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Abstract: Evaluating the safety risk of rural roadsides is critical for achieving reasonable allocation of
a limited budget and avoiding excessive installation of safety facilities. To assess the safety risk of rural
roadsides when the crash data are unavailable or missing, this study proposed a Bayesian Network
(BN) method that uses the experts’ judgments on the conditional probability of different safety
risk factors to evaluate the safety risk of rural roadsides. Eight factors were considered, including
seven factors identified in the literature and a new factor named access point density. To validate
the effectiveness of the proposed method, a case study was conducted using 19.42 km long road
networks in the rural area of Nantong, China. By comparing the results of the proposed method and
run-off-road (ROR) crash data from 2015–2016 in the study area, the road segments with higher safety
risk levels identified by the proposed method were found to be statistically significantly correlated
with higher crash severity based on the crash data. In addition, by comparing the respective results
evaluated by eight factors and seven factors (a new factor removed), we also found that access point
density significantly contributed to the safety risk of rural roadsides. These results show that the
proposed method can be considered as a low-cost solution to evaluating the safety risk of rural
roadsides with relatively high accuracy, especially for areas with large rural road networks and
incomplete ROR crash data due to budget limitation, human errors, negligence, or inconsistent
crash recordings.
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1. Introduction

Road safety is one of the most important tasks of traffic engineers and is still a big issue for the
whole world. On average, there are approximately 1.2 million fatalities and five million injuries in road
crashes every year (WHO, 2015). According to the Federal Highway Administration (FHWA) database,
roadway departure (RwD) crashes involving run-off-road (ROR) and cross-median/centerline head-on
collisions account for approximately 56% of all types of traffic crashes and represent one of the more
severe types of crashes [1]. Some recent studies show that ROR crashes on rural roads account for 80%
of all ROR fatalities, and around 90% of these crashes occurred on rural two-lane roads [2]. To prevent
ROR crashes or reduce the safety risk of rural roadsides, there is a critical need to identify key factors
that affect and evaluate roadside safety risk. Given that the budget for rural road safety management
is often limited, especially in developing countries, it is necessary to evaluate and classify the safety
risk levels of rural roadsides to prioritize budget allocation and possible safety actions.
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Although rural road pavement and traffic conditions are steadily improving, and their traffic
volume and average operating speed are increasing as the cities expand, the safety facilities of rural
roads, such as roadside safety countermeasures, are inadequate and sometimes even missing compared
to urban roads, which contributes to the growing number of ROR crashes in recent years [1–3].
To address this, some recent studies proposed different methods to evaluate the rural roadside safety
risk by analyzing a variety of ROR crash data [4–14]. However, a significant amount data of ROR
crashes used in these methods (e.g., crash causation, crash type, crash location, crash severity, traffic
condition, etc.) are not available or missing in many countries’ Department of Transportation (DOT)
databases (e.g., China) due to human errors, negligence, or lack of training in people in charge of crash
recordings. The absence of ROR crash data makes it even more difficult to evaluate the rural roadside
safety risk. In addition, some of the safety risk factors for rural roadsides were not included in previous
studies, which may not provide a complete picture of rural roadside safety risk. Thus, the relationship
obtained in previous studies between the factors and safety risk is possibly also biased [15–24].

To evaluate the safety risk of rural roadsides for areas with incomplete ROR crash data, this paper
proposes a Bayesian Network (BN) based method to evaluate the rural roadside safety risk based on
the estimated probability of ROR crash using experts’ judgment. To provide a relatively complete
picture of rural roadside safety risk, seven safety risk factors are considered based on their frequency
and importance in the literature. A new factor named access point density is introduced to capture
some roadside features that were not included in previous studies and may have significant impacts
on the frequency and severity of ROR crashes. Then, a BN model is constructed to evaluate the safety
risk of rural roadsides and classify them in one of the five safety risk levels.

To validate the effectiveness of the proposed methods, a case study was conducted using a rural
area (6 km2) with 19.42 km roads in Nantong, China. Nantong is a prefecture-level city in Eastern
China, and its road system contains mainly rural roads (i.e., 80.5% of its 14,694 km roads is classified
as rural roads) [3].

In summary, the contributions of this paper are:
(1) A Bayesian Network-based method to evaluate the safety risk of rural roadsides for areas with

incomplete ROR crash data is proposed.
(2) Access point density is introduced as a relatively new risk factor to evaluate the safety risk

of rural roadsides, and the results demonstrated that it has a significant impact on the safety risk of
rural roadsides.

(3) This proposed method can be applied to assess the safety risk of road segments or intersections
in the absence of ROR crash data as long as safety risk factors for road segments or intersections
are re-identified.

The remainder of the paper is organized as follows. In Section 2, literature related to rural roadside
safety is reviewed. In Section 3, a safety risk evaluation method for rural roadsides is developed based
on a BN method, and the safety risk factors are discussed. Then, a case study and discussions are
proposed in Section 4. Finally, some conclusions are provided in the last section.

2. Literature Review

2.1. Identification of Safety Risk Factors

The premise of evaluating the safety risk is to understand and identify safety risk factors that
affect the ROR crashes. Stonex (1960) first proposed that three key safety risk factors, including the
steep roadside slopes, deep ditches, and non-traversable obstacles on the roadsides, contributed to
the ROR crashes severity [15]. Since then, numerous researchers have investigated the safety risk
factors associated with various ROR crashes. Field study and mathematical statistical analysis are the
two most commonly used methods to identify these safety risk factors.

Some studies used a field study and experimental data analysis method to study the impact of
the factors related to roadside safety risk. Mclaughlin et al. conducted a 100 car naturalistic driving
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study to collect the experimental data and revealed that roadside geometric features contributed to
the probability of ROR events. Specifically, ROR crashes that occurred on road curves accounted for
30% of all ROR events [16]. Lord et al. conducted site visits to study the ROR crashes on two-way
two-lane rural roads in the state of Texas and identified three types of contributing factors, including
road geometric design features (i.e., roadside design, shoulder width and type, horizontal curvature,
and traffic volume), human factors, and other factors [2]. Fitzpatrick et al. studied the impact of
clear zone width and roadside vegetation on driver behaviors by a field data collection. The results
demonstrated that drivers had a tendency to drive more closely to the shoulder edge [17]. Another
study conducted by the Iowa DOT demonstrated that a 38% reduction in ROR crashes could be
achieved after removing/relocating/shielding hazardous objects in the clear zone area by a field study
and experimental data analysis [18].

To deeply understand the relationship between the factors and the ROR crash severity,
some researchers quantified the relationship using logit models and conditional probability models.
Lee and Mannering identified the significant contributing factors to the ROR crashes severity using
zero-inflated models and nested logit models. They indicated that reducing the number of roadside
trees, avoiding cut side slopes, and increasing the distance between shoulder edge and hazardous
objects (e.g., trees and utility poles) could reduce the ROR crashes severity [19]. Holdridge et al.
developed multivariate nested logit models to identify the most common factors contributing to the
severity of fixed-object crashes. The study results highlighted the main factors—the existence of bridge
rails, leading ends of guardrails, and wooden poles along the roadsides—that increased the likelihood
of severe crashes [20]. Eustace et al. developed an approach to identify the most common factors
contributing to ROR events based on generalized ordered logit regression. The authors indicated that
road geometric features (e.g., curves), roadway features (e.g., grade), driver conditions, and gender
were the key factors contributing to severe ROR crashes [21]. Based on a sufficient number of ROR
crash data collected on freeway roads in Portugal, Roque et al. used the multinomial and mixed logit
regression models and identified two roadside elements consisting of slops and horizontal curves
that have more significant impacts on fatal ROR crashes [22]. Liu and Subramanian identified the
factors contributing to single vehicle ROR crashes—horizontal road alignment, roadway geometric
features, speed limit, and lighting conditions—by logistic regression based on the crash data from the
Fatality Analysis Reporting System [23]. Roque and Jalayer developed a hazard-based duration model
to understand the distance traveled by errant vehicles in ROR crashes and their associated factors.
Based on annual ROR crashes data, the extent severity was related to roadway and roadside geometric
design features, including lane width and clear zones [24].

Several studies developed evaluation methods based on roadside safety risk factors to identify
the main factors impacting the roadside safety risk, including horizontal curve radius, side slop, side
slope height, clear zone width, longitudinal grade, distance between non-traversable obstacles and
roadway edge, roadside objects density, and sight distance, among others [4–14].

In addition, few studies had the perceived access point density as a key factor contributing to
ROR crashes. Results from previous studies showed that access point density was positively correlated
with crash frequency and severity [25,26]. Therefore, this paper added access point density to the set
of factors and studied its impact on rural roadside safety risk.

2.2. Evaluation Methods for Safety Risk

In an attempt to determine which roadside safety countermeasure to adopt, many studies
started with evaluating the safety risk of rural roadsides. Some researchers developed a multi-index
comprehensive evaluation model to assess the roadside safety risk. Zegeer et al. proposed a visual and
subjective measure, which is a roadside hazard rating (RHR) system, to quantify the roadside hazard
level on a scale from one to seven (one being the best) [4]. You et al. proposed a roadside dangerous
index based on the probability of run-off-road, exposure of the vehicle to hazardous roadside, and risk
severity to evaluate roadside safety. [5]. Loprencipe et al. proposed a numeric index (hazard index)



Int. J. Environ. Res. Public Health 2019, 16, 1166 4 of 17

to quantify the overall risk assessment of roadsides based on general characteristics of the road and
defined six classes of roadside safety risk [6]. Several studies evaluated the roadside safety risk using
mathematical statistical analysis. Li et al. developed a risk assessment model based on the grey cluster
method [7]. Pardillo-Mayora et al. developed a roadside hazardousness index (RHI) for two-lane roads
to assess the RwD crash severity levels using cluster analysis [8]. Esawey and Sayed proposed a safety
performance function (SPF) to evaluate the safety risk related to utility pole crashes using negative
binomial regression [9]. Park and Abdel-Aty assessed the safety effectiveness of rural roadsides by
estimating crash modification factors (CMFs) using the cross-sectional method based on the crash data
in Florida [10].

In some literature, some of them used a fuzzy synthetic method. Wei and Zhang established the
evaluation index system and developed a set pair analysis model (SPAM) for roadside risk rating
assessment [11]. Fang et al. presented an assessment model of roadside environment objective safety
based on the probability of run-into-roadside and the roadside objective characteristics using fuzzy
judgment [12]. The others used the probability theory. Ayati et al. used an evidential reasoning (ER)
method to define a roadside hazard severity indicator and developed crash severity prediction models
to evaluate the roadside hazard severity levels [13]. Jalayer and Zhou obtained ROR crash data for
a five year time period (2009–2013) from Illinois DOT and used reliability analysis to gauge the RHRs
for rural two-lane roads [14]. Table 1 summarizes the main evaluation methods for roadside safety risk
in previous studies.

Table 1. Studies on evaluation methods for roadside safety risk.

Method Type Methods References

Multi-index comprehensive
evaluation method

Roadside hazard rating (RHR) system Zegeer et al. (1987) [4]
A roadside dangerous index You et al. (2010) [5]
Hazard index Loprencipe et al. (2018) [6]

Mathematical
statistical analysis

Grey cluster model Li, Ma and Wang (2009) [7]
Cluster analysis Pardillo-Mayora et al. (2010) [8]
Negative binomial regression Esawey and Sayed (2012) [9]
Cross-sectional method Park and Abdel-Aty (2015) [10]

Fuzzy synthetic method A set pair analysis model Wei and Zhang (2011) [11]
Fuzzy judgment Fang et al. (2013) [12]

Probability theory Evidential reasoning method Ayati et al. (2012) [13]
Reliability analysis Jalayer and Zhou (2016) [14]

Apart from the aforementioned methods, the Bayesian Network has been used in traffic safety
evaluation domains. Several studies used BN to assess traffic safety, traffic accidents, and traffic
accident injury severity [27–29]. Some other studies identified the accident black spots and predicted
real-time crashes using a BN method [30,31]. However, few studies used BN to assess rural roadside
safety risk. Additionally, some studies investigated the application of mathematical statistical analysis,
probability theory, and fuzzy synthetic method to analyze the traffic accidents. Chen et al. used mixed
logit models to analyze the hourly crash likelihood of highway segments and investigate the injury
severities of truck drivers in single-and multi-vehicle accidents on rural highways [32,33]. Ma et al.
developed multivariate space-time models to jointly analyze crash frequency by injury severity levels in
fine temporal scale [34]. Wen et al. studied crash frequency on freeway segments using a Poisson-based
count regression with consideration of the spatial effects [35]. Shi et al. proposed a cask evaluation
model based on fuzzy and cask theory to assess safety in Chinese rural roads [36].

To sum up, the methodology process of evaluating roadside safety performance includes the
multi-index comprehensive evaluation method, the mathematical statistical analysis, the fuzzy
synthetic method, and the probability theory. The data of ROR crash frequency and severity are
usually used to characterize the extent of safety risk. This means that the effectiveness and practicality
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of these methods are entirely dependent on the data quality of the ROR crash. In reality, many types of
ROR crash data are not available or missing in many cases. The study proposes a BN-based method
to address this issue. The studied results demonstrate that the proposed approach based on BN has
an ability to effectively evaluate the safety risk of rural roadsides in the absence of ROR crash data.

3. Methods

3.1. BN-Based Evaluation Method

The data for ROR crashes on rural roads are insufficient and difficult to obtain in many countries.
In the absence of ROR crash data, it is difficult to develop a road safety risk assessment method. In this
section, we propose a Bayesian Network-based method to assess and classify the rural roadside safety
risk based on the estimated probability of ROR crashes.

Due to advantages including bi-directional induction, incorporation of missing variables,
and probabilistic inference, BN has gained widespread attention as a method for risk/reliability
assessment in fields of industrial engineering, information technology, and social science [37–42].
In the traffic safety domain, many studies have used BN to analyze, assess, and predict traffic safety
risk and traffic accidents [27–31].

To evaluate the rural roadside safety risk, the proposed BN model is shown in Figure 1.
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Figure 1. A Bayesian Network (BN) model in decision factor-i.

The proposed BN model is composed of parent variable Bi and child variable Eij. Variable Bi
represents the decision factor-i (i = 1, 2, · · · , k, where k is the number of decision factors). Variable Bi
is aggregated to the objective variable R, which represents the rural roadside safety risk. To ensure
relative objectivity and reliability of the experts’ judgment, some experts are invited and divided into
n expert panels. Variable Eij represents the expert panel-j (j = 1, 2, · · · , n, where j is the number of
expert panels), and the evidence judged by the expert panels is added into the BN model. A set of
directed edges connect the parent variables and child variables.

In this study, the safety risk in the respective decision factors is represented by the
probabilities that a road segment falls in Hi (high safety risk category) in the respective decision
factors. These probabilities are calculated using BN based on the experts’ knowledge and
experience. P(Bi = Hi) denotes the probabilities that a road segment falls in Hi in decision factor-i.
Each P(Bi = Hi) is calculated and updated using evidence judged by different expert panels.

In the BN model, each variable has a finite set of mutually exclusive states. The parent variable Bi
indicates the situation that a road segment falls in Hi (high safety risk category) or Lo (low safety risk
category) in decision factor-i. The child variable Eij indicates the situation that a road segment falls
in a decision criterion, such as e1, e2, · · · , em (where m is the number of decision criterion in decision
factor-i), according to the judgment of different expert panels. A system of decision criteria is formed
for each expert panel before their judgment to ensure the consistency of the decision criteria. Different
expert panels have different decision criteria, and these uncertainties can be adequately handled by
the BN model.

For each Eij with Bi, there is attached a conditional probability table P
(
Eij

∣∣Bi
)
. If Bi has no parents,

the table converts to unconditional probabilities P(Bi). The interest of our attention is the updated
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P(Bi), not the prior P(Bi), thus we assume that P(Bi = Hi) = (Bi = Lo) = 1/2. Evaluating P
(
Eij

∣∣Bi
)

is difficult for the experts because variable Eij has a different number of states. Nevertheless, P
(

Bi
∣∣Eij

)
can be obtained easily because variable Bi has only two states of Hi or Lo. Therefore, we can calculate
P
(
Eij

∣∣Bi
)

using Bayesian theorem with P
(

Bi
∣∣Eij

)
, which are evaluated by experts. Note that evaluating

P
(

Bi
∣∣Eij

)
as point values is difficult for experts, thus P

(
Bi
∣∣Eij

)
are evaluated as band values, and the

medians of the band values are employed as the representative values to calculate P
(

Bi
∣∣Eij

)
, as shown

in Table 2. If the median of the band value is not appropriate according to the judgment of experts,
experts can replace an appropriate one for the median. In summary, P

(
Eij

∣∣Bi
)

can be calculated
using Equation (1):

P
(
Eij

∣∣Bi
)

=
P(Bi|Eij)P(Eij)

P(Bi)

=
P(Bi|Eij)P(Eij)

P(Bi|Eij=e1)P(Eij=e1)+···+P(Bi|Eij=em)P(Eij=em)

=
P(Bi|Eij)P(Eij)

∑m
k=1 P(Bi|Eij=ek)P(Eij=ek)

(1)

Table 2. Band values for experts’ evaluations.

Degree of Safety Risk P(Bi = Hi) P(Bi = Lo)

Very significant 0.8–1.0 (0.9) 0.0–0.2 (0.1)
Significant 0.6–0.8 (0.7) 0.2–0.4 (0.3)

Potentially significant 0.4–0.6 (0.5) 0.4–0.6 (0.5)
Low significant 0.2–0.4 (0.3) 0.6–0.8 (0.7)

Very low significant 0.0–0.2 (0.1) 0.8–1.0 (0.9)

Refer to P(Bi = Hi) = (Bi = Lo) = 1/2, similarly, we assume that P
(
Eij = e1

)
=, · · · ,=

P
(
Eij = em

)
= 1/m, because the variable Eij has no information provided.

Using P
(
Eij

)
and P

(
Bi
∣∣Eij

)
, P(Bi) can be calculated as Equations (2) and (3):

P(Bi = Hi) = P(Bi = Hi|Ei1 = e1)P(Ei1 = e1) + · · ·+ P(Bi = Hi|Ei1 = em)P(Ei1 = em) (2)

P(Bi = Lo) = 1− P(Bi = Hi) (3)

Using the evidence judged by experts, each i P(Bi) can be updated as the following steps:
Step 1. If expert panel-1 judges that variable Bi falls in decision criteria e1, that is,

P∗(Ei1) = (1, 0, 0, · · ·), where evidence on Eij is denoted by P∗
(
Eij

)
, the probabilities

P∗(Ei1) = (1, 0, 0, · · ·) are employed as evidence to update P(Bi = Hi), as follows:

P∗(Bi = Hi) = P(Bi = Hi|Ei1 = e1)P∗(Ei1 = e1) + · · ·+ P(Bi = Hi|Ei1 = em)P∗(Ei1 = em)

= P(Bi = Hi|Ei1 = e1)P∗(Ei1 = e1)
(4)

where P(Bi = Hi) updated by evidence is denoted by P∗(Bi = Hi).
Step 2. If expert panel-2 judges that variable Bi falls in decision criteria e2, that is,

P∗(Ei2) = (0, 1, 0, · · ·), the probabilities P∗(Ei2) = (0, 1, 0, · · ·) are employed as evidence to update
P∗(Bi = Hi), as follows:

P∗∗(Bi = Hi) = P∗(Bi = Hi|Ei2 = e1)P∗(Ei2 = e1) + · · ·+ P∗(Bi = Hi|Ei2 = em)P∗(Ei2 = em)

= P∗(Bi = Hi|Ei2 = e2)P∗(Ei2 = e2)
(5)

where P∗(Bi = Hi|Ei2 = e2) can be calculated as follows:

P∗(Bi = Hi|Ei2 = e2) = P(Ei2=e2|Bi=Hi)P∗(Bi=Hi)
P(Ei2=e2)

= P(Ei2=e2|Bi=Hi)P∗(Bi=Hi)
P(Ei2=e2|Bi=Hi)P∗(Bi=Hi)+P(Ei2=e2|Bi=Lo)P∗(Bi=Lo)

(6)
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For a selected road segment, P(Bi = Hi) can be updated on the basis of the evidence judged by
different expert panels until the evidence judged by expert panel-n is used. Finally, as all evidence is
added into the BN model, the more reasonable P(Bi = Hi) is computed. The updated probabilities
P(Bi = Hi) are integrated into the total probability P(R = Hi), as follows:

P(R = Hi) =
k

∑
i=1

ωiP(Bi = Hi) (7)

where ωi is the weighting values of the respective decision factors. In this paper, the weighting values
of decision factors are not the study objective, thus we can assume that ωi = 1/k. Further research is
required to discuss the weighting values.

Given the values of P(R = Hi), we define the safety risk levels on a scale of one to five (one being
the lowest safety risk and five being the highest) (Table 3).

Table 3. Safety risk levels on a scale of one to five.

Band Values Safety Risk Level

0 ≤ P(R = Hi) < 0.2 1-level
0.2 ≤ P(R = Hi) < 0.4 2-level
0.4 ≤ P(R = Hi) < 0.6 3-level
0.6 ≤ P(R = Hi) < 0.8 4-level
0.8 ≤ P(R = Hi) < 1 5-level

3.2. Safety Risk Factors for Rural Roadsides

Table 4 summarizes the main factors contributing to rural roadside safety risk/ROR crashes in
previous studies.

Table 4. Studies on main factors related to roadside safety risk/run-off-road (ROR) crashes.

SN Main Factors References

1 Horizontal curves radius
Liu and Subramanian (2009) [23], Mclaughlin et al. (2009) [16], Wei and Zhang (2011) [11],
Lord et al. (2011) [2], Fang et al. (2013) [12], Eustace et al. (2014) [21], Roque et al. (2015) [22],
Roque and Jalayer (2018) [24], Loprencipe et al. (2018) [6]

2 Longitudinal gradient
Liu and Subramanian (2009) [23], Li, Ma and Wang (2009) [7], Wei and Zhang (2011) [11],
Fang et al. (2013) [12], Eustace et al. (2014) [21], Roque and Jalayer (2018) [24],
Loprencipe et al. (2018) [6]

3 Side slope grade Stonex (1960) [15], Zegeer et al. (1987) [4], Lee and Mannering (2002) [19],
Mclaughlin et al. (2009) [16], Li, Ma and Wang (2009) [7], Pardillo-Mayora et al. (2010) [8],
You et al. (2010) [5], Lord et al. (2011) [2], Roque et al. (2015) [22], Jalayer and Zhou (2016) [14]

4 Side slope height

5 Distance between roadway edge
and non-traversable obstacles

Zegeer et al. (1987) [4], Lee and Mannering (2002) [19], Sperry et al. (2008) [18], Li, Ma and Wang
(2009) [7], Pardillo-Mayora et al. (2010) [8], You et al. (2010) [5], Wei and Zhang (2011) [11],
Lord et al. (2011) [2], Esawey and Sayed (2012 [9], Fang et al. (2013) [12],
Fitzpatrick et al. (2014) [17], Park and Abdel-Aty (2015) [10], Jalayer and Zhou (2016) [14],
Roque and Jalayer (2018) [24]

6
Density of discrete non-traversable
obstacles (e.g., trees, utility poles,
buildings, etc.)

Stonex (1960) [15], Lee and Mannering (2002) [19], Holdridge et al. (2005) [20],
Sperry et al. (2008) [18], Li, Ma and Wang (2009) [7], You et al. (2010) [5], Esawey and Sayed
(2012) [9], Ayati et al. (2012) [13], Park and Abdel-Aty (2015) [10], Loprencipe et al. (2018) [6]

7

Density of continuous
non-traversable obstacles (e.g., worn
out roadside safety barriers,
unprotected drainage channels, etc.)

Stonex (1960) [15], Holdridge et al. (2005) [20], Sperry et al. (2008) [18],
Li, Ma and Wang (2009) [7], You et al. (2010) [5], Ayati et al. (2012) [13],
Loprencipe et al. (2018) [6]

8 Bridge rails Holdridge et al. (2005) [20]

9 Speed limit Liu and Subramanian (2009) [23]

10 Lighting conditions Liu and Subramanian (2009) [23]

11 Traffic volume Lord et al. (2011) [2]

12 Sight distance Wei and Zhang (2011) [11]

13 Lane width Roque and Jalayer (2018) [24]
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As shown in Table 4, the first seven factors are frequently perceived as the significant factors
in previous studies, while the remaining six factors have only appeared once, respectively, in one
literature. Taking into account the frequency and significance of each factor in previous research
and considering the scalability of factor data, we perceive the first seven factors as the key factors in
this paper.

Apart from the first seven factors identified in most literature, few studies have perceived access
point density as a key factor contributing to ROR crashes, which we address in this paper. The previous
studied results show that access point density is positively correlated with crash frequency and
severity [25,26]. Using the definition of access point in Access Management Manual, this paper defines
access point as a node that connects the main road to other levels of roads; compared to the main
road, their design standards are relatively lower and have fewer constraints, specifically including
classified road, farmland road, and residential road (as shown in Figure 2). For example, in Figure 2,
there are 20 access points located on the two sides of a 658 m main road. This means that the access
point density of this road is 30.4 point/km, which will seriously affect the operation of the main traffic
flow. We demonstrate that access point density is indeed relevant to roadside safety risk and affects
the reliability of the evaluation results by an efficient and practical approach in Section 4.3.

In summary, a set of eight safety risk factors is defined, which includes horizontal curves radius B1,
longitudinal gradient B2, distance between roadway edge and non-traversable obstacles B3, side slope
grade B4, side slope height B5, access point density B6, density of discrete non-traversable obstacles
(e.g., trees, utility poles, buildings, etc.), and B7, density of continuous non-traversable obstacles
(e.g., worn out roadside safety barriers, unprotected drainage channels, etc.) B8. The continuous
non-traversable obstacles refer to the obstacles when the longitudinal length is more than 3 m, or the
longitudinal distance between two adjacent discrete obstacles is less than 5 m [11,12].
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Figure 2. Definition of access point.

4. Case Study

4.1. Study Area

The case study area is a rural area of 6 km2 (3 km by 2 km) in Nantong, China (as shown
in Figure 3). There are many rivulets, access points, residential constructions, and non-traversable
obstacles (e.g., trees, utility poles, etc.) along the roadsides in the study area. The portion of the
rural roads used in this study consists of 19.42 km two-lane roads, including 5.16 third-class roads
(3.5 m of lane width) and 14.26 fourth-class roads (3 m of lane width). The others are arterial highways
(e.g., provincial trunk highway) or substandard roads (e.g., farmland road, residential road, etc.),
which are not within the scope of assessment. Rural roadway and roadside feature data were obtained
from the Nantong DOT and Google Earth Pro. The data were processed to assess and classify the
safety risk of rural roadsides.
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Figure 3. Study area.

For the sake of brevity, roadside safety risk assessment is elaborated by using a straight segment
with a length of 200 m belonging to the network in the study area as an example segment (as shown in
Figure 3). With regard to the risk factors of this example segment, the horizontal curves radius is over
60 m, the longitudinal gradient is 2.5%, the distance between roadway edge and obstacles is 0.8 m,
the side slope grade is 1:1.5, the side slope height is 1.5 m, the access point density is 11 point/km,
the density of discrete non-traversable obstacles is 8 obstacle/km, and the density of continuous
non-traversable obstacles is 0.08 km/km.

4.2. Roadside Safety Risk Evaluation

To evaluate the rural roadside safety risk of the study area shown in Figure 3, we divided each
rural road into a defined segment length of 200 m. If the last segment of rural road was less than 200 m,
we also defined it as a segment. Therefore, the whole road network had 99 segments. Each segment
data of roadway and roadside features were sourced from Nantong DOT and Google Earth Pro.

In order to ensure relative objectivity and reliability of expert judgments, we invited 24 experts in
traffic safety domain from different institutions, including experts from departments of transportation,
research institutes, universities, and engineering consultancies. These experts included nine senior
engineers, eight professors, and seven project managers. The invited experts were divided into three
panels for the comprehensive assessment. Through discussion within each panel, the decision criteria
of each panel were confirmed. Table 5 presents the decision criteria of the respective factors for each
expert panel.

Table 5. Decision criteria of the respective factors for three expert panels.

Factors
Expert Panel-1 Expert Panel-2 Expert Panel-3

Criteria P(Bi = Hi|Ei1 = ek) Criteria P(Bi = Hi|Ei2 = ek) Criteria P(Bi = Hi|Ei3 = ek)

B1
(m)

<30 0.5 <20 0.6 <15 0.7
[30,60] 0.3 [20,40) 0.4 [15,30) 0.5

>60 0.1 [40,60] 0.2 [30,45) 0.3
- - >60 0.1 [45,60] 0.2
- - - - >60 0.1

B2
(%)

>3.0 0.5 >4.0 0.6 >3.0 0.5
[1.0,3.0] 0.35 [2.0,4.0] 0.45 [2.0,3.0] 0.4

<1.0 0.1 [1.0,2.0) 0.3 [1.0,2.0) 0.25
- - <1.0 0.15 <1.0 0.1
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Table 5. Cont.

Factors
Expert Panel-1 Expert Panel-2 Expert Panel-3

Criteria P(Bi = Hi|Ei1 = ek) Criteria P(Bi = Hi|Ei2 = ek) Criteria P(Bi = Hi|Ei3 = ek)

B3
(m)

<1.0 0.5 <0.5 0.6 <0.5 0.6
[1.0,1.5] 0.3 [0.5,1.0) 0.4 [0.5,1.0) 0.45

>1.5 0.1 [1.0,1.5] 0.2 [1.0,1.5) 0.35
- - >1.5 0.1 [1.5,2.0] 0.25
- - - - >2.0 0.1

B4

>1:1 0.5 >1:1 0.6 >1:1 0.5
[1:4,1:1] 0.35 [1:2,1:1] 0.45 [1:3,1:1] 0.4

<1:4 0.15 [1:4,1:2) 0.2 [1:4,1:3) 0.25
- - <1:4 0.1 <1:4 0.1

B5
(m)

>1.5 0.4 >2.0 0.5 >3.0 0.6
[0.5,1.5] 0.25 [1.0,2.0] 0.4 [2.0,3.0] 0.5

<0.50 0.15 [0.5,1.0) 0.2 [1.0,2.0) 0.35
- - <0.50 0.1 <1.0 0.2

B6
(point/km)

>20 0.6 >20 0.5 >25 0.6
[10,20] 0.45 [10,20] 0.4 [10,25] 0.45

<10 0.2 [5,10) 0.2 [5,15) 0.25
- - <5 0.1 <5 0.15

B7
(obstacle/km)

>30 0.4 >40 0.5 >30 0.5
[10,30] 0.2 [20,40] 0.3 (20,30] 0.35

<10 0.1 <20 0.2 [10,20] 0.2
- - - - <10 0.1

B8
(km/km)

>0.2 0.4 >0.3 0.45 >0.3 0.4
[0.1,0.2] 0.25 [0.1,0.3] 0.3 (0.2,0.3] 0.35

<0.1 0.1 <0.1 0.15 [0.1,0.2] 0.2
- - - - <0.1 0.1

Given the decision criteria of the respective factors for three expert panels (as shown in Table 5),
a conditional probability table P

(
Eij

∣∣Bi
)

could be calculated using Equation (1). Taking the distance
between roadway edge and obstacles B3 as an example (Table 5), the expert panel-1 has three decision
criteria for E31, namely e1, e2, and e3. When a road segment falls in Hi, the conditional probability of
B3 falling in the respective decision criteria is: P(E31 = e1|B3 = Hi) = 0.5556, P(E31 = e2|B3 = Hi) =
0.3333, P(E31 = e3|B3 = Hi) = 0.1111. Conversely, when a road segment falls in Lo, the conditional
probability of B3 falling in the respective decision criteria is: P(E31 = e1|B3 = Lo) = 0.2381,
P(E31 = e2|B3 = Lo) = 0.3333, P(E31 = e3|B3 = Lo) = 0.4286. In a similar way, Table 6 lists the
conditional probability P

(
E3j

∣∣B3
)

for three expert panels.

Table 6. Conditional probability P
(

E3j

∣∣∣B3

)
for three expert panels.

Expert Panel Conditional Probability Falling in Hi Conditional Probability Falling in Lo

Expert panel-1
P(E31 = e1|B3 = Hi) = 0.5556 P(E31 = e1|B3 = Lo) = 0.2381
P(E31 = e2|B3 = Hi) = 0.3333 P(E31 = e2|B3 = Lo) = 0.3333
P(E31 = e3|B3 = Hi) = 0.1111 P(E31 = e3|B3 = Lo) = 0.4286

Expert panel-2

P(E32 = e1|B3 = Hi) = 0.4615 P(E32 = e1|B3 = Lo) = 0.1481
P(E32 = e2|B3 = Hi) = 0.3077 P(E32 = e2|B3 = Lo) = 0.2222
P(E32 = e3|B3 = Hi) = 0.1538 P(E32 = e3|B3 = Lo) = 0.2963
P(E32 = e4|B3 = Hi) = 0.0769 P(E32 = e4|B3 = Lo) = 0.3333

Expert panel-3

P(E33 = e1|B3 = Hi) = 0.3429 P(E33 = e1|B3 = Lo) = 0.1231
P(E33 = e2|B3 = Hi) = 0.2571 P(E33 = e2|B3 = Lo) = 0.1692
P(E33 = e3|B3 = Hi) = 0.2000 P(E33 = e3|B3 = Lo) = 0.2000
P(E33 = e4|B3 = Hi) = 0.1429 P(E33 = e4|B3 = Lo) = 0.2308
P(E33 = e5|B3 = Hi) = 0.0571 P(E33 = e5|B3 = Lo) = 0.2769
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Taking the example segment as an example (Figure 3), the distance between roadway edge
and obstacles B3 is 0.8 m. Table 5 shows that B3 falls into criteria e1 of variable E31, criteria e2 of
variable E32, and criteria e2 of variable E33, respectively. P∗(E31) = (1, 0, 0), P∗(E32) = (0, 1, 0, 0),
P∗(E33) = (0, 1, 0, 0, 0) are employed as evidence to update P(B3 = Hi) using Equation (2) and
updated steps, P(B3 = Hi) = 0.6779. Similarly, the updated probability of other variables Bi can be
calculated in the same manner. Then, using Equation (7), this example segment’s P(R = Hi) = 0.3520
and its roadside safety risk are classified as 2-level. The above calculation results were calculated by
BN tools GeNie2.0.

Figure 4 shows the roadside safety risk evaluation results calculated by GeNie2.0. The number of
segments whose safety risk level belong to the 1–5 level are 50, 28, 10, 8, and 3, respectively. Figure 5
further visualizes the distribution of road segments with different levels of safety risk. As shown
in Figure 5, high-risk roadside segments of 4-level and 5-level are mainly concentrated in the dense
residential areas and locations with continuous sharp-curves.
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4.3. Effectiveness of Roadside Safety Risk Evaluation Results 

To validate the effectiveness of the evaluation method and results, we obtained the historical 

ROR crash data for a two year period (2015 to 2016) from the Nantong Department of Traffic Police 

(DOTP). The locations of crashes are reported as road addresses or intersections, which are geocoded 

to the rural road network in the study area. Table 7 illustrates the crash severity and crash frequency 

in the study area. 

Table 7. Crash severity and crash frequency from 2015 to 2016 in the study area. 

Category (Coefficient) Frequency Percentage  

Crash severity Fatal (2.0) 12 6.0% 

 Injury (1.5) 76 38.2% 

 Property Damage Only 

(PDO) (1.0) 
111 55.8% 

 No Crash (NC) (0) 0 0.0% 

 Total 199 100% 

Crash frequency (number of 

ROR crashes per segment) 
0 8 8.1% 

 1 22 22.2% 

 2 35 35.4% 

 3 25 25.2% 

 ≥4 9 9.1% 

 Total 99 100% 

To make ROR crash data comparable to the safety risk, a crash severity index (CSI) is introduced 

to represent the crash severity per segment. The CSI can be defined on crash frequency and crash 

severity, and calculated as follows: 
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where 𝛼𝑓𝑎𝑡𝑎𝑙, 𝛼𝑖 𝑗𝑢𝑟𝑦, 𝛼𝑃𝐷𝑂, and 𝛼𝑁𝐶  are the crash severity coefficients of fatal, injury, property 

damage only, and no crash, respectively. 𝑛𝑓𝑎𝑡𝑎𝑙, 𝑛𝑖 𝑗𝑢𝑟𝑦, 𝑛𝑃𝐷𝑂, and 𝑛𝑁𝐶  are crash frequency of fatal, 

injury, property damage only, and no crash, respectively (as shown in Table 7). 
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Figure 5. Safety risk levels distribution in the study area.

To identify the factors contributing to the relatively high-risk level of rural roadsides, 11 high-risk
segments (Figure 5) are selected and defined with the alpha-numerical code Sr, where r ranges from
1 to 11. S1, S4, and S8 are located in the dense residential areas with many residential access points
and discrete non-traversable obstacles, such as utility poles and buildings along the roadsides, and the
distance between roadway edge and obstacles is less than 1 m. S2 and S3 are also concentrated in the
dense residential areas with two continuous sharp-curves whose radii are less than 30 m, which may
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cause vehicle run-off-road crashes in the absence of traffic calming measures to reduce vehicle speed.
The side slope grade (side slope height) of S5 and S7 are 1:1.5 (1.5 m) and 1:1 (1.1 m), respectively,
and S7 has a long longitudinal slope with a gradient of 2.8%, resulting in a higher risk. S6 and S11 are
due to the continuous non-traversable obstacles, which are unprotected drainage channels along the
roadsides. The key high-risk factors for S9 are sharp-curve and higher density of residential access
points. S10 has two continuous sharp-curves with radii less than 25 m and unprotected drainage
channels along the roadsides. The evaluated results highlight that the aforementioned factors have
a more significant impact on the safety risk of rural roadsides. For these high-risk factors, we can take
some safety management measures and install the safety facilities to reduce the safety risk level of
these rural roadsides.

4.3. Effectiveness of Roadside Safety Risk Evaluation Results

To validate the effectiveness of the evaluation method and results, we obtained the historical ROR
crash data for a two year period (2015 to 2016) from the Nantong Department of Traffic Police (DOTP).
The locations of crashes are reported as road addresses or intersections, which are geocoded to the
rural road network in the study area. Table 7 illustrates the crash severity and crash frequency in the
study area.

Table 7. Crash severity and crash frequency from 2015 to 2016 in the study area.

Category (Coefficient) Frequency Percentage

Crash severity Fatal (2.0) 12 6.0%
Injury (1.5) 76 38.2%

Property Damage Only (PDO) (1.0) 111 55.8%
No Crash (NC) (0) 0 0.0%

Total 199 100%

Crash frequency (number of ROR crashes per segment) 0 8 8.1%
1 22 22.2%
2 35 35.4%
3 25 25.2%
≥4 9 9.1%

Total 99 100%

To make ROR crash data comparable to the safety risk, a crash severity index (CSI) is introduced
to represent the crash severity per segment. The CSI can be defined on crash frequency and crash
severity, and calculated as follows:

CSI = α f ataln f atal + αinjuryninjury + αPDOnPDO + αNCnNC (8)

where α f atal , αinjury, αPDO, and αNC are the crash severity coefficients of fatal, injury, property damage
only, and no crash, respectively. n f atal , ninjury, nPDO, and nNC are crash frequency of fatal, injury,
property damage only, and no crash, respectively (as shown in Table 7).

Figure 6 shows the distribution of road segments with different levels of CSI calculated by
Equation (8). Compared to Figure 5, road segments with a higher safety risk level tend to have a higher
value of CSI. According to the comparison of CSI and P(R = Hi), Figure 7 shows that 87.9% of
all segments’ CSI and P(R = Hi) values fall into the same risk level, and among the 12 high-risk
segments, only one segment’s CSI and P(R = Hi) value is not within the same risk level. Consequently,
it is reasonable to assume that the greater the safety risk level is, the higher the CSI value is. As shown
in Figure 8, the polynomial regression results between the safety risk levels and CSI have a correlation
coefficient of 0.8538, suggesting a high correlation between safety risk levels and CSI. These studied
results show that the proposed method can be used to effectively evaluate the safety risk of rural
roadsides, and this BN-based approach can cope with the uncertainty of different decision criteria
judged by different expert panels.
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To validate the importance of factoring the perceived access point density in ROR crashes
(which was often not included in previous studies), we used the proposed method to compare
the results with the perceived access point density and the results without it. We removed it from the
set of factors and used the proposed approach to reevaluate the study area. Note that we defined the
results evaluated by a set of eight factors as an experiment group and those by a set of seven factors as
a control group. As shown in Figure 9, the comparison results show that only 62.6% of all segments’
CSI and P(R = Hi) values fall into the same risk level in a control group, which is much lower than the
proportion in the experiment group. Specifically, among 12 high-risk segments, seven segments have
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a lower risk level using the proposed method than the risk level using CSI. Through analyzing the
roadside features of these seven segments, we find that these segments have a high density of access
points, which is a completely ignored risk factor in the control group. Figure 10 illustrates that the
safety risk levels are found to increase in consistency with the value of CSI, which is in good agreement
with the findings in the experiment group. Nevertheless, the correlation coefficient is 0.4252, which is
lower than the experiment group. Furthermore, summary statistics for CSI corresponding to safety
risk levels evaluated by the experiment group and control group are shown in Table 8. Table 8 and
Figure 11 illustrate that the standard deviation of CSI corresponding to the safety risk levels of the
experiment group is significantly lower than that of the control group. Therefore, the evaluation results
using a set of factors that includes the access point density can characterize the safety risk of rural
roadsides more accurately, which means a risk factor of access point density significantly contributes
to the safety risk of rural roadsides.
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Figure 10. Safety risk levels versus CSI (a control group).

Table 8. Summary statistics for CSI corresponding to safety risk levels.

CSI Corresponding to Levels in an
Experiment Group

CSI Corresponding to Levels in a
Control Group

Levels Mean SD Min. Max. Mean SD Min. Max.

1 1.32 0.841 0.0 4.0 1.72 1.087 0.0 5.5
2 2.95 0.772 1.0 5.0 2.82 1.965 0.0 9.0
3 4.90 1.020 3.5 7.0 5.10 1.758 3.0 8.0
4 6.69 0.496 6.0 7.5 5.31 2.076 1.0 7.5
5 8.83 0.624 8.0 9.5 6.33 2.461 3.5 9.5
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Figure 11. Comparison of mean and SD of CSI corresponding to levels between an experiment group
and a control group.

5. Conclusions

Previous studies relied heavily on the quality of ROR crash data to evaluate rural road safety
risk, but such data may not be available or complete in many rural areas due to lack of funding or
manmade errors. This study proposed a BN-based method using experts’ judgments on the conditional
probability of different safety risk factors to evaluate the safety risk of rural roadsides. By summarizing
the roadside safety risk factors identified in previous studies and introducing a new factor that may
have a significant impact on roadside safety risk, eight factors were considered, including horizontal
curves radius, longitudinal gradient, side slope grade, side slope height, distance between roadway
edge and non-traversable obstacles, access point density, density of discrete non-traversable obstacles,
and density of continuous non-traversable obstacles.

To validate the proposed method, a case study was conducted using a rural area (6 km2) with
19.42 km roads in Nantong, China. By comparing the safety risk levels of the proposed method and
CSI generated from ROR crash data from 2015–2016, the results show that the proposed method can
generate a consistent result with ROR crash data, meaning the higher the safety risk levels are, the
higher the CSI is. Additionally, by comparing the evaluating results with the perceived access point
density and the results without it, we also found that access point density significantly contributed to
the safety risk of rural roadsides. These results demonstrate that the proposed method can cope with
inconsistent expert judgments and can serve as a low-cost solution to evaluate the safety risk of rural
roadsides, especially for areas with incomplete ROR crash data.

A limitation of this study was that we could only obtain two year (2015–2016) data from Nantong
DOTP due to government restrictions on traffic accident data disclosure. Additional studies are needed
to include three or more years of data to validate our research once such data are available to the public.
Note that the modeling precision relied on the decision criteria judged by the experts and rationality of
safety risk factor identification. Therefore, for future research, it is worth strengthening the reliability
of expert judgments by simulating the ROR crash scenarios to obtain a dataset of crash frequency and
severity and calculate the probabilities of ROR crashes caused by the respective safety risk factors.
Another potential research direction is to include additional factors related to the roadside safety risk,
such as lane width, sight distance, etc., which can potentially improve the quality of the proposed
method in evaluating the safety risk of rural roadsides.
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