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Abstract: Temperature stress is one of the major abiotic stresses that adversely affect agricultural
productivity worldwide. Temperatures beyond a plant’s physiological optimum can trigger signif-
icant physiological and biochemical perturbations, reducing plant growth and tolerance to stress.
Improving a plant’s tolerance to these temperature fluctuations requires a deep understanding of
its responses to environmental change. To adapt to temperature fluctuations, plants tailor their
acclimatory signal transduction events, and specifically, cellular redox state, that are governed by
plant hormones, reactive oxygen species (ROS) regulatory systems, and other molecular components.
The role of ROS in plants as important signaling molecules during stress acclimation has recently been
established. Here, hormone-triggered ROS produced by NADPH oxidases, feedback regulation, and
integrated signaling events during temperature stress activate stress-response pathways and induce
acclimation or defense mechanisms. At the other extreme, excess ROS accumulation, following
temperature-induced oxidative stress, can have negative consequences on plant growth and stress
acclimation. The excessive ROS is regulated by the ROS scavenging system, which subsequently
promotes plant tolerance. All these signaling events, including crosstalk between hormones and
ROS, modify the plant’s transcriptomic, metabolomic, and biochemical states and promote plant
acclimation, tolerance, and survival. Here, we provide a comprehensive review of the ROS, hormones,
and their joint role in shaping a plant’s responses to high and low temperatures, and we conclude by
outlining hormone/ROS-regulated plant responsive strategies for developing stress-tolerant crops to
combat temperature changes.

Keywords: heat stress; cold stress; ROS; hormone; signal transduction; signal integration; molecular
mechanisms; acclimation

1. Introduction

In natural habitats, plants are often exposed to multiple stresses individually or in
combination. These stressors, either biotic or abiotic, are potentially unfavorable, interfering
with and attenuating the plant’s normal biological functions [1]. Temperature is one of the
primary physical parameters that govern a plant’s health. Atmospheric temperatures have
increased over the last two decades and are expected to continue to rise 1.0 to 1.7 ◦C by 2050
and 4.0 to 5.0 ◦C by the end of the 21st century, at which point, high temperature stress will
become one of the most frequent abiotic stresses confronted by plants [2–4]. In contrast, low
temperatures limit the geographical distribution of plant species and negatively affect their
biological functions. In total, temperature extremes, together with other abiotic stresses,
reduce average crop yields by more than 50% and continue to pose a risk to agricultural
and forest production [5–7].

By definition, any fluctuation in temperature that induces irreversible damage to the
plant’s metabolism or growth is considered stress and is categorized into high tempera-
ture or low-temperature stress [8]. High temperature stress results in many cellular and
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physiological changes, e.g., protein denaturation, loss of membrane integrity, reduced
cellular function, and reduced plant growth. High temperatures also result in drought
stress, another global issue. Drought and high temperature stress conditions individually
or in their combination cause oxidative and osmotic stress, contributing to reduced plant
growth and development [9,10].

The temperature is initially sensed by plant thermosensors, including calcium channels
in the plasma membrane, histone sensors in the nucleus, reactive oxygen species (ROS) in
the cell, and denatured proteins in the endoplasmic reticulum and cytosol. These sensors
trigger signaling pathways that ultimately result in the expression of heat stress-responsive
genes, contributing to plant thermotolerance [11,12]. In addition, plants have developed
a wide range of survival strategies to overcome temperature changes. The ability of the
plants to survive abrupt temperature increases is known as basal thermotolerance [11].
Plants also possess acclimatory responses known as acquired thermotolerance, where the
pre-exposure to sublethal heat stimuli can aid in cellular reprogramming and increase the
thermotolerance [13,14].

Low temperature stresses negatively impact plant growth and development by inhibit-
ing the activity of the metabolic enzymes, altering the gene expression, and influencing
the plant metabolism and transcriptome, thus delaying many developmental processes
and growth [15]. Cold stress includes chilling stress (0–20 ◦C) and freezing stress (<0 ◦C),
and stress tolerance varies depending on the plant species and temperature ranges [16].
Interestingly, high and low temperatures share some common responses, including changes
in the membrane fluidity, alterations in the levels of plant hormones, the production and ac-
cumulation of ROS, calcium, nitric oxide (NO) signaling, Mitogen-activated protein kinase
(MAPK) signaling, protein sumoylation and proteasomal degradation, the reprogram-
ming of transcriptomic or metabolomic signatures, and other stress-responsive signaling
cascades [17,18]. In contrast, some of the distinct signaling components in high- and
low-temperature response pathways include the up- and downregulation of transcription
factors (TFs) such as heat shock factor (HSF) family TFs and Inducer of CBF expression
(ICE1) TFs that regulate the heat and cold stress responses, respectively, and the formation
and accumulation of secondary metabolites, sugars, and amino acids.

Plant responses to abnormal or extreme temperature changes are primarily medi-
ated by plant hormones that control and mediate complex stress-adaptive signaling
cascades and induce heat or cold stress responses [19,20]. One of the mechanisms by
which plant hormones induce thermotolerance is by inducing ROS production, activating
NADPH oxidases, and/or by altering the redox signaling that regulates various cellular
and physiological responses in response to temperature changes [21,22]. The extensive
crosstalk between the ROS and hormone signaling pathways aids in plant development
and acclimation responses (Figure 1) [22–26]. A few studies also suggest that ROS can
mediate signaling crosstalk events between different hormones, resulting in improved
thermotolerance [27–30]. In addition, plant hormones and ROS interact with other key
signaling molecules or components, such as TFs, Ca2+, NO, kinases such as calcium-
dependent protein kinase (CDPKs) and mitogen-activated protein kinases (MAPKs), and
phosphatases, to orchestrate the required molecular and physiological responses to sur-
vive extreme temperatures and regulate plant developments [11,31–33]. Although several
studies have demonstrated the role of ROS as secondary messengers in hormone signal
transduction pathways, the in-depth and precise mechanisms of ROS and hormone in-
teractions during temperature stress remain to be fully elucidated. In this review article,
we highlight the recent and early studies on the plant tolerance to temperature changes,
especially mediated through the underlying signal transduction pathways of the ROS,
hormones, and their integration. From this perspective, we provide insights on strategies
to improve crop tolerance to temperature stress that will aid in coping with the global
temperature fluctuations.
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Figure 1. A schematic model showing coordination between various signaling components to
induce acclimation responses to temperatures stress. The interplay between the ROS; hormones;
and other signaling components such as Ca2+, CDPKs, MAPKs, and TFs determines the plant’s
molecular, biochemical, metabolic and physiological responses to high or low temperatures. Left
panel: Heat stress affects the membrane fluidity and simultaneously triggers hormone signaling
pathways, resulting in increased cytosolic calcium, reactive oxygen species, and the activation of
other cytoplasmic proteins. The intercellular calcium activates CDPKs or RBOHs, which result in
ROS production. Hormones and ROS, along with other signaling components, interdependently
activate multiple signaling pathways to alter the activity of the heat shock factors (e.g., HSFA1),
which, in turn, activate other transcription factors like Dehydration-Responsive Element-Binding
Protein2a (DREB2A), inducing the appropriate stress-responsive gene expression. Right panel:
Low temperatures trigger plasma membrane rigidification, and activate the Ca2+ channels, leading
to increased Ca2+ concentrations in the cytosol. The cytosolic calcium activates protein kinases
such as CDPKs that, in turn, phosphorylate the transcription factor ICEAlternatively, ICE1 can be
phosphorylated by ABA-induced OSTICE1 activates the expression of the CBF genes by directly
binding to their promoters at low temperatures, inducing the appropriate COR gene expression. Some
of the common features between high- and low-temperature response pathways include changes in
the membrane fluidity, alterations in the levels of plant hormones, the production and accumulation
of ROS, calcium, NO and MAPK signaling, protein sumoylation and proteasomal degradation, the
reprogramming of transcriptomic or metabolomic signatures, and other stress-responsive signaling
cascades. Distinct signaling components in high- and low-temperature response pathways include
TFs, proteins, stress-responsive genes, the formation and accumulation of secondary metabolites,
sugars, amino acids, etc. ABA, abscisic acid; AP2/ERF, Apetala2/Ethylene Responsive Factor; Ca2+,
calcium; CBF, C-repeat-binding factor; CDPK, calcium-dependent protein kinase; COR, cold-response
genes; CRLK, calcium/calmodulin-regulated receptor-like kinases; DREBs, dehydration response
element-binding factors; HOS1, HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENE1;
HSP, heat shock proteins; HSF, HEAT SHOCK FACTOR; ICE1, inducer of CBF expression 1; MPKs,
mitogen-activated protein kinase; MYB, Myb-like transcription factors; NAC, NAM, ATAF, and CUC
family TF; OST1, OPEN STOMATA 1; RBOHs, respiratory burst oxidase homologs; ROS, reactive
oxygen species; and SnRK2, SNF1-related protein kinase 2.
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2. ROS Signaling

In contrast to its damaging effects and role in thermotolerance, ROS in their optimal
levels serve as signaling molecules generated in response to stress perception by stress
sensors [11,22,34]. As signaling molecules, ROS are distributed in all the metabolically
active plant tissues and are controlled by the ROS gene network [11,35,36]. During tem-
perature stress—specifically heat stress, although the chloroplast is the major site of ROS
production in plants—the signaling ROS are known to be mediated by calcium or by the
activation of NADPH oxidases at the plasma membrane and act as a heat stress signal
transducer [36–40].

ROS, along with other signals such as Ca2+, are also involved in the long-distance
systemic signaling required for the activation of systemic acquired acclimation in response
to heat or other abiotic stresses [21,41–45]. For example, upon the perception of heat stress
by sensors, plant hormones such as abscisic acid (ABA) and jasmonic acid (JA) trigger ROS
production, which, in turn, activates the RBOH proteins in the neighboring cells to further
generate ROS, initiating a systemic signal (the ROS wave) [38,46]. The hormone-triggered
ROS move via cell-to-cell propagation, forming an amplification loop, and activate the
systemic acquired acclimation responses [33,43,45]. Studies have shown that the local
application of heat or cold stimuli induced similar stress transcriptional responses in both
local and systemic tissues that were shown to be ROS wave-dependent [42,45,47]. Similarly,
ROS activate calcium channels, which, in turn, activate the Two Pore Channel1 (TPC1), a
vacuolar calcium channel that transports vacuolar-stored Ca2+, resulting in the activation
of the respiratory burst oxidase homolog D (RBOHD) proteins [48]. This mechanism occurs
in a feedback loop activating ROS and calcium, thus inducing a whole-plant acclimation
response to high or low temperatures [36,41,42,45].

3. High Temperatures Stress

Heat stress affects the membrane fluidity, resulting in increased cytosolic calcium,
which initiates downstream calcium signaling mediated by the plasma membrane-localized
Cyclic Nucleotide Gated Channel (CNGC) family proteins or several Ca2+ sensors like
calmodulins (CaMs), including CMLs (CaM-like proteins), calcineurin B-like proteins
(CBLs), CDPKs, and Ca2+ binding proteins [49]. The Ca2+/CaM-binding protein kinase
AtCBK3 participates in heat stress responses by targeting AtHSFA1a [50]. On the other
hand, the HS-initiated Ca2+ signaling is transduced via RBOH proteins, initiating the ROS
burst at the apoplast. The generated ROS by RBOHs is transported into the cell via the
aquaporins to trigger the further release of Ca2+ by TPC1 channels to regulate different
signaling and stress responses [21,51]. Thus, calcium-ROS signaling, along with other
hormone signaling components, activates multiple downstream signaling pathways that
regulate the heat shock transcription factors (HSFs) via post-translational modifications,
thereby inducing heat stress responses (Figure 1).

3.1. Role of ROS during High Temperatures Stress

The perception of temperature changes by the plant receptors or sensors initiates sev-
eral complex signaling networks that result in decreased membrane thermostability; higher
malondialdehyde (MDA) accumulation; and the generation of ROS such as hydrogen per-
oxide (H2O2), singlet oxygen (1O2), superoxide (O2

−), or hydroxyl radical [11,52]. In plants,
ROS are mainly produced by the Respiratory Burst Oxidase Homolog (RBOH) proteins, the
plasma membrane-localized NADPH oxidases, and several peroxidases that are controlled
by the ROS gene network [11,35,36]. The ROS generated in plants are decoded by vari-
ous ROS sensors, including Glutathione peroxidases (GPXs), plasma membrane-localized
receptor-like kinases (RLKs), Cys-rich receptor-like kinases (CRKs), serine/threonine pro-
tein kinase (OXI1), cyclic nucleotide-gated channels activated by heat stress, and redox
response transcription factors like HsfA4a and, thereafter, initiate stress-specific signals
that induce the required gene expression and protein synthesis [11,53–57]. However, if
uncontrolled, ROS overproduction results in oxidative stress that can damage proteins,
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biomolecules, and membranes, thereby affecting the photosynthetic machinery and over-
all leaf physiology [58–60]. For example, exposing chickpea or rice plants to heat stress
of (32/20 ◦C Day/Night, 7 d) resulted in a 6.5-fold increase of H2O2 accumulation and
resulted in oxidative damage compared to the controls [61,62]. Nevertheless, many studies
have revealed the importance of ROS and its regulatory systems at various stages of plant
development in response to heat stress [63,64]. ROS were shown to regulate the plant’s
basal and acquired thermotolerance. In Arabidopsis, Davletova et al. and Miller et al.
showed that mutants deficient in the antioxidant pathways, such as ascorbate peroxidase 1
(apx1), were defective in basal thermotolerance and showed a greater sensitivity to heat
stress [65,66]. Davletova et al. (2005) also showed, using knockout (KO) mutants of cy-
tosolic ascorbate peroxidase, an ROS scavenging enzyme and that heat shock transcription
factor 21 (HSF21/AtHSFA4) is involved in H2O2 stress sensing, suggesting a close link
between the HSF and ROS [65]. A few other major ROS responsive TFs include MYB
domain protein 44 (MYB44), Heat Stress transcription factor A-4A (HSFA4A), and Ethylene
Responsive Element-Binding Factor 6 (ERF6) [53,67–71]. Similarly, heat stress induction
has been shown to trigger the expression of heat shock proteins HSP17.6 and HSP18.2 in
Arabidopsis cell cultures. On the other hand, the application of ROS inhibitors such as
diphenyleneiodonium chloride significantly reduced the HSP gene expression, suggesting
that heat stress induced H2O2 is required for the effective expression of heat shock genes
in Arabidopsis [70,72].

In response to the excess production of ROS under high temperatures, plants not
only initiate heat stress (HS) responsive pathways but also induce expression of stress-
related and antioxidant proteins that result in higher antioxidant activities of ascorbate
peroxidase (APX), catalase (CAT), or superoxide dismutase (SOD), thereby reducing the
negative effects of oxidative damage caused by ROS [35]. Studies using the KO mutants of
ROS-scavenging enzymes were shown to be HS-sensitive, suggesting that they are neces-
sary for the detoxification of excess ROS under high temperatures. Similarly, in tomatoes,
the HS-induced negative effects of ROS, such as reduced growth, were reversed when
treated with a ROS-scavenging antioxidant ascorbic acid. Studies using phyB mutants have
suggested that the light priming of ROS detoxification via APX2 is a key component of
thermotolerant adaptation [73–75]. Another study reported that an RNA-binding protein,
flowering control locus A, is required to induce thermotolerance by triggering antioxi-
dant accumulation under heat stress conditions [76]. Recent studies have also shown that
miRNAs, such as miR398, regulate the heat response TF by negatively regulating several
ROS-scavenging enzymes, resulting in an ROS accumulation that triggers HSFA1 to induce
heat stress responses [77–79]. For instance, in rice, the NAC transcription factor gene
SNAC3 (ONAC003, LOC_Os01g09550) modulates the H2O2 homeostasis by controlling the
expression of ROS-associated genes, thus serving as a positive regulator under high temper-
atures [80]. In total, the evidence suggests that ROS-scavenging systems prevent an excess
accumulation of toxic ROS and regulate the thermotolerance in plants [81,82]. Likewise, the
studies using ROS biosynthesis mutants, such as NADPH oxidase (atrbohB and atrbohD),
showed a reduced thermotolerance due to the lower levels of ROS, indicating that plants
are required to maintain ROS at the optimal levels for attaining thermotolerance [63,83].
Similarly, studies have shown that priming plants with heat improved the antioxidant
capacity, accumulated lower ROS, and delayed the ROS-induced cell death [84,85]. Heat
priming also improved photosynthesis by enhancing stomatal conductance and by syn-
thesizing secondary compounds with antioxidative characteristics that helped maintain
the leaf membrane integrity under high temperature stress [86,87]. Taken together, these
studies suggest that ROS regulate the trade-off between the growth, acclimation, or defense
responses at altered temperatures [88,89].

3.2. Role of Hormones during High Temperatures Stress

The plant responses to abnormal or extreme temperature changes are primarily medi-
ated by plant hormones, including abscisic acid (ABA), brassinosteroids (BRs), cytokinins



Int. J. Mol. Sci. 2021, 22, 8843 6 of 22

(CKs), salicylic acid (SA), jasmonic acid (JA), and ethylene (ET). These hormones control and
mediate complex stress-adaptive signaling cascades and induce stress-response TFs [19,20].
Various studies on the transcriptional regulation of heat and cold via TFs have uncovered
both ABA-dependent and ABA-independent components and pathways, such as ABA-
responsive element-binding protein/ABA-binding factor (AREB/ABF) or cold-binding fac-
tor/dehydration responsive element-binding transcription factors (CBF/DREB) [17,90–92].

3.2.1. Role of ABA and JA during High Temperatures

Phytohormone ABA is one of the extensively studied hormones involved in regulating
heat stress responses and is required during most of the developmental stages to induce
thermotolerance. Upon the perception of heat stress, ABA is released and perceived by
the PYR/PYL receptors to form the ABA-PYR/PYL complex that interacts and suppresses
the activity of protein phosphatase 2Cs (PP2Cs). This interaction releases (SnRK2)/Open
Stomata 1 (OST1), a positive regulator of the ABA response. The released SnRK2s autophos-
phorylate and trigger the activity of different TFs, such as heat shock transcription factors
(HSF), MYB1, or ABA-Responsive Promoter Elements (ABREs)-Binding Factors (ABFs)
(AREB/ABFs), to induce heat stress responses (Figure 2) [21,93]. ABA is required during
most of the developmental stages to induce thermotolerance. During the reproductive
stage in Arabidopsis, ABA was shown to induce the SPL transcription factors conferring
thermotolerance [94]. Heat stress induces a rapid increase in the endogenous ABA con-
centration and enhances the antioxidant ability to confer heat tolerance in plants [95–97].
For example, Arabidopsis and tomato mutant plants, deficient in ABA biosynthesis and
signaling, exhibited heat-sensitive responses and had lower photochemical efficiency than
the wild type [98]. Likewise, the plants treated with ABA showed a higher accumulation
of H2O2 that mediated the induction of heat tolerance [99]. Microarray studies, using
Arabidopsis, suggest that ABA can induce thermotolerance by inducing the expression of
HSFA6b, a class A HSF [100]. In line with these findings, promoter mutagenesis analyses
in wheat showed that transcriptional activator TaHsfC2a-B activates heat protection genes
via the ABA-mediated pathway, and its overexpression improved the thermotolerance in
wheat grains [97]. ABA also induces other TFs, like HSF6b and SQUAMOSA Promoter-
Binding Proteinlike (SPL), required to acquire thermotolerance [94,100]. The activated
HSF6b then directly binds to the promoter of Dehydration-Responsive Element-Binding Pro-
tein2a, enhancing its expression and, thus, inducing thermotolerance. Similarly, the TFs
SPL1 and SPL12 confer thermotolerance via PYL-mediated ABA signaling [94,100].

Like ABA, plants have been shown to accumulate JA and its precursors OPDA or MeJA
in response to heat stress [101,102]. Studies in JA biosynthesis or signaling mutants, such
as jar1 or coi1, displayed lower heat tolerances, suggesting that JA is involved in regulating
plants’ basal thermotolerance [103]. In contrast, pretreating Arabidopsis plants with MeJA
upregulated the antioxidant enzyme activity and conferred heat tolerance, suggesting that
jasmonic acid is required for acquiring thermotolerance [103,104]. At the molecular level,
JA transcriptionally induces WRKY or MYC TFs to induce thermotolerance [102,105–107].

3.2.2. Role of BRs during High Temperatures

The perception of BR by its receptor BRASSINOSTEROID INSENSITIVE1 (BRI1) fa-
cilitates the interaction of the active BR1 with a coreceptor BRI1-ASSOCIATED KINASE1
(BAK1). This interaction positively regulates the BR-signaling components BRASSINAZOLE-
RESISTANT1 (BZR1) and BRI1-EMS SUPPRESSOR1 (BES1) to enhance the expression of
heat-responsive genes (Figure 2) [108]. For example, at high temperatures, the accumula-
tion of BES1 and BZR1 increases, and BZR1 binds to the E-box and G-box elements of the
PHYTOCHROME INTERACTING FACTOR 4 (PIF4) promotor to regulate its expression.
This interaction induces the expression of growth-promoting genes, thus regulating the
thermomorphogenesis [109]. Additionally, thermomorphogenic genes are activated by the
abundant levels of the BES1-PIF4 complexes, highlighting the roles of BR-induced TFs in
attaining thermotolerance [110,111]. A recent study in Arabidopsis also indicated that a
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loss-of-function of BRI1-EMS-SUPPRESSOR 1 (bes1)-mediated BR signaling, exhibited the
most sensitive characteristics to heat stress, such as a lower PSII photochemistry efficiency
(Fv/Fm), higher lipid hydroperoxide contents, higher photoinhibition, and photo-oxidative
stress compared to the wild type [112]. In barley (Hordeum vulgare), the mutants deficient in
BR biosynthesis and signaling negatively affected the accumulation of the HSP transcripts
and heat-shock proteins, demonstrating the role of BRs in attaining plant acclimation to
high temperatures [113,114]. In addition, BRs were shown to be involved in signaling
crosstalks with other hormones to coordinate stress responses [23]. For example, BRs
were shown to interact and enhance the endogenous level of ABA in Chlorella vulgaris
by regulating ABA biosynthesis, thus enhancing the tolerance to heat [115,116]. Taken
together, these results highlight the role of BR signaling in attaining heat stress acclimation
in plants.
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Figure 2. Selected hormone and ROS interactions in response to high-temperature stress. During
high temperatures, ABA-regulated kinases such as SnRK2 or TFs activate RBOHs to generate ROS.
Similarly, in the BR-signaling pathway TF BZR1 activates RBOHs to generate ROS. Along with
TFs, the generated ROS may activate and induce the expression of stress-responsive genes to or-
chestrate the appropriate molecular and physiological acclimation responses to high temperatures.
Other plant hormones such as ET, SA, and CKs may also play roles in inducing stress responses
to high temperatures. Only ABA, BRs, and JA were selected to be presented in the mode due to
the availability of a relatively large amount of data supporting their roles in ROS interactions in
response to high-temperature stress. Solid arrows and blocked arrows indicate confirmed positive
and negative regulations. Dashed lines indicate potential interactions. The hormones are indicated
in yellow, transcription factors in green, ROS in red, and ROS-producing and -scavenging enzymes
are indicated in brown and blue, respectively. ABA, abscisic acid; AREB/ABF, ABA-responsive
element-binding protein/ABA-binding factor; BR, brassinosteroid; BAK1, BRI1-ASSOCIATED KI-
NASE1; BES1, BRI1-EMS SUPPRESSOR1; BIN2, brassinosteroid insensitive 2; BRI1, BRASSINOS-
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3.2.3. Role of ET during High Temperatures

Ethylene is another hormone that is involved in the heat stress response and modulates
the plant growth and development through transcription factor ETHYLENE RESPONSE
FACTOR 74 (ERF74). Studies using overexpression lines of ERF74 showed increased
ROS-dependent dichlorofluorescein fluorescence and displayed enhanced basal thermotol-
erance, whereas the KO mutants accumulated lower ROS levels and showed reduced basal
thermotolerance, suggesting that ERF74 possibly regulates the RBOHD expression at high
temperatures [117]. In addition, it has been shown that erf74 and erf74;erf75 lines lack the
ROS burst in the early stages of heat and other stresses as a result of the lower expression
level of the RbohD proteins [117,118]. Together, these studies suggest that ERF74 acts as a
switch to control the RBOHD-dependent mechanism to maintain H2O2 homeostasis and
that the induction of a ROS-scavenging enzyme is dependent on the ERF74-RBOHD-ROS-
signaling pathway [117,118]. Similarly, studies using the erf6 mutants suggest that the
AP2/ERF domain-containing TF ERF6 regulates ROS signaling in Arabidopsis during heat
and other abiotic stresses, indicating that ERFs regulate the stress tolerance by controlling
ROS homeostasis in an RBOHD-dependent manner [118–120]. More recently, using ethy-
lene signaling-defective mutants, the role of additional ethylene response factors, ERF95
and ERF97, involved in the basal thermotolerance of Arabidopsis were uncovered, suggest-
ing that ERF95 and ERF97 genetically function downstream of EIN3 and that the ectopic,
constitutive expression of ERF95 or ERF97 increases the basal thermotolerance [121]. It
has been reported that ERF95 and ERF97 regulate the heat-responsive genes and directly
bind to the promoter of HSFA2, thus establishing a connection between ethylene and its
downstream regulation in the basal thermotolerance of plants [120,121].

3.2.4. Role of Salicylic Acid during High Temperatures

Salicylic acid has been reported to be a key signaling molecule in plants under high
temperatures. Earlier studies suggest that SA is primarily involved in promoting the basal
thermotolerance by inducing several HSPs [122]. The SA levels increase upon heat stress
in plants, which were shown to improve the photosynthetic capacity by protecting the
photosystem II (PSII) complex from higher levels of ROS during heat stress [123–125]. A few
studies suggest that the exogenous application of SA increased the activity of antioxidant
enzymes such as CAT and alleviated the heat-induced reduction in pollen viability and
floret fertility by regulating the ROS level in developing anthers [126]. Another study
showed that H2O2-mediated SA prevented the pollen abortion caused by heat stress [127].
In Medicago sativa L., SA treatments triggered the heat shock proteins in the organelles and
improved the activity of PSII and altered the rate of electron transport, thereby reducing the
damage caused by heat stress [128]. These findings indicate the role of SA in regulating the
antioxidant defense system and improving the photosynthetic efficiency of plants, resulting
in enhanced thermotolerance [126–129].

3.2.5. Role of CKs during High Temperatures

CKs are primarily involved in plant growth and developmental functions, includ-
ing regulating the organ size, a role in the meristem activity of shoots and roots, and
branching [130]. Although the exact nature of CKs during high temperatures is yet to be
clarified, a few studies suggest their role in adaptive mechanisms during heat stress. Earlier
studies found that the CK contents are generally reduced during high temperatures [131].
Recent studies indicated that heat stress induces a rapid but transient increase in active CK
contents, followed by its depletion, signifying that CKs could serve as primary receptors
in temperature sensing and serve as the first signal for thermomorphogenesis [132,133].
Transcriptomic and proteomic studies in Arabidopsis have indicated a large overlap of
CK- and heat-responsive transcriptomic changes [132–134]. The exogenous application
of CKs induced heat shock responses by upregulating the heat shock proteins, regulating
several phosphoproteins and increasing the activity of the antioxidant system [132–134]. In
Arabidopsis, the application of INCYDE (2-fluoro-6-(3-methoxyphenyl) aminopurine), an
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inhibitor of CK oxidase/dehydrogenase (CKX) enzymes, inhibited cytokinin degradation
and mildly promoted the heat stress tolerance [135]. Taken together, these studies highlight
the positive role of CKs during the high temperature response in plants [134,135].

3.3. Hormone and ROS Crosstalk during High Temperatures Stress

The ROS and hormonal signaling are tightly synchronized to regulate plant growth
and development (Figure 1) [22–26]. At their optimal levels, the ROS and hormones are
involved in the various developmental process, including seed germination, apoptosis,
stomatal responses, root hair growth and elongation, and lignin synthesis, and their coordi-
nation is required to induce stress responses during high or low temperatures [21,136].

Once induced by heat stress, hormones alter the ROS levels, primarily by activating
RBOHs and/or by altering redox signaling [21–23,32]. Nevertheless, ROS have been shown
to act both upstream and downstream of the hormones, and the interplay between them
can act as an amplification loop to control the gene expression and induce heat and other
abiotic stress responses [21,23,54,137,138]. In addition, ROS can mediate the signaling
crosstalk between different hormones. For example, in response to heat stress in tomatoes,
the ROS produced via RBOHs were shown to mediate an interaction between ABA and
BRs, resulting in an improved heat stress tolerance [28].

The transcriptional regulation mediated by hormones and/or ROS play a key role
in mediating the heat stress responses in plants. ABA is reported as one of the early
response hormones during high temperatures. ABA regulates its key TFs, AREB/ABFs,
to mediate the ABA-dependent gene expression, which, in turn, influences the ROS pro-
duction or enhances the antioxidant capacity, depending on the nature and severity of
stress (Figure 2) [93,139]. ROS can act as a hormonal response signal, with ABA-induced
ROS bursts emerging as an example [34,140,141]. Thus, the ROS regulatory systems and
hormone signaling events need to be strictly coordinated to fine-tune the heat stress re-
sponses [34,141]. During heat stress, ABA also mediates HSP accumulation that, in turn,
acts as a molecular chaperone to mediate heat tolerance by enhancing the scavenging
of ROS and inducing the expression of HS-responsive genes [70,134]. Grafting studies
in cucumbers showed that ABA-induced HSP accumulation occurred in an apoplastic
ROS-dependent manner, indicating that inhibiting ROS production impaired the HSP
accumulation and heat tolerance in the presence of ABA [98].

Plant development and heat stress tolerance are highly dependent on the interaction
between BRs and ROS signaling. For example, similar to ABA, the BRs regulator BZR1
directly binds to the promoter of RBOH1, and RBOH1-mediated ROS triggers programmed
cell death (PCD) and tapetal cell degradation [142,143]. In line with these observations,
tomato plants overexpressing BZR1 showed an enhanced production of apoplastic H2O2
that interacts and binds to the promoters of FERONIA (FER 2/3) receptor-like kinase,
resulting in heat stress tolerance [144]. During high temperatures stress, ROS mediate the
signaling crosstalk between hormones, regulating the gene expression and inducing stress
tolerance [69,71]. For example, the study by Zhou et al. showed that BRs-induced ROS
mediated an interaction between ABA and BRs by activating RBOHs and resulted in an
improved stress tolerance to heat in tomatoes [28].

The exact mechanisms by which SA induces ROS or ROS generated in the cells triggers
SA biosynthesis remains unidentified. However, earlier studies indicate that SA inhibits
the catalase activity and disturbs the cellular redox homeostasis, thus resulting in a higher
ROS accumulation [145]. On the other hand, higher levels of SA were observed in plants
with sustained ROS production in peroxisomes or the chloroplast [146]. Taken together,
these results suggest that peroxisomes or chloroplast ROS trigger SA biosynthesis, which
is required for the defense response [146]. The mutant analysis of SA biosynthesis or
catalase-deficient mutants suggest that ROS can also function upstream of SA biosynthesis,
suggesting that ROS and SA function in a self-amplifying feedback loop [23,54]. For
example, by analyzing the mutants deficient in SA signaling (sid2), it was shown that the
mutants accumulated higher ROS levels and showed tolerance to a combination of heat
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and drought stress [129,147]. Another study suggested that the exogenous application
of SA increased the heat tolerance in tomatoes and barley by improving the antioxidant
defense system through the scavenging of ROS [148,149]. Like SA, CKs are also proven
to enhance the heat tolerance in plants. Although previous studies have shown that heat
inhibits the cytokinin levels by downregulating histidine kinases genes, treating plants
with CK upregulated antioxidant system activity triggered HSPs, which lead to heat
tolerance [133,134].

4. Low Temperatures Stress

Sudden or extremely low temperatures cause adverse effects on a plant’s metabolism,
growth, and stress responses [150]. Some of the adverse effects of cold stress include
membrane rigidification, the modification of stability and degradation of proteins, a higher
accumulation of toxic metabolites, a reduced efficiency of ROS scavenging enzymes, and a
lower photosynthesis rate [151]. Low temperatures negatively affect the gene expression,
protein synthesis, and stress-responsive transcripts. At extreme low temperatures (<0 ◦C),
ice crystals can form, which influences a plant’s water potential, leading to an osmotic
imbalance and oxidative stress, thereby impacting the normal cellular and metabolic
processes of the cell [152–154].

Plants have evolved sophisticated perception, signaling, and acclimation strategies
that allow their survival at low temperatures, even at the cost of reduced growth and
yield [155]. Changes in the lipid and protein compositions of the cellular membranes, the
accumulation of cryoprotective polypeptides, soluble sugars, higher antioxidant enzymes,
higher hormone accumulation, anti-freezing proteins (AFPs), and cold shock proteins
(CSPs) are common at low temperatures [156–158]. Low temperatures are also sensed
by changes in the membrane fluidity, such as the reduction of cell membrane fluidity
and activate cold-responsive Ca2+ channels like mid1-complementing activity 1 and 2
(MCA1 and MCA2), or other Ca2+ signatures that result in a rise of the cytosolic Ca2+

levels [159]. The higher Ca2+ levels lead to the activation of RBOHs, thereby generating
ROS. For example, a recent study in tomato plants suggested that CDPKs like CDPK27
induce crosstalk between ROS and other signaling molecules, leading to the activation
of ABA. This suggests that CDPKs may function as a positive regulator of hormones in
plant adaptation to cold stress [160]. It should also be noted that, apart from CDPKs,
CaM-regulated receptor-like kinases 1 (CRLK1) via interactions with calmodulin (CaM)
were shown to be important for plant responses to cold stress [160,161]. Thus, calcium,
along with other secondary metabolites and signals, including ROS, NO, or hormones,
mediate the electrophysiological responses and initiate cold stress responses [151,162,163].
In most plant species, the cold response is primarily mediated by the hormone-induced C
REPEAT-BINDING FACTOR- COLD RESPONSIVE (CBF-COR) signaling pathway, where
CBF directly binds to the promoters of the COR genes and induces their expression,
thus enhancing the freezing tolerance (Figure 1) [118]. These CBFs, in turn, regulate the
expression of the genes involved in ROS detoxification, hormone metabolism, and other
presumed cellular protective functions [17]. Early molecular studies revealed that an MYC-
type transcription factor INDUCER OF CBF EXPRESSION (ICE1) regulates the activity of
CBF/DREB1 genes [17,164], and these TFs and other downstream signaling components
are regulated by a coordination between different hormones and ROS (Figures 1 and 3).

4.1. Role of ROS during Low Temperatures Stress

Like in heat stress, low or freezing temperatures lead to ROS formation, and an excess
accumulation of ROS in cell membranes induces oxidative stress. Low temperatures in-
duce an enhanced rate of oxygenation reactions in the chloroplasts and produce a higher
glycolate content. The glycolate is then converted to glyoxylate in the peroxisomes, pro-
ducing H2O2 as a byproduct [89]. A higher accumulation of H2O2 results in activation
of the ROS scavenging system through the conversion of GSH (reduced glutathione) to
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GSSG (oxidized glutathione) by the enzyme glutathione peroxidase (GPX) and glutathione
S-transferase (GST), thus protecting plants from cold-induced oxidative stress [88,89].

In rice, the ROS-mediated gene expression and upregulation of antioxidant-related
metabolites were shown to be involved in attaining chilling tolerance [165]. For example,
metabolomic studies using rice varieties, such as japonica, indica, or nipponbare, at low
temperatures showed a higher accumulation of MDA contents and H2O2 levels compared
to their controls, revealing a ROS-dominated rice adaptation mechanism to low temperature
environments [165]. Furthermore, the gene expression in response to cold stress may be
regulated by redox signaling, as several defense genes containing antioxidant-responsive
elements in their promoter regions [88]. More recently, the proteomics analysis in Brassica
napus L. showed that the molecular mechanism of enhanced cold tolerance was achieved
through ROS scavenging via the metabolic pathways [166].

4.2. Role of Hormones during Low Temperature Stress
4.2.1. Role of ABA during Low Temperatures

As in other abiotic stress responses, cold stress responses are mediated by both the
individual and combined actions of plant hormones. ABA is one of the key hormones in-
volved in cold stress acclimation in plants [17]. ABA can induce an increase in the transcript
levels of CBF genes by binding to the CRT/DRE element and activating CBF or induce
COR gene expression [167]. All signaling components of the ABA signaling pathways were
shown to be important players in attaining a cold tolerance. For example, OPEN STOM-
ATA1 (OST1), an SNF1-related protein kinases2 (SnRK2) protein kinase family member, is a
central regulator of the cold signaling pathway in Arabidopsis. The cold activated protein
kinase SnRK2/OST1 phosphorylates ICE1, which prevents ICE1 degradation mediated by
HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENE15 (HOS1) and subsequently
promotes the stability and binding of ICE to the CBF promoters, leading to COR gene ex-
pression, thereby enhancing the freezing tolerance (Figure 3) [168,169]. A mutant analysis
indicated that the transgenic plants overexpressing OST1 exhibit an enhanced freezing
tolerance, while the ost1 mutants exhibited a freezing hypersensitivity [168]. In parallel to
these observations, the crosstalk of ABA-induced OST1 along with MAPKs was also shown
to phosphorylate ICE1 to induce cold stress responses [170]. Likewise, during cold or ABA
treatments, a type 2C phosphatase ABA INSENSITIVE1 (ABI1) was shown to partially
inhibit OST1, and the loss-of-function mutants of abi1 showed an enhanced tolerance to
freezing stress, highlighting the importance of protein phosphatases in inducing cold stress
acclimation [168].

4.2.2. Role of JA during Low Temperatures

During low temperatures, the synthesized JA activates the JA receptor COI1 (CORONATINE-
INSENSITIVE 1) and promotes the degradation of JAZ (JASMONATE-ZIM-DOMAIN) pro-
teins via the ubiquitin/26S proteasome pathway. The negative regulator of the JA-signaling
pathway, JAZ1, physically interacts and represses the transcriptional function of ICE1,
activating the ICE-CBF transcriptional regulation cascade, followed by the expressions
of cold-regulated genes to improve the plant freezing tolerance [15,171,172]. In addition,
the increased expression of JA biosynthesis and signaling genes were observed in rice
plants when they were exposed to cold treatment [173]. In contrast, the plants showed
a hypersensitive response to freezing stress when the JA signaling pathway was inhib-
ited [174]. Experiments using apple seedlings indicated that MIEL1 (MYB30-Interacting E3
Ligase1) and JAZ proteins coregulated the JA-mediated cold stress tolerance via the B-box
protein BBX37-ICE1-CBF module that aided in cold stress tolerance [174]. Furthermore,
JA or its precursors such as OPDA or MeJA are well-known to induce ROS production,
and plants treated with MeJA showed a higher antioxidant capacity, thus enhancing the
cold tolerance. More recently, it was shown that cyclic nucleotide-gated channels and
glutamate receptor-like channels (GLRs) play a role in inducing cold stress acclimation
by increasing the endogenous jasmonate levels under cold stress [175,176]. The plant
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hormone GA promotes the accumulation of DELLAs that regulate the induction of CBF3
through ICE1 via JAZs, suggesting a possible crosstalk between JA and GA in attaining an
acclimation to cold [177].
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Figure 3. Selected hormone and ROS interactions in response to low-temperature stress. During low
temperatures, ABA-regulated kinase SnRK2 regulates the stability and transcriptional activity of ICE1,
causing the activation of CBF/COR. Parallelly, SnRK2 could phosphorylate RBOHs, generating ROS.
Similarly, TFs BZR1 and EIN3 possibly induce RBOHs to generate ROS via the BR and ET-signaling
pathways, respectively. The ROS generated in a feedback loop could induce the expression of CBFs
via kinases. Alternatively, low temperatures cause membrane rigidification, which might induce a
calcium signature that activates kinases. The activated kinases could phosphorylate ICE1 or RBOHs,
thus inducing the expression of COR genes to orchestrate the appropriate molecular and physiological
acclimation responses to low temperatures. Other plant hormones such as JA and SA may also play
roles in inducing the stress responses to low temperatures. Only ABA, BRs, and ET were selected to
be presented in the mode due to the availability of a relatively large amount of data supporting their
roles in ROS interactions in response to low-temperature stress. Solid arrows and blocked arrows
indicate confirmed positive and negative regulations. Dashed lines indicate potential interactions.
The hormones are indicated in yellow, transcription factors in green, ROS in red, and the ROS-
producing and -scavenging enzymes are indicated in brown and blue, respectively. ABA, abscisic
acid; AREB/ABF, ABA-responsive element-binding protein/ABA-binding factor; BR, brassinos-
teroid; BAK1, BRI1-ASSOCIATED KINASE1; BES1, BRI1-EMS SUPPRESSOR1; BIN2, brassinosteroid
insensitive 2; BRI1, BRASSINOSTEROID INSENSITIVE1; BZR1, BRASSINAZOLE-RESISTANT1;
Ca2+, calcium; CBF, C-repeat-binding factor; COR, cold-response genes; CTR1, CONSTITUTIVE
TRIPLE RESPONSE1; DREB1, dehydration response element binding factor1; ET, ethylene; EIN3,
ETHYLENE INSENSITIVE3; ETR1, ethylene receptors; ICE1, inducer of CBF expression 1; OST1,
OPEN STOMATA 1; PP2C, protein phosphatase 2Cs; PYR/PYL/RCAR, pyrabactin resistance protein
or PYR-like proteins; RBOHs, respiratory burst oxidase homologs; ROS, reactive oxygen species; and
SnRK2, SNF1-related protein kinase 2.

4.2.3. Role of ET during Low Temperatures

The plant hormone ET acts as a negative regulator of cold stress responses (Figure 3) [178].
In the ET signaling pathway, one of the primary negative regulators of the CBF expression
is the TF ETHYLENE INSENSITIVE3 (EIN3). The EIN3 is degraded by two F-box proteins
(EIN3-BINDING F-BOX 1 (EBF1) and EBF2) via the 26S proteasome pathway enhancing
the stability of PHYTOCHROME-INTERACTING FACTOR 3 (PIF3), thus repressing the
activity of CBF genes during cold stress [179,180]. A transcriptomic study using ERF
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mutants in Arabidopsis showed that two genes, ERF102 and ERF103, are involved in
the cold signaling pathway [181]. In addition, higher ROS accumulation in erf105 plants
suggests a role for ERF105 in regulating ROS homeostasis, which is important for the cold
stress response [17,182]. As in heat stress, miRNAs are also involved in cold stress tolerance
via ET signaling. For example, reports on Poncirus trifoliata showed that ptr-miR396b
positively regulates cold tolerance through reducing the 1-AMINOCYCLOPROPANE-1-
CARBOXYLIC ACID OXIDASE (ACO) transcript levels and repressing ethylene synthesis
and leads to enhanced ROS scavenging, thus inducing cold tolerance [165].

4.2.4. Role of BRs during Low Temperatures

In contrast to ET, the plant hormone BR positively regulates the freezing tolerance.
Studies using BR signaling mutants in Arabidopsis showed that TFs BRZ1 and BES1
regulate the CBF expression by binding to the promoters of these genes, thus resulting in a
freezing tolerance [108,183]. Since BRs are shown to be specific regulators of the CBF-COR
pathway, these authors suggest that CBF genes may constitute a central node of hormone
crosstalk during cold stress response [108]. In tomatoes, BRs were shown to positively
regulate chilling tolerance via a signaling cascade involving RBOH1, GLUTAREDOXIN
(GRX), and 2-Cys Prx. The BR-induced chilling tolerance was associated with an increase
in the transcripts of the RBOH1 and GRX genes, increasing the ratio of reduced/oxidized
2-cysteine peroxiredoxin (2-Cys Prx) and activation of the antioxidant enzymes [184].
Furthermore, in response to chilling stress, BRs were shown to act as positive regulators of
photoprotection by inducing ROS production. The leucine-rich repeat receptor-like kinase,
BZR1, induces the transcription of an NADPH oxidase-encoding gene, RBOH1, leading to
a higher accumulation of apoplastic H2O2. The presence of ROS induces a cyclic electron
flow, non-photochemical quenching (NPQ), accumulation of photoprotective proteins,
and increased activity of several antioxidant enzymes, thus inducing photoprotection
under low temperatures [30]. Furthermore, the BR-induced production of antioxidant
enzymes aid in maintaining the ROS homeostasis and induces stress tolerance following
cold stress [23,185]. The exogenous application of BRs leads to enhanced antioxidant
capacity, orchestrating the alleviation of ROS burst-induced oxidative damage [186]. The
exogenous application of BRs also increases the expression of CBF genes that control a
significant portion of COR genes and are required for the adequate development of cold
acclimation response [183,187].

4.3. Hormone and ROS Crosstalk during Low Temperatures Stress

Some of the primary hormones inducing stress responses to low temperatures in-
clude ABA and BRs (Figure 3). The signaling components of these hormones, OST1 or
BZR1/BES1, regulate the TF activity of ICE1 and induce the expression of CBF genes. ABA
and BRs are known to trigger H2O2 production via the RBOHs, resulting in enhanced
cold tolerance and acclimation response [17,27,29,108]. A recent study demonstrated that
the exogenous application of ABA enhanced cold tolerance by increasing the antioxidant
enzymes like CAT, SOD, and APX [188]. Likewise, in a BR signaling pathway, BZR1 was
shown to activate RBOH1 resulting in the production of ROS [30,189]. In line with these
observations, many studies indicated that priming plants with H2O2 improves plant’s
antioxidant capacity and induces cold tolerance [27,190].

Cold stress increases the endogenous levels of JA in plants. During this process, the
inducer of the ICE1-CBF regulatory cascade plays a key role in the regulation of cold stress
tolerance [174]. JA has also been shown to counteract chilling stress by inducing ROS
scavenging enzymes. Although the precise mechanism and pathways of the interaction
between JA and ROS during low temperatures remains to be clarified, a few studies
suggest that treatments of cold-stored lemon with MeJA together with SA increased its
chilling tolerance by inhibiting the activity of polyphenol oxidase (PPO) and peroxidase
(POD) [191–193].
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Many ET-response TFs regulate ROS homeostasis and function in cold tolerance [194].
For instance, a study on ethylene-responsive factor in tobacco reported that overexpress-
ing MfERF1 showed higher activities of antioxidants such as Zn-SOD, CAT1, CAT2, and
resulted in increased tolerance to freezing and chilling in transgenic tobacco, whereas
KO mutants showed reduced freezing tolerance. ET also induces or transcriptionally
inhibits the expression of CBF/DREB1 via EIN3, a negative regulator of ethylene signal-
ing (Figure 3) [178]. Parallel studies using ERF109 from Poncirus trifoliata (L.) showed
that ERF109 binds to the promoter and regulates the expression of the POD-encoding
gene (PtrPrx1), a class III peroxidase, to maintain a robust antioxidant capacity for effec-
tively scavenging ROS, thus conferring cold tolerance [195]. Taken together, these studies
highlight the role of hormones, ROS, and the intrinsic coordination between them, to
induce tolerance to temperature stress. Plant hormones and ROS not only interact with
each other, but also with other key signaling components, including NO, Ca2+, kinases,
phosphatases, TFs, and various other metabolites, to orchestrate appropriate molecular,
metabolic, and physiological acclimation responses that regulate acclimation responses to
high or low-temperature stress.

5. Conclusions and Perspectives

To overcome the effects of temperature fluctuations, plants have evolved sophisticated
acclimation mechanisms, including signal transduction pathways that activate stress-
specific TFs, genes, signaling molecules, and enhance antioxidant activity. Plant hormones
are developmental regulators that control many cellular, biochemical, and physiological
responses throughout the plant life cycle. Stress perception by receptors triggers changes in
the hormone levels, which activate stress-specific signal transduction cascades to regulate
the expression of stress-specific TFs and their related genes. Part of their response also
includes interaction with other hormones and many signaling molecules, including ROS.
Hormones trigger ROS production (via RBOHs), and ROS, in turn, can impact hormone
biosynthesis and allocation. The variations in the pattern of ROS/hormone signatures after
early stages of stress are known to be one of the key processes influencing different stress
response networks, thus attaining stress acclimation. Hence, identifying these hormone-
ROS-regulated signaling pathways will aid in a better understanding of the molecular
mechanism and help in developing improved stress-tolerant plants.

During temperature fluctuations, one of the most toxic byproducts of the plant’s
metabolism is the generation of ROS. Paradoxically, ROS also serve as signaling molecules
involved in the long-distance signaling and stress acclimation process. Due to its metabolic
and toxic nature, many studies suggest that genetic manipulation of genes involved in
ROS metabolism or antioxidants and scavenging enzymes could increase tolerance to tem-
peratures stress. Alternatively, insights into the mechanism of thermal tolerance through
high-throughput techniques point towards the importance of exogenous application of
lower concentrations of ROS or stress-specific hormones to induce higher sustainability
during extreme temperatures. Engineering plants to synthesize these compounds may offer
an alternate way of increasing thermotolerance among important crop species. Thus, iden-
tifying the role of ROS and hormone integration in the avenue of stress combination is an
area of potential future research. Increasing evidence shows that priming plants with heat
can improve their photosynthetic capacity, stomatal conductance, and develop a higher
antioxidant capacity to avoid ROS-induced damages. Lastly, biotechnology approaches in-
cluding genome-wide association studies, quantitative trait loci mapping, transcriptomics,
metabolomics, and proteomics, followed by selective breeding or genetic engineering, can
greatly aid in identifying the nature of the signaling cascades and the utilization of specific
genes in coping with high or low temperatures. Once these molecular principles have been
established, conventional plant breeding approaches including backcrossing and pedigree,
or population breeding can be employed to develop high-yielding and thermotolerant
plants that can adapt to climate change.
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With the rapid changes in global temperatures, temperature stress is expected to be
one of the primary abiotic stresses determining plant health. Temperatures, either high or
low, and in their extremes, adversely affect all developmental processes in plants, from
seed germination to cell death. They also negatively influence the plant’s physiological
processes, including transpiration, photosynthesis, respiration, and cellular structures. At
the cellular level, they disrupt various signal transduction pathways and generate and alter
the levels of toxic metabolites, resulting in lower crop yield or death. Plant responses to
these temperature fluctuations include stress perception via thermal sensors, alterations
in the signaling pathways affecting plant redox and hormone levels, and changes in the
activity of stress-specific TFs and genes. Many studies have independently identified
various mechanisms that govern a plant’s response to temperature changes. However,
a complete understanding of temperature stress tolerance mechanisms involving plant
hormones and secondary metabolites such as ROS had remained elusive. Here we have
provided a comprehensive view of recent work on the roles of plant hormones, ROS, and
their integration in achieving plant tolerance to high and low temperatures.
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