mapping and there is no

significant difference in performance between the two lag times when commute mapping is

used.
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Appendix 1—figure 6. VAMP-2 scoring results for final featurization and microstate number

choice. The distributions of scores of five shuffle-splits of the data for all combinations of

dihedrals or distances featurization and the numbers of microstates are shown as box-and-

whisker plots. Bands of boxes show the first, second, and third quartiles, while whisker ends

represent the lowest and highest scores still within 1.5 of the interquartile range from the first

and third quartiles respectively. Scores lying outside of that range are shown as diamonds. The

models are described as follows: {featurization}_{number of microstates}. Featurizations are

denoted by ‘dih’ for dihedrals or ‘dist’ for distances. Test scores are shown in green and

training scores in red (due to the narrowness of the boxes for the training scores the color is

not visible). The highest scoring model has dihedral features and 100 microstates.
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Appendix 1—figure 7. Implied timescales of the apo-SETD8 Bayesian Markov state models

(BMSMs). The top 23 implied timescales (corresponding to 24 macrostates) of the BMSMs

calculated at a range of lag times are shown: the maximum likelihood estimates (MLEs) as

solid lines, the means as dashed lines, and the 95% confidence intervals of the means as

shaded regions. The gray area signifies the region where timescales become equal to or

smaller than the lag time and can no longer be resolved. The lag time of 50 ns (marked by the

dashed red vertical line) is chosen for our models, as the timescales have approximately

leveled off at that point.
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Appendix 1—figure 8. Chapman-Kolmogorov test of the apo-SETD8 Bayesian Markov state

model (BMSM) using the metastable memberships from the Hidden Markov state model

(HMM). The objective of the Chapman-Kolmogorov test is to assess the kinetic self-consistency

of the MSM, i.e., whether the predictions of longer time behavior made from the BMSM being
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tested match the estimates made from BMSMs generated at longer lag times. For each HMM

macrostate, probability density is assigned to the BMSM microstates according to their

metastable memberships to the given macrostate and evolution of the probability in time in

the tested BMSM is plotted in blue. At those same longer lag times new BMSMs are

estimated and their probability densities of being in the given macrostate are plotted in black.

The shaded regions correspond to the 95% confidence intervals of the mean of the

predictions and estimates. In this case, our model does not faithfully reproduce the

empirically-observed slow escape times for many of the macrostates, meaning that insufficient

data is available for a quantitative reproduction of the inter-state kinetics; despite this, the

equilibrium populations of the macrostates and qualitative resolution of low and high

interstate fluxes can still be estimated with good fidelity.
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Appendix 1—figure 9. Implied timescales of the apo-SETD8 Bayesian Hidden Markov state

models (BHMSMs). The top 23 implied timescales (corresponding to 24 macrostates) of the

BHMSMs calculated at a range of lag times are shown: the maximum likelihood estimates

(MLEs) as solid lines, the means as dashed lines, and the 95% confidence intervals of the

means as shaded regions. The gray area signifies the region where timescales become equal

to or smaller than the lag time and can no longer be resolved. The lag time of 50 ns (marked

by the dashed red vertical line) is chosen for our models, as the timescales have approximately

leveled off at that point.
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Chen et al. eLife 2019;8:e45403. DOI: https://doi.org/10.7554/eLife.45403 60 of 76

Research article Biochemistry and Chemical Biology

https://doi.org/10.7554/eLife.45403.044
https://doi.org/10.7554/eLife.45403


Appendix 1—figure 10. Distribution of the SAM-bound SETD8 simulation trajectory lengths.

1,000 trajectories were collected in total. 99.7% of the 1,000 trajectories (997 trajectories)

reached at least 1 ms of simulation time, resulting in 1.003 ms of aggregate simulation time.
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Appendix 1—figure 11. Implied timescales of the SAM-bound SETD8 Bayesian Markov state

models (BMSMs). The top 9 implied timescales (corresponding to 10 macrostates) of the

BMSMs calculated at a range of lag times are shown: the maximum likelihood estimates

(MLEs) as solid lines, the means as dashed lines, and the 95% confidence intervals of the

means as shaded regions. The gray area signifies the region where timescales become equal

to or smaller than the lag time and can no longer be resolved. The lag time of 50 ns (marked

by the dashed red vertical line) is chosen for our models, as the timescales have approximately

leveled off at that point.

DOI: https://doi.org/10.7554/eLife.45403.046
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Appendix 1—figure 12. Chapman-Kolmogorov test of the SAM-bound SETD8 Bayesian Markov

state model (BMSM) using the metastable memberships from the Hidden Markov state model

(HMM). The objective of the Chapman-Kolmogorov test is to assess the kinetic self-consistency

of the MSM, i.e., whether the predictions of longer time behavior made from the BMSM being

tested match the estimates made from BMSMs generated at longer lag times. For each HMM

macrostate, probability density is assigned to the BMSM microstates according to their

metastable memberships to the given macrostate and evolution of the probability in time in

the tested BMSM is plotted in blue. At those same longer lag times new BMSMs are

estimated and their probability densities of being in the given macrostate are plotted in black.

The shaded regions correspond to the 95% confidence intervals of the mean of the

predictions and estimates. In this case, our model does not faithfully reproduce the

empirically-observed slow escape times for many of the macrostates, meaning that insufficient

data is available for a quantitative reproduction of the inter-state kinetics; despite this, the

equilibrium populations of the macrostates and qualitative resolution of low and high

interstate fluxes can still be estimated with good fidelity.
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Appendix 1—figure 13. Implied timescales of the SAM-bound SETD8 Bayesian Hidden Markov

state models (BHMSMs). The top 9 implied timescales (corresponding to 10 macrostates) of the

BHMSMs calculated at a range of lag times are shown: the maximum likelihood estimates

(MLEs) as solid lines, the means as dashed lines, and the 95% confidence intervals of the

means as the shaded regions. The gray area signifies the region where timescales become

equal to or smaller than the lag time and can no longer be resolved. The lag time of 50 ns

(marked by the dashed red vertical line) is chosen for our models, as the timescales have

approximately leveled off at that point.
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Appendix 1—figure 14. Comparison of the kinetic complexity of apo- and SAM-bound SETD8.

All timescales larger than the Markovian lag time (50 ns) are shown for Markov state models

built using: all apo trajectories (5,019 trajectories), all SAM-bound trajectories (1,000

trajectories), and the subset of apo trajectories starting from the same conformations as SAM-

bound trajectories (1,200 trajectories). There is a large decrease in the number of slow

processes seen in the SAM-bound model compared to the other two (respectively for the apo,

SAM-bound, and subset of apo MSMs there are 14, 4, and 9 processes slower than 1 ms).

DOI: https://doi.org/10.7554/eLife.45403.049
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Appendix 1—figure 15. Rapid-mixing stopped-flow dilution of SAM-bound SETD8.

Fluorescence increase of pre-incubated SETD8-SAM binary complex was determined by rapid-

mixing stopped-flow dilution experiments with various final SAM concentrations and analyzed

by one-exponential conventional fitting. Given the small fraction of second step in the SAM-

binding process, the kobs mainly reflect k-1. Data are best fitting values ± s.e. from KinTek.

DOI: https://doi.org/10.7554/eLife.45403.050
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Appendix 1—figure 16. 1H-NMR of MS4138 (Inh1).

DOI: https://doi.org/10.7554/eLife.45403.051
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Appendix 1—figure 17. 13C-NMR of MS4138 (Inh1).

DOI: https://doi.org/10.7554/eLife.45403.052
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Appendix 1—figure 18. 1H-NMR of SGSS05N.

DOI: https://doi.org/10.7554/eLife.45403.053
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Appendix 1—figure 19. 13C-NMR of SGSS05N.

DOI: https://doi.org/10.7554/eLife.45403.054
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Appendix 1—figure 20. 1H-NMR of SGSS05NS (Inh2).

DOI: https://doi.org/10.7554/eLife.45403.055
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Appendix 1—figure 21. 13C-NMR of SGSS05NS (Inh2).

DOI: https://doi.org/10.7554/eLife.45403.056
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Appendix 1—figure 22. Global fitting analysis of stopped-flow binding experiment into a con-

formational selection model. In contrast to the model we proposed, global fitting analysis of

fluorescence decreases from stopped-flow binding experiments into a conformational-

selection model (E = E’+SAM = E’SAM) failed to generate good fitting results.

DOI: https://doi.org/10.7554/eLife.45403.057

Chen et al. eLife 2019;8:e45403. DOI: https://doi.org/10.7554/eLife.45403 73 of 76

Research article Biochemistry and Chemical Biology

https://doi.org/10.7554/eLife.45403.057
https://doi.org/10.7554/eLife.45403


Appendix 1—figure 23. Comparison of macrostate escape kinetics for different His351 tauto-

mers of apo-SETD8. As subsets of initial models used for apo-SETD8 simulations used different

His351 tautomers, we examined the kinetics of escape from several macrostates that were

highly populated by both sets of trajectories. The probabilities of remaining in macrostates A9

(top), A1 (middle), and A4 (bottom) after a given lag time are shown. Means of 40 bootstraps

are depicted as solid lines, with 95% confidence intervals shown as shaded regions.
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Appendix 1—figure 24. Distribution of the 24 mutant apo-SETD8 simulation trajectory lengths.

960 trajectories were collected in total. 99.7% of them (957 trajectories) reached at least 1 ms

in length, resulting in 0.966 ms of aggregate simulation time.
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Appendix 1—figure 25. Rate of discovery of new microstates in wild-type (WT) and mutant

apo-SETD8 datasets. The number of microstates discovered as a function of cumulative

aggregate simulation time (corresponding to a uniform initial fraction of all trajectories in the

dataset) are shown for a 2,000 joint microstate clustering of the combined WT + mutants apo-

SETD8 dataset. The WT data is shown in green, and the mutant data in red, appended to the

WT curve for easy comparison. The inset plot shows the number of new microstates

discovered for equal amounts of data (~1 ms aggregate simulation time) from the final portion

of the WT trajectories and from mutant trajectories. The mutant dataset rapidly discovers 79

new microstates at a rate that far outstrips the discovery rate of new wild-type conformations.
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